The DOE Knowledge Base Mthodology for the Creation of an Optimal Spatial Tessellation

PDF Version Also Available for Download.

Description

The DOE Knowledge Base is a library of detailed information whose purpose is to improve the capability of the United States National Data Center (USNDC) to monitor compliance with the Comprehensive Test Ban Treaty (CTBT). Much of the data contained by the Knowledge Base is spatial in nature, and some of it is used to improve the accuracy with which seismic locations are determined while maintaining or improving current calculational perfor- mance. In this presentation, we define and describe the methodology used to create spatial tessellations of seismic data which are utilized with a gradient-modified natural-neighbor interpolation method to evaluate ... continued below

Creation Information

Hipp, J.R.; Moore, S.G.; Shepherd, E. & Young, C.J October 20, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Laboratories, Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The DOE Knowledge Base is a library of detailed information whose purpose is to improve the capability of the United States National Data Center (USNDC) to monitor compliance with the Comprehensive Test Ban Treaty (CTBT). Much of the data contained by the Knowledge Base is spatial in nature, and some of it is used to improve the accuracy with which seismic locations are determined while maintaining or improving current calculational perfor- mance. In this presentation, we define and describe the methodology used to create spatial tessellations of seismic data which are utilized with a gradient-modified natural-neighbor interpolation method to evaluate travel-time corrections. The goal is to interpolate a specified correction surface, or a group of them, with prescribed accuracy and surface smoothness requirements, while minimizing the number of data points necessary to represent the surface. Maintain- ing accuracy is crucial toward improving the precision of seismic origin location. Minimizing the number of nodes in the tessellation improves calculational and data access efficiency and performance. The process requires two initialization steps and an iterated 7 step algorithm for inserting new tessellation nodes. First, M residual data from ground truth events are included in the tessellation. These data remain fixed throughout the creation of the triangular tessellation. Next, a coarse grid of nodes is laid over the region to be tessellated. The coarse grid is necessary to define the boundary of the region to be tessellated. Next the 7 step iterated algorithm is performed to add new nodes to the tessellation to ensure that accuracy and smoothness requirements are met. These steps include 1) all data points in the tessellation are linked together to form a triangular tessellation using p standard Delaunay tessellation technique; 2) all of the data points, excluding the original data and boundruy nodes, are smoothed using a length-weighted Laplacian smoother to remove poorly formed triangles; 3) all new data points are assigned corrections by performing a Non-stationary Bayesian Kriging calculation for each new triangle node; 4) all nodes that exceed surface roughness requirements are split by inserting a new node at the mid-points of the edges that share the rough nod% 5) all remaining triangle edge midpoints and centers are inte~olated using gradient-modified natural-neighbor interpolation and kriged using the Bayesian IGiging algoritlm 6) new nodes are inserted into the tessellation at all edge and triangle mid-points that exceed the specified relative error tolerance between the interpo- lated and Iaiged values, and 7) all new insertion nodes are added to the tessellations node list. Steps 1 through 7 are repeated until all relative error and surface smoothness requirements are satisfied. Results indicate that node densities in the tessellation are largest in regions of high surface curvature as expected. Generally, gradient modified natural-neighbor interpolation methods do a better job than linear natural-neighbor methods at meeting accuracy requirements which translates to fewer nodes necessary to represent the surface.

Source

  • 20th Annual Seismic Research Symposium for Monitoring A Comprehensive Test Ban Treaty: Santa Fe, NM; 09/21-23/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00001057
  • Report No.: SAND98-2348C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 1057
  • Archival Resource Key: ark:/67531/metadc620041

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 20, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Nov. 23, 2016, 4:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hipp, J.R.; Moore, S.G.; Shepherd, E. & Young, C.J. The DOE Knowledge Base Mthodology for the Creation of an Optimal Spatial Tessellation, article, October 20, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc620041/: accessed November 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.