Fracture and creep of an Al{sub 2}O{sub 3}-SiC(whisker)-TiC(particle) composite.

PDF Version Also Available for Download.

Description

High-temperature fracture strength and compressive creep of an electrodischarge-machinable composite, Al{sub 2}O{sub 3}-30.9 vol.% SiC whiskers-23 vol.% TiC particles have been studied to 1200 C and 1450 C, respectively, in inert atmosphere. Microstructures of fractured and deformed specimens were examined by scanning and transmission electron microscopy. Fast fracture occurred at T {le} 1200 C. Steady-state creep was achieved for T > 1350 C at stresses < 80 MPa, with the rate-controlling mechanism being partially unaccommodated grain-boundary sliding, with a stress exponent of {approx}1 and an activation energy of {approx}470 kJ/mol.

Physical Description

20 p.

Creation Information

De Arellano-Lopez, A. R. February 25, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High-temperature fracture strength and compressive creep of an electrodischarge-machinable composite, Al{sub 2}O{sub 3}-30.9 vol.% SiC whiskers-23 vol.% TiC particles have been studied to 1200 C and 1450 C, respectively, in inert atmosphere. Microstructures of fractured and deformed specimens were examined by scanning and transmission electron microscopy. Fast fracture occurred at T {le} 1200 C. Steady-state creep was achieved for T > 1350 C at stresses < 80 MPa, with the rate-controlling mechanism being partially unaccommodated grain-boundary sliding, with a stress exponent of {approx}1 and an activation energy of {approx}470 kJ/mol.

Physical Description

20 p.

Notes

OSTI as DE00010659

Medium: P; Size: 20 pages

Source

  • 6th International Conference on the Science of Hard materials, Lanzarote (ES), 03/09/1998--03/14/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-95765
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10659
  • Archival Resource Key: ark:/67531/metadc620089

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 25, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2017, 7:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

De Arellano-Lopez, A. R. Fracture and creep of an Al{sub 2}O{sub 3}-SiC(whisker)-TiC(particle) composite., article, February 25, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc620089/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.