Declustering databases on heterogeneous disk systems

PDF Version Also Available for Download.

Description

Declustering is a well known strategy to achieve maximum I/O parallelism in multi-disk systems. Many declustering methods have been proposed for symmetrical disk systems, i.e., multi-disk systems in which all disks have the same speed and capacity. This work deals with the problem of adapting such declustering methods to work in heterogeneous environments. In such environments these are many types of disks and servers with a large range of speeds and capacities. We deal first with the case of perfectly declustered queries, i.e., queries which retrieve a fixed proportion of the answer from each disk. We show that the fraction ... continued below

Physical Description

32 p.

Creation Information

Chen, Ling T.; Rotem, D. & Seshadri, S. April 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Declustering is a well known strategy to achieve maximum I/O parallelism in multi-disk systems. Many declustering methods have been proposed for symmetrical disk systems, i.e., multi-disk systems in which all disks have the same speed and capacity. This work deals with the problem of adapting such declustering methods to work in heterogeneous environments. In such environments these are many types of disks and servers with a large range of speeds and capacities. We deal first with the case of perfectly declustered queries, i.e., queries which retrieve a fixed proportion of the answer from each disk. We show that the fraction of the dataset which must be allocated to each disk is affected by both the relative speed and capacity of the disk. Furthermore, the hierarchical structure of most distributed systems, where groups of disks are placed in servers, imposes further complications due to variations . in server and network bandwidths which may affect the actual achievable transfer rates. We propose an algorithm which determines the fraction of the dataset which must be loaded on each disk. The algorithm may be tailored to find disk loading for minimal response time for a given database size, or to compute a system profile showing the optimal loading of the disks for all possible ranges of database sizes. Next we look at the probabilistic aspects of this problem and show how to optimize the expected retrieval time when the Proportions of the data retrieved from each disk axe random variables. We show the rather surprising result that in this case to achieve optimality, the fraction of the data loaded on each disk must not simply be proportional to its speed but rather some compensation must be made with bias towards the faster disks. The methods proposed here are general and can be used in conjunction with most known symmetric declustering methods.

Physical Description

32 p.

Notes

OSTI as DE96001312

Source

  • International conference on very large data bases, Zurich (Switzerland), 11 Sep - 15 Nov 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96001312
  • Report No.: LBL--37215
  • Report No.: CONF-950960--1
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 129221
  • Archival Resource Key: ark:/67531/metadc620222

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 4, 2016, 9:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chen, Ling T.; Rotem, D. & Seshadri, S. Declustering databases on heterogeneous disk systems, article, April 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc620222/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.