A Limit on $\sigma \cdot BR(B^+_c \rightarrow J/\psi + \pi^+)/\sigma \cdot BR(B^+_u \rightarrow J/\psi + K^+)$ in $\sqrt{s} = 1.8$ TeV Proton-Antiproton Collisions

F. Abe et al.
The CDF Collaboration

Fermi National Accelerator Laboratory
P. O. Box 500, Batavia, Illinois 60510

July 1995

Contributed to the 17th International Symposium on Lepton-Photon Interactions, Beijing, China, August 10-15, 1995.
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
A Limit on
\[\sigma \cdot \text{BR}(B_c^\pm \rightarrow J/\psi + \pi^\pm)/\sigma \cdot \text{BR}(B_u^\pm \rightarrow J/\psi + K^\pm) \]
in \[\sqrt{s} = 1.8 \text{ TeV Proton-Antiproton Collisions} \]

The CDF Collaboration

Abstract

We report on the results of a search for the \(B_c \) \((bc)\) meson in the
decay \(B_c^\pm \rightarrow J/\psi + \pi^\pm \). This search is guided by a control sample of
decays of \(B_u \) mesons to \(J/\psi + K \) and uses \(\simeq 75pb^{-1} \) of data collected
at the Collider Detector Facility (CDF) at Fermilab. The lifetime of the
\(B_c \) meson is unknown, so the 95% confidence level limit on \(\sigma \cdot \text{BR}(B_c \rightarrow J/\psi + \pi)/\sigma \cdot \text{BR}(B_u \rightarrow J/\psi + K) \)
is obtained as a function of the \(B_c \) lifetime.
Introduction

The B_c is the bound state of the bottom and charm quarks and is predicted by the standard model. This particle can be found by using the fact that a large fraction of its decays ($\simeq 20\%$) are to J/ψ final states. The mass of the B_c is predicted to be 6.256 ± 0.020 GeV/c2 with a lifetime of $\tau = 1.35 \pm 0.15$ ps.[1] Other theorists report smaller values for the lifetime, in the range of 0.5-0.7 ps.[2] Production estimates using perturbative QCD for the b quark fragmentation to B_c exist and predict production of B_c relative to other b mesons at $\approx 10^{-3}$ for $P_T > 10$ GeV/c.[3]

Search Method

The data sample used is 75pb$^{-1}$ collected in two separate runs of the Fermilab Tevatron. The data sample is based on a dimuon trigger with muon pair invariant mass consistent with the J/ψ mass. The CDF detector is described elsewhere [5] and is defined on a coordinate system with the z-y plane perpendicular to the beam where the proton beam direction is the positive z axis.

The CDF dimuon trigger is staged. Level 1 requires two muon stubs in the muon chambers with $|\eta| < 0.6$ for the first 19pb$^{-1}$. The trigger coverage is extended to $|\eta| < 1.0$ for the remaining 54pb$^{-1}$. At level 2 at least one muon segment is required to match a central track found by the track processor. Levels 1 and 2 are hardware triggers. Within this data sample are the exclusive decays of B_c to $J/\psi + \pi$ and B_u to $J/\psi + K$.

The data is further processed to look for $J/\psi + K^{\pm}$, (π^{\pm}) events. The three tracks are constrained to come from the same vertex and the invariant mass of the two muons is constrained to the world average J/ψ mass. Since this is a fully reconstructed event, the momentum sum of the tracks is constrained to be parallel to the vector from the run-averaged beam position in the x-y plane to the 3-track vertex. At least one of the muon tracks and the third track are required to have hits in the silicon vertex detector (SVX) [6] and a fit with χ^2 probability greater than 5% is required of the resulting 3-track vertex. Transverse momentum cuts of 2 GeV/c are placed on the muons to get above the trigger thresholds and on the third track to reduce background from combinatorics. The P_T of the 3-track combination is required to be greater than 6.0 GeV/c. Since there is no particle identification, processing is done twice on the third track, once assuming a pion mass and then a kaon mass.

