In-line particle field holography at Pegasus

PDF Version Also Available for Download.

Description

An in-line holographic imaging system has been developed for hydrodynamic experiments at the Pegasus facility located at Los Alamos National Laboratory. Holography offers the unique capability to record distributions of particles over a three dimensional volume. The system to be discussed is used to measure particle distributions of ejecta emitted after a cylindrical aluminum liner (5.0 cm in diameter, 2.0 cm high) impacts a target (3.0 cm in diameter). The ejecta emerges from the target traveling up to 7mm/{micro}s and moves toward the axial center of the system where the holographic imaging is performed. In-line holography is particularly suited for ... continued below

Physical Description

7 p.

Creation Information

Sorenson, D.S.; Obst, A. & King, N.S.P. September 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An in-line holographic imaging system has been developed for hydrodynamic experiments at the Pegasus facility located at Los Alamos National Laboratory. Holography offers the unique capability to record distributions of particles over a three dimensional volume. The system to be discussed is used to measure particle distributions of ejecta emitted after a cylindrical aluminum liner (5.0 cm in diameter, 2.0 cm high) impacts a target (3.0 cm in diameter). The ejecta emerges from the target traveling up to 7mm/{micro}s and moves toward the axial center of the system where the holographic imaging is performed. In-line holography is particularly suited for the Pegasus pulsed power facility where the geometry restrictions make off axis holography impractical. In order to record the fast moving particles a frequency-doubled Nd:-YAG laser system has been implemented which produces a 80 ps 20 millijoule pulse at 532 nm. An optical relay system composed of a Fourier optical lens pair has been developed which is placed 4.0 cm from the center of the region of interest. This relay lens pair forms an intermediate image 32 cm from the object plane and the hologram is placed 4cm downstream of the intermediate image. The holographic system and resolution capability are discussed.

Physical Description

7 p.

Notes

OSTI as DE95016895

Source

  • 10. Institute of Electrical and Electronics Engineers (IEEE) pulsed power conference, Albuquerque, NM (United States), 10-13 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95016895
  • Report No.: LA-UR--95-2387
  • Report No.: EGG--11265-5028;CONF-950750--30
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 102227
  • Archival Resource Key: ark:/67531/metadc620151

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 29, 2016, 9:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sorenson, D.S.; Obst, A. & King, N.S.P. In-line particle field holography at Pegasus, article, September 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc620151/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.