Theory and numerical application of subsurface flow and transport for transient freezing conditions

PDF Version Also Available for Download.

Description

Protective barriers are being investigated for the containment of radioactive waste within subsurface environments. Predicting the effectiveness of cryogenic barriers and near-surface barriers in temperate or arctic climates requires capabilities for numerically modeling subsurface flow and transport for freezing soil conditions. A predictive numerical model is developed herein to simulate the flow and transport of radioactive solutes for three-phase (water-ice-air) systems under freezing conditions. This physically based model simulates the simultaneous flow of water, air, heat, and radioactive solutes through variably saturated and variably frozen geologic media. Expressions for ice (frozen water) and liquid water saturations as functions of temperature, ... continued below

Physical Description

10 p.

Creation Information

White, M.D. April 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

  • White, M.D. Pacific Northwest Lab., Richland, WA (United States). Earth and Environmental Sciences Center

Sponsor

Publisher

  • Pacific Northwest Laboratory
    Publisher Info: Pacific Northwest Lab., Richland, WA (United States)
    Place of Publication: Richland, Washington

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Protective barriers are being investigated for the containment of radioactive waste within subsurface environments. Predicting the effectiveness of cryogenic barriers and near-surface barriers in temperate or arctic climates requires capabilities for numerically modeling subsurface flow and transport for freezing soil conditions. A predictive numerical model is developed herein to simulate the flow and transport of radioactive solutes for three-phase (water-ice-air) systems under freezing conditions. This physically based model simulates the simultaneous flow of water, air, heat, and radioactive solutes through variably saturated and variably frozen geologic media. Expressions for ice (frozen water) and liquid water saturations as functions of temperature, interfacial pressure differences, and osmotic potential are developed from nonhysteretic versions of the Brooks and Corey and van Genuchten functions for soil moisture retention. Aqueous relative permeability functions for variably saturated and variably frozen geologic media are developed from the Mualem and Burdine theories for predicting relative permeability of unsaturated soil. Soil deformations, caused by freezing and melting transitions, are neglected. Algorithms developed for predicting ice and liquid water saturations and aqueous-phase permeabilities were incorporated into the finite-difference based numerical simulator STOMP (Subsurface Transport Over Multiple Phases). Application of the theory is demonstrated by the solution of heat and mass transport in a horizontal cylinder of partially saturated porous media with differentially cooled ends, with the colder end held below the liquid water freezing point. This problem represents an essential capability for modeling cryogenic barriers in variably saturated geologic media.

Physical Description

10 p.

Notes

INIS; OSTI as DE95014182

Source

  • 15. annual hydrology days conference, Ft. Collins, CO (United States), 3-7 Apr 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95014182
  • Report No.: PNL-SA--25595
  • Report No.: CONF-9504192--1
  • Grant Number: AC06-76RL01830
  • DOI: 10.2172/106505 | External Link
  • Office of Scientific & Technical Information Report Number: 106505
  • Archival Resource Key: ark:/67531/metadc620350

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2016, 6:13 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

White, M.D. Theory and numerical application of subsurface flow and transport for transient freezing conditions, report, April 1, 1995; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc620350/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.