For the $J/\psi + K^{\pm}$ sample, a cut of $ct > 85\mu m$ is imposed to remove the prompt background. Figure 1 shows the resulting three track invariant mass distribution with a clear signal from the B^{\pm} mesons. This distribution is fit to a gaussian signal and a linear background in the range from 5.15 to 5.8 GeV/c2. $N_{B^u} = 289 \pm 19$ B^{\pm} events are obtained.

For the B_c search, the same cuts are used as for the $J/\psi + K$ sample. Shown in
Table 1: This is a table showing the $c\tau$ cut used, the chosen B_c lifetime, the relative efficiency of the cuts (R_e), the largest number of data events in 4 consecutive bins from 6.1 to 6.4 GeV/c² (N_{tot}), and the fit to the data for the expected number of background events in those 4 bins ($\overline{N_{Bkg}}$).

<table>
<thead>
<tr>
<th>$c\tau$ cut</th>
<th>B_c lifetime</th>
<th>$R_e \equiv \frac{d(B_c)}{d(B_u)}$ (stat+sys)</th>
<th>N_{tot}</th>
<th>$\overline{N_{Bkg}}$ (stat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 µm</td>
<td>0.17 ps</td>
<td>2.02 ± 0.13</td>
<td>43</td>
<td>40.6 ± 2.2</td>
</tr>
<tr>
<td>85 µm</td>
<td>0.33 ps</td>
<td>1.71 ± 0.09</td>
<td>31</td>
<td>21.6 ± 1.7</td>
</tr>
<tr>
<td>100 µm</td>
<td>0.5 ps</td>
<td>1.49 ± 0.07</td>
<td>25</td>
<td>15.8 ± 1.4</td>
</tr>
<tr>
<td>100 µm</td>
<td>0.8 ps</td>
<td>1.21 ± 0.06</td>
<td>25</td>
<td>15.8 ± 1.4</td>
</tr>
<tr>
<td>100 µm</td>
<td>1.0 ps</td>
<td>1.12 ± 0.05</td>
<td>25</td>
<td>15.8 ± 1.4</td>
</tr>
<tr>
<td>100 µm</td>
<td>1.3 ps</td>
<td>1.03 ± 0.05</td>
<td>25</td>
<td>15.8 ± 1.4</td>
</tr>
<tr>
<td>100 µm</td>
<td>1.6 ps</td>
<td>0.99 ± 0.045</td>
<td>25</td>
<td>15.8 ± 1.4</td>
</tr>
</tbody>
</table>

Figure 2 is the invariant mass distribution with the same cuts as Figure 1. Since the B_c is made of two heavy quarks, there is some confidence that the predictions of the mass are correct, consequently we restrict our search region to ±150 MeV/c² around the nominal mass of 6.256 GeV/c².

Because the B_c lifetime is chosen to be variable, the cut on proper decay length is varied to optimize its effectiveness based on different lifetimes. Three different cuts on $c\tau$ are used depending on the assumed B_c lifetime. The $c\tau$ cuts used are shown in Table 1.

To determine the bin size in Figure 2, a Monte Carlo of B_u and B_c decays was run through a detector simulation. The ratio of the widths of the mass peaks obtained was used to scale the observed width of the B_u mass to the estimated B_c mass. The bin size of 16 MeV/c² in Figure 2 is equal to that estimate. The four largest consecutive bins in Figure 2 are defined as containing the B_c signal candidates (N_{tot}) for the purpose of calculating the limit. The remaining events are used to fix the level of background and are fit to a straight line with the four ‘signal’ bins excluded. From the fit the average background under the signal ($\overline{N_{Bkg}}$) is obtained. These quantities are also shown in Table 1 for the different $c\tau$ cuts.

