Advanced experimental analysis of controls on microbial Fe(III) oxide reduction. 1998 annual progress report

PDF Version Also Available for Download.

Description

'Understanding factors which control the long-term survival and activity of Fe(III)-reducing bacteria (FeRB) in subsurface sedimentary environments is important for predicting their ability to serve as agents for bioremediation of organic and inorganic contaminants. This project seeks to refine the authors quantitative understanding of microbiological and geochemical controls on bacterial Fe(III) oxide reduction and growth of FeRB, using laboratory reactor systems which mimic to varying degrees the physical and chemical conditions of subsurface sedimentary environments. Methods for studying microbial Fe(III) oxide reduction and FeRB growth in experimental systems which incorporate advective aqueous phase flux are being developed for this purpose. ... continued below

Physical Description

4 pages

Creation Information

Roden, E.E. & Urrutia, M.M. June 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

'Understanding factors which control the long-term survival and activity of Fe(III)-reducing bacteria (FeRB) in subsurface sedimentary environments is important for predicting their ability to serve as agents for bioremediation of organic and inorganic contaminants. This project seeks to refine the authors quantitative understanding of microbiological and geochemical controls on bacterial Fe(III) oxide reduction and growth of FeRB, using laboratory reactor systems which mimic to varying degrees the physical and chemical conditions of subsurface sedimentary environments. Methods for studying microbial Fe(III) oxide reduction and FeRB growth in experimental systems which incorporate advective aqueous phase flux are being developed for this purpose. These methodologies, together with an accumulating database on the kinetics of Fe(III) reduction and bacterial growth with various synthetic and natural Fe(III) oxide minerals, will be applicable to experimental and modeling studies of subsurface contaminant transformations directly coupled to or influenced by bacterial Fe(III) oxide reduction and FeRB activity. This report summarizes research accomplished after approximately 1.5 yr of a 3-yr project. A central hypothesis of the research is that advective elimination of the primary end-product of Fe(III) oxide reduction, Fe(II), will enhance the rate and extent of microbial Fe(III) oxide reduction in open experimental systems. This hypothesis is based on previous studies in the laboratory which demonstrated that association of evolved Fe(II) with oxide and FeRB cell surfaces (via adsorption or surface precipitation) is a primary cause for cessation of Fe(III) oxide reduction activity in batch culture experiments. Semicontinuous culturing was adopted as a first approach to test this basic hypothesis. Synthetic goethite or natural Fe(III) oxide-rich subsoils were used as Fe(III) sources, with the Fe(III)-reducing bacterium Shewanella alga as the test organism.'

Physical Description

4 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00013478
  • Report No.: EMSP-55164--98
  • Grant Number: NONE
  • DOI: 10.2172/13478 | External Link
  • Office of Scientific & Technical Information Report Number: 13478
  • Archival Resource Key: ark:/67531/metadc619882

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Jan. 12, 2018, 2:56 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Roden, E.E. & Urrutia, M.M. Advanced experimental analysis of controls on microbial Fe(III) oxide reduction. 1998 annual progress report, report, June 1, 1998; Tuscaloosa, Alabama. (digital.library.unt.edu/ark:/67531/metadc619882/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.