Front-flash thermal imaging characterization of continuous fiber ceramic composites.

PDF Version Also Available for Download.

Description

Infrared thermal imaging has become increasingly popular as a nondestructive evaluation method for characterizing materials and detecting defects. One technique, which was utilized in this study, is front-flash thermal imaging. We have developed a thermal imaging system that uses this technique to characterize advanced material systems, including continuous fiber ceramic composite (CFCC) components. In a front-flash test, pulsed heat energy is applied to the surface of a sample, and decay of the surface temperature is then measured by the thermal imaging system. CFCC samples with drilled flat-bottom holes at the back surface (to serve as ''flaws'') were examined. The surface-temperature/time ... continued below

Physical Description

9 p.

Creation Information

Deemer, C. April 23, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Infrared thermal imaging has become increasingly popular as a nondestructive evaluation method for characterizing materials and detecting defects. One technique, which was utilized in this study, is front-flash thermal imaging. We have developed a thermal imaging system that uses this technique to characterize advanced material systems, including continuous fiber ceramic composite (CFCC) components. In a front-flash test, pulsed heat energy is applied to the surface of a sample, and decay of the surface temperature is then measured by the thermal imaging system. CFCC samples with drilled flat-bottom holes at the back surface (to serve as ''flaws'') were examined. The surface-temperature/time relationship was analyzed to determine the depths of the flaws from the front surface of the CFCC material. Experimental results on carbon/carbon and CFCC samples are presented and discussed.

Physical Description

9 p.

Notes

OSTI as DE00010924

Medium: P; Size: 9 pages

Source

  • 23rd Annual Cocoa Beach Conference and Exposition, Cocoa Beach, FL (US), 01/25/1999--01/29/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-97040
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10924
  • Archival Resource Key: ark:/67531/metadc620168

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 23, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 8:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Deemer, C. Front-flash thermal imaging characterization of continuous fiber ceramic composites., article, April 23, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc620168/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.