Rapid prototyping of a micro pump with laser micromaching

PDF Version Also Available for Download.

Description

A micro electrohydrodynamic (EHD) injection pump has been developed using laser micromaching technology. Two designs have been fabricated, tested, and evaluated. The first design has two silicon pieces with KOH-etched wells which are stacked on the top of each other. The wells am etched on one side of the wafer and gold is deposited on the other side to serve as the pump electrodes. A ND:YAG laser is used to drill an array holes in the well region of both silicon die. This creates a grid distribution with a rectangular pattern. Next the well regions of the die are aligned, ... continued below

Physical Description

10 p.

Creation Information

Wong, C.C.; Chu, D.; Liu, S.L.; Tuck, M.R.; Mahmud, Z. & Amatucci, V. August 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A micro electrohydrodynamic (EHD) injection pump has been developed using laser micromaching technology. Two designs have been fabricated, tested, and evaluated. The first design has two silicon pieces with KOH-etched wells which are stacked on the top of each other. The wells am etched on one side of the wafer and gold is deposited on the other side to serve as the pump electrodes. A ND:YAG laser is used to drill an array holes in the well region of both silicon die. This creates a grid distribution with a rectangular pattern. Next the well regions of the die are aligned, and the parts are bonded together using a Staystik thermoplastic. The pump unit is then mounted into a ceramic package over the hole drilled to permit fluid flow. Aluminum ribbon wire bonds are used to connect the pump electrodes to the package leads. Isolation of metallization and wires is achieved by filling the package well and coating the wires with polyimide.When a voltage is applied at the electrodes, ions are injected into the working fluid, such as an organic solvent, thus inducing flow. The second design has the die oriented ``back-to-back`` and bonded together with stayform. A ``back-to-back`` design will decrease the grid distance so that a smaller voltage is required for pumping. Preliminary results have demonstrated that this micro pump can achieved a pressure head of about 287 Pa with an applied voltage of 120 volts.

Physical Description

10 p.

Notes

OSTI as DE95016744

Source

  • Micromachining and microfabrication process technology conference, Austin, TX (United States), 23-24 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95016744
  • Report No.: SAND--95-0636C
  • Report No.: CONF-9510205--4
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 102484
  • Archival Resource Key: ark:/67531/metadc620162

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 13, 2016, 5:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wong, C.C.; Chu, D.; Liu, S.L.; Tuck, M.R.; Mahmud, Z. & Amatucci, V. Rapid prototyping of a micro pump with laser micromaching, article, August 1, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc620162/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.