Results of the gamma-neutron mapper performance test on 55-gallon drums at the RWMC

PDF Version Also Available for Download.

Description

The primary purpose of the gamma-neutron mapper (G@) is to provide accurate and quantitative spatial information of the gamma-ray and neutron radiation fields as a function of position about the excavation of a radioactive waste site. The GNM is designed to operate remotely and can be delivered to any point on an excavation by the robotic gantry crane developed by the dig-face project at the Idaho National Engineering Laboratory (INEL). It can also be easily adapted to other delivery systems. The GNM can be deployed over a waste site at a predetermined scan rate and has sufficient accuracy to identify ... continued below

Physical Description

28 p.

Creation Information

Gehrke, R.J.; Lawrence, R.S.; Roybal, L.G.; Svoboda, J.M.; Harker, D.J.; Thompson, D.N. et al. July 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The primary purpose of the gamma-neutron mapper (G@) is to provide accurate and quantitative spatial information of the gamma-ray and neutron radiation fields as a function of position about the excavation of a radioactive waste site. The GNM is designed to operate remotely and can be delivered to any point on an excavation by the robotic gantry crane developed by the dig-face project at the Idaho National Engineering Laboratory (INEL). It can also be easily adapted to other delivery systems. The GNM can be deployed over a waste site at a predetermined scan rate and has sufficient accuracy to identify and quantify radioactive contaminants of importance. The results reported herein are from a performance test conducted at the Transuranic Storage Area, Building 628, of the Radioactive Waste Management Complex located at the INEL. This building is an active interim-storage area for 55-gal drums of transuranic waste from the Department of Energy`s Rocky Flats Plant. The performance test consisted of scanning a stack of drums five high by five wide. Prior to the test, radiation fields were measured by a health physicist at the center of the drums and ranged from 0.5 mR/h to 35 mR/h. Scans of the drums using the GNM were taken at standoff distances from the vertical drum stack of 15 cm, 30 cm, 45 cm, and 90 cm. Data were acquired at scan speeds of 7.5 cm/s and 15 cm/s. The results of these scans and a comparison of these results with the manifests of these drums are compared and discussed.

Physical Description

28 p.

Notes

INIS; OSTI as DE96001337

Source

  • Other Information: PBD: Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96001337
  • Report No.: INEL--95/0302
  • Grant Number: AC07-94ID13223
  • DOI: 10.2172/114669 | External Link
  • Office of Scientific & Technical Information Report Number: 114669
  • Archival Resource Key: ark:/67531/metadc619846

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 24, 2016, 6:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gehrke, R.J.; Lawrence, R.S.; Roybal, L.G.; Svoboda, J.M.; Harker, D.J.; Thompson, D.N. et al. Results of the gamma-neutron mapper performance test on 55-gallon drums at the RWMC, report, July 1, 1995; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc619846/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.