Fundamental limits on beam stability at the Advanced Photon Source.

PDF Version Also Available for Download.

Description

Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber and ... continued below

Physical Description

10 p.

Creation Information

Decker, G. A. June 18, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber and girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.

Physical Description

10 p.

Notes

INIS; OSTI as DE00010698

Medium: P; Size: 10 pages

Source

  • Beam Instrumentation Workshop (BIW'98), Palo Alto, CA (US), 05/04/1998--05/07/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ASD/CP-95935
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10698
  • Archival Resource Key: ark:/67531/metadc620367

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 18, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 6:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Decker, G. A. Fundamental limits on beam stability at the Advanced Photon Source., article, June 18, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc620367/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.