LiMn{sub 2-x}Cu{sub x}O{sub 4} spinels (0.1 {le} x {le} 0.5) - a new class of 5 V cathode materials for Li batteries : I. electrochemical, structural and spectroscopic studies.

PDF Version Also Available for Download.

Description

A series of electroactive spinel compounds, LiMn{sub 2{minus}x}Cu{sub x}O{sub 4} (0.1 {le} x {le} 0.5) has been studied by crystallographic, spectroscopic and electrochemical methods and by electron-microscopy. These LiMn{sub 2{minus}x}Cu{sub x}O{sub 4} spinels are nearly identical in structure to cubic LiMn{sub 2}O{sub 4} and successfully undergo reversible Li intercalation. The electrochemical data show a remarkable reversible electrochemical process at 4.9 V which is attributed to the oxidation of Cu{sup 2+} to Cu{sub 3+}. The inclusion of Cu in the spinel structure enhances the electrochemical stability of these materials upon cycling. The initial capacity of LiMn{sub 2{minus}x}Cu{sub x}O{sub 4} spinels decreases ... continued below

Physical Description

40 p.

Creation Information

Ein-Eli, Y. October 5, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A series of electroactive spinel compounds, LiMn{sub 2{minus}x}Cu{sub x}O{sub 4} (0.1 {le} x {le} 0.5) has been studied by crystallographic, spectroscopic and electrochemical methods and by electron-microscopy. These LiMn{sub 2{minus}x}Cu{sub x}O{sub 4} spinels are nearly identical in structure to cubic LiMn{sub 2}O{sub 4} and successfully undergo reversible Li intercalation. The electrochemical data show a remarkable reversible electrochemical process at 4.9 V which is attributed to the oxidation of Cu{sup 2+} to Cu{sub 3+}. The inclusion of Cu in the spinel structure enhances the electrochemical stability of these materials upon cycling. The initial capacity of LiMn{sub 2{minus}x}Cu{sub x}O{sub 4} spinels decreases with increasing x from 130mAh/g in LiMn{sub 2}O{sub 4} (x=0) to 70 mAh/g in ''LiMn{sub 1.5}Cu{sub 0.5}O{sub 4}'' (x=0.5). The data also show slight shifts to higher voltage for the delithiation reaction that normally occurs at 4.1 V in standard Li{sub 1{minus}x}Mn{sub 2}O{sub 4} electrodes (1 {ge} x {ge} 0) corresponding to the oxidation of Mn{sup 3+} to Mn{sup 4+}. Although the powder X-ray diffraction pattern of ''LiMn{sub 1.5}Cu{sub 0.5}O{sub 4}'' shows a single-phase spinel product, neutron diffraction data show a small, but significant quantity of an impurity phase, the composition and structure of which could not be identified. X-ray absorption spectroscopy was used to gather information about the oxidation states of the manganese and copper ions. The composition of the spinel component in the LiMn{sub 1.5}Cu{sub 0.5}O{sub 4} was determined from X-ray diffraction and XANES data to be Li{sub 1.01}Mn{sub 1.67}Cu{sub 0.32}O{sub 4} suggesting, to a best approximation, that the impurity in the sample was a lithium-copper-oxide phase. The substitution of manganese by copper enhances the reactivity of the spinel structure towards hydrogen; the compounds are more easily reduced at moderate temperature ({approximately} 200 C) than LiMn{sub 2}O{sub 4}.

Physical Description

40 p.

Notes

OSTI as DE00010990

Medium: P; Size: 40 pages

Source

  • Materials for Electrochemical Energy Storage and Conversion II Batteries, Capacitors and Fuel Cells, Warrendale, PA (US), Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/CMT/CP-97391
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10990
  • Archival Resource Key: ark:/67531/metadc620279

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 5, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 12, 2017, 2:48 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ein-Eli, Y. LiMn{sub 2-x}Cu{sub x}O{sub 4} spinels (0.1 {le} x {le} 0.5) - a new class of 5 V cathode materials for Li batteries : I. electrochemical, structural and spectroscopic studies., article, October 5, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc620279/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.