Relativistic electron beam interaction and Ka - generation in solid targets

PDF Version Also Available for Download.

Description

When fs laser pulses interact with solid surfaces at intensities I{lambda}{sup 2} > 10{sup 18} W/cm{sup 2} {micro}m{sup 2}, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K{sub {alpha}}) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fuer Quantenoptik, the authors investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by ... continued below

Physical Description

890 Kilobytes pages

Creation Information

Eder, D C; Eidman, K; Fill, E; Pretzler, G & Saemann, A June 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

When fs laser pulses interact with solid surfaces at intensities I{lambda}{sup 2} > 10{sup 18} W/cm{sup 2} {micro}m{sup 2}, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K{sub {alpha}}) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fuer Quantenoptik, the authors investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10 {micro}m. By varying the position of the focus, they measure the copper K{sub {alpha}} - yield as a function of intensity in a range of 10{sup 15} to 2 x 10{sup 18} W/cm{sup 2} while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 10{sup 17} W/cm{sup 2}. However, this result is readily explained by the weak scaling of the hot-electron temperature with intensity. An efficiency of 2 x 10{sup -4} for the conversion of laser energy into copper K{sub {alpha}} is measured. Simulations of the interaction of the hot electrons with the cold target material and the conversion into X-rays are carried out by means of the TIGER/ITS code, a time-independent, coupled electron/photon Monte Carlo transport code. The code calculates the propagation of individual electrons and the generation of photons in cold material. Comparison of the code predictions with the data shows an efficiency of 15% for the generation of electrons with energies in the 100 keV range. A second experiment involves the demonstration of photopumping of an innershell transition in cobalt by the copper radiation. Comparing the emission with the one of nickel, which is not photopumped by copper K{sub {alpha}} photons, an enhancement of more than a factor of two was obtained. An essential part of this experiment is the use of a 1 mm carbon sheet to block the electrons from the material to be photopumped.

Physical Description

890 Kilobytes pages

Source

  • 44th Annual Meeting of the International Symposium on Optical Science, Engineering, and Instrumentation, Society of Photo-Optical Instrumentation Engineers, Denver, CO (US), 07/18/1999--07/23/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-134846
  • Report No.: DP0210000
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 14464
  • Archival Resource Key: ark:/67531/metadc619662

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 6, 2016, 4:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Eder, D C; Eidman, K; Fill, E; Pretzler, G & Saemann, A. Relativistic electron beam interaction and Ka - generation in solid targets, article, June 1, 1999; California. (digital.library.unt.edu/ark:/67531/metadc619662/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.