NOTICE

CERTAIN DATA CONTAINED IN THIS DOCUMENT MAY BE DIFFICULT TO READ IN MICROFICHE PRODUCTS.
The distribution of particulate matter in the atmosphere is a complex process influenced by various factors. The primary particles present in the atmosphere are subject to dilution, deposition, and transformation. The dilution process spreads the particles over a larger area, while deposition removes them from the atmosphere. Transformation involves chemical changes that can alter the particle's properties and composition.

In order to study the deposition of particulate matter, it is essential to understand the particle's size, concentration, and activity. By knowing these parameters, the impact of particulate matter on the environment can be assessed. This information is crucial for the development of policies and strategies to mitigate the effects of particulate matter on human health and the environment.

The distribution of particulate matter in the atmosphere is influenced by meteorological factors and regional features. For instance, urban areas may have higher concentrations of particulate matter due to industrial activities, while rural areas may have lower concentrations. Understanding these differences is key to developing effective strategies for managing particulate matter.

In conclusion, the study of particulate matter in the atmosphere is a multifaceted field that requires a combination of scientific knowledge and practical applications. By continuously monitoring and analyzing particulate matter, we can better understand its impact on the environment and develop strategies to mitigate its adverse effects.
Calculations and measurements of these features are currently being made. It is obvious that the current concentration of particles greatly exceeds the natural concentration in the atmosphere, so that immediate remedial facilities, in addition to the present facility, are required, if there is any hazard at all. It is furthermore a reasonable assumption that the best possible facilities will not reduce the concentrations of artificial particles to the level of the natural background. On this basis, it would appear to be in order to proceed with design on the basis of best possible removal of particles of diameter down to 1/10 micron.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use will not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.