Structural Evolution of Carbon During Oxidation

PDF Version Also Available for Download.

Description

The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs iOn the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and rnicroporosity of carbons during kinetic controlled oxidation using SAXS, C02 and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be "hidden" or nonaccessible porosity. This makes the study of the ... continued below

Creation Information

Sarofim, Adel F. & Kandas, Angelo October 28, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs iOn the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and rnicroporosity of carbons during kinetic controlled oxidation using SAXS, C02 and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be "hidden" or nonaccessible porosity. This makes the study of the microporous combustion characteristics of carbon even more important. The generation of a combustion resistant grid, coupled with measurements of the SAXS and C02 surface areas, fractal analysis and TEM studies has confined that soot particles shrink during their oxidation, as previously suspected. However, this shrinkage results in an overall change in structure. This structure becomes, on a radial basis, much more ordered near the edges, while the center itself becomes transparent to the TEM beam, implying a total lack of structure in this region. Although complex, this carbon structure is probably burning as to keep the density of the soot particles nearly the same. The TEM techniques developed for examination of soots has also been applied to Spherocarb. The Spherocarb during oxidation also increases its ordering,. This ordering, by present theories, would imply that the reactivity would go. However, the reactivity goes up, implying that structure of carbon is secondary in importance to catalytic effects.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00001251
  • Report No.: DE-FG22-91PC91294--18
  • Grant Number: FG22-91PC91294
  • DOI: 10.2172/1251 | External Link
  • Office of Scientific & Technical Information Report Number: 1251
  • Archival Resource Key: ark:/67531/metadc619934

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 28, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 8, 2016, 1:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sarofim, Adel F. & Kandas, Angelo. Structural Evolution of Carbon During Oxidation, report, October 28, 1998; Morgantown, West Virginia. (digital.library.unt.edu/ark:/67531/metadc619934/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.