Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

PDF Version Also Available for Download.

Description

Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing ... continued below

Physical Description

5 p.

Creation Information

McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P. & Moscati, R.J. December 31, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.

Physical Description

5 p.

Notes

INIS; OSTI as DE96001462

Source

  • International high-level radioactive waste management conference, Las Vegas, NV (United States), 22-26 May 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96001462
  • Report No.: CONF-940553--96
  • Grant Number: AI08-92NV10874
  • Office of Scientific & Technical Information Report Number: 113824
  • Archival Resource Key: ark:/67531/metadc619823

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1994

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 18, 2016, 6:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P. & Moscati, R.J. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis, article, December 31, 1994; Denver, Colorado. (digital.library.unt.edu/ark:/67531/metadc619823/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.