Determination of the relative efficiency R_e

If one were to see a B_c signal, determination of the relative rate to B_u would proceed by the following equation:

$$\frac{\sigma \cdot BR(B_c)}{\sigma \cdot BR(B_u)} = \frac{N_{\Psi+\pi}}{N_{\Psi+K}} \cdot R_e$$
where \(R_e = \epsilon_{Bu}/\epsilon_{Bc} \). The experimental advantage of comparing the \(J/\psi + \pi \) decay to the \(J/\psi + K \) is clear. The tracking efficiencies for muons and for tracks will cancel in the ratio as will the integrated luminosity. Efficiencies of the muon chambers given a track in the fiducial volume, will also cancel because both samples come from the same trigger.

To determine the relative efficiency the \(B_c \) lifetime is first set equal to the \(B_u \) lifetime. A Monte Carlo and detector simulation is run for both types of mesons where the input spectrum, the \(b \) fragmentation to \(B_u \), and the trigger simulation are varied in shape. This causes a systematic error of 4\% on the relative efficiency. The value of \(R_e \) obtained is shown in Table 1. The fragmentation of \(b \rightarrow B_c \) uses the perturbative QCD calculation in [4] and is not included in the systematic uncertainties associated with \(R_e \).

\(R_e \) must be corrected for the assumed lifetimes of the \(B_c \). The data from 5.5 to 6.0 GeV/c\(^2\) is used to characterize the \(\sigma \tau \) distribution of zero lifetime background and is fit to a parameterization. The parameterization is then used to smear an ideal \(\sigma \tau \) distribution for an arbitrary \(B_c \) lifetime. The same function is used to smear the lifetime distribution of \(B_u \). The ratio of the areas under the two functions, with the correct \(\sigma \tau \) cuts and normalization, is used to adjust \(R_e \) for an arbitrary \(B_c \) lifetime. This contributes a 5\% systematic uncertainty in \(R_e \) for short-lived \(B_c \)'s, but falls to 0.2\% when the lifetimes are equal.

The Limit

Calculation of the 95\% confidence level limit uses the method described by [7]. This method assumes Poisson statistics for the signal and background and accounts for the uncertainty in \(N_{bg} \), the uncertainties in the estimate of \(R_e \), and the statistical uncertainty in the number of \(J/\psi + K^\pm \) obtained. The number of \(J/\psi + K^\pm \) that are lost due to the decay-in-flight of kaons relative to pions have not been included in this calculation. Such a correction would lower the limit. The 95\% C.L. limit on \(\sigma \cdot \text{BR} \) for \(B_c^\pm \rightarrow J/\psi + \pi^\pm \) versus \(B_u^\pm \rightarrow J/\psi + K^\pm \) as a function of the \(B_c \) lifetime is shown in Figure 3. Also shown is an estimate of the theoretical production ratio where it is assumed that \(B_c \) mesons are produced 1000 times less often than the other \(B \) mesons and that \(\Gamma(B_c^\pm \rightarrow J/\psi + \pi^\pm) = 3.4 \times 10^9 \text{s}^{-1} \). [8]

References

[1] C. Quigg, \(B_c \), FERMILAB-Conf-93/265-T.

Figure 1: The figure shows the three track invariant mass distribution where the third track is assumed to be a kaon. The fit is to a gaussian and a linear background with $N_{Bu} = 289 \pm 19$ in the $J/\psi + K^\pm$ peak.
Figure 2: The three-track invariant mass region from 5.9 to 7.1 GeV/c² using the same cuts as Figure 1 but assuming the third track has a pion mass. The vertical lines encompass the search region for the B_c meson. The four highest bins in the search region are excluded from the fit (shown as a dotted line).
Figure 3: Shown as circular points is the 95% C.L. limit on the production of $J/\psi + \pi^+$ from B_c^+ relative to $J/\psi + K^+$ from B_u^+ as a function of the B_c lifetime. Also shown is a theoretical estimate of the relative production ratio based on the assumption that the B_c is produced 10^{-3} times less often than the other B mesons and that the partial width of the B_c decay to $J/\psi + \pi$ is $3.4 \times 10^9 \text{s}^{-1}$.