Evaluation of RELAP5 MOD 3.1.1 code with GIRAFFE Test Facility: Phase 1, Step 2 nitrogen venting tests

PDF Version Also Available for Download.

Description

The Simplified Boiling Water Reactor (SBWR) proposed by General Electric (GE) is an advanced light water reactor (ALWR) design that utilizes passive safety systems. The PCCS is a series of heat exchangers submerged in water and open to the containment. Since the containment is inerted with nitrogen during normal operation, the PCCS must condense the steam in the presence of noncondensable gases during an accident. To model the transient behavior of the SBWR with a system code, the code should properly simulate the expected phenomena. To validate the applicability of RELAP5 MOD 3.1.1, the data from three Phase 1, Step ... continued below

Physical Description

5 p.

Creation Information

Boyer, B.D.; Slovik, G.C. & Rohatgl, U.S. November 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Simplified Boiling Water Reactor (SBWR) proposed by General Electric (GE) is an advanced light water reactor (ALWR) design that utilizes passive safety systems. The PCCS is a series of heat exchangers submerged in water and open to the containment. Since the containment is inerted with nitrogen during normal operation, the PCCS must condense the steam in the presence of noncondensable gases during an accident. To model the transient behavior of the SBWR with a system code, the code should properly simulate the expected phenomena. To validate the applicability of RELAP5 MOD 3.1.1, the data from three Phase 1, Step 2 nitrogen venting tests at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal facility and RELAP5 calculations of these tests were compared. The comparison of the GIRAFFE data against the results from the RELAP5 calculations showed that it can predict condensation and gas purging phenomena occurring in the long-term decay heat rejection phase. In this phase of the transient, condensation in the PCCS is the only means to reject heat from the SBWR containment. In the two tests where the nitrogen purge vent line was at its deepest submergence in the Suppression Pool (SIP), the RELAP5 results mirrored the behavior of the containment pressures and of the water levels in the Horizontal Vent (HV) and the nitrogen purge line tube of the GIRAFFE data. However, in the test with the shallowest purge line submergence, there was appreciable direct contact condensation on the pool surface of the HV despite modeling efforts to deter these phenomena. This surface condensation, unobserved in the GIRAFFE tests, was a major cause of RELAP5 predicting early containment depressurization and the subsequent early rise in HV and nitrogen purge line water levels. The present RELAP5 MOD3.1.1 interfacial heat and mass transfer model does not properly degrade direct contact steam condensation in the presence of noncondensable gases sitting on a pool.

Physical Description

5 p.

Notes

INIS; OSTI as DE96001918

Source

  • International symposium on the validation of systems transient analysis codes, Hilton Head, SC (United States), 14-15 Aug 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96001918
  • Report No.: BNL-NUREG--62296
  • Report No.: CONF-9508180--1
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 120930
  • Archival Resource Key: ark:/67531/metadc620012

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 8, 2016, 12:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Boyer, B.D.; Slovik, G.C. & Rohatgl, U.S. Evaluation of RELAP5 MOD 3.1.1 code with GIRAFFE Test Facility: Phase 1, Step 2 nitrogen venting tests, article, November 1, 1995; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc620012/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.