TITLE: STATUS OF ELECTRON TRANSPORT IN MCNP™

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

AUTHOR(S): H.G. Hughes

SUBMITTED TO: 1995 ANS Winter Meeting, 10/29 - 11/2/95, San Francisco, CA

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos National Laboratory
Los Alamos, New Mexico 87545
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Status of Electron Transport in MCNP™

H. Grady Hughes (LANL)

Introduction

In recent years, an ongoing project within the radiation transport group (XTM) at Los Alamos National Laboratory has been the implementation and validation of an electron transport capability in the Monte Carlo code MCNP.¹ In this paper I document the continuous-energy electron transport methods currently in use in MCNP, and describe a recent improvement of the energy-loss straggling algorithm. MCNP also supports electron transport calculations in a multigroup mode. This capability is described in another paper in this conference.²

Electron Transport Methods in MCNP

The principal original reference for the condensed history Monte Carlo method is the 1963 paper by Berger.³ Based on the techniques described in that work, Berger and Seltzer developed the ETRAN series of electron/photon transport codes.⁴ These codes have been maintained and enhanced for many years at the National Institute of Standards and Technology. The ETRAN codes are also the basis for the Integrated TIGER Series (ITS),⁵ developed and maintained by Halbleib and his collaborators at Sandia National Lab-
oratories in Albuquerque, New Mexico. The electron physics in MCNP is largely derived from that of the ITS.

The electron random walk in MCNP is based on a precalculated set of condensed-history steps selected so that, on the average, the kinetic energy of the electron decreases by a fixed ratio (specifically $2^{-1/8}$) during each step. After the selection of step lengths, the radiative stopping power is modeled explicitly by the sampling of bremsstrahlung photons. The average collisional stopping power is obtained analytically from Bethe's theory for small energy transfers combined with an integral of the Møller cross section to account for larger energy transfers. Collisional energy straggling is also modeled, as discussed in the next section.

For the actual representation of the electron's path, the electron step is divided into smaller substeps. Substep angular deflections are sampled from the Goudsmit-Saucerson theory applied to a combination of the Mott and Rutherford cross sections, with a screening correction due to Molière. For partial substeps to a boundary, MCNP approximates the Goudsmit-Saunderson distribution by a linear interpolation in the cosine of the deflection angle.

Bremsstrahlung photons are sampled from tabulated data based on Bethe-
Heitler12 Born-approximation results. The sampling of a bremsstrahlung photon causes a correlated decrease in the electron energy. By contrast, the sampling of a secondary electron is not correlated with the electron energy, since the collisional stopping power has already been included in the substep energetics. Secondary “knock-on” electrons are sampled from an appropriately normalized cumulative integral of the Møller cross section.7

Improved Energy Straggling

Because an energy step represents the cumulