Theory of the equation of state of hot dense matter

PDF Version Also Available for Download.

Description

Ab initio molecular dynamics calculations are adapted to treat dense plasmas for temperatures exceeding the electronic Fermi temperature. Extended electronic states are obtained in a plane wave basis by using pseudopotentials for the ion cores in the local density approximation to density functional theory. The method reduces to conventional first principles molecular dynamics at low temperatures with the expected high level of accuracy. The occurrence of thermally excited ion cores at high temperatures is treated by means of final state pseudopotentials. The method is applied to the shock compression Hugoniot equation of state for aluminum. Good agreement with experiment is ... continued below

Physical Description

870 Kilobytes pages

Creation Information

Barbee, T W; Surh, M & Yang, L H July 23, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Ab initio molecular dynamics calculations are adapted to treat dense plasmas for temperatures exceeding the electronic Fermi temperature. Extended electronic states are obtained in a plane wave basis by using pseudopotentials for the ion cores in the local density approximation to density functional theory. The method reduces to conventional first principles molecular dynamics at low temperatures with the expected high level of accuracy. The occurrence of thermally excited ion cores at high temperatures is treated by means of final state pseudopotentials. The method is applied to the shock compression Hugoniot equation of state for aluminum. Good agreement with experiment is found for temperatures ranging from zero through 105K.

Physical Description

870 Kilobytes pages

Source

  • International Conference on High Pressure Science and Technology, Honolulu, HI (US), 07/25/1999--07/30/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-133454
  • Report No.: YN0100000
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 12730
  • Archival Resource Key: ark:/67531/metadc619317

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 23, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 6, 2016, 4:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 18

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Barbee, T W; Surh, M & Yang, L H. Theory of the equation of state of hot dense matter, article, July 23, 1999; California. (digital.library.unt.edu/ark:/67531/metadc619317/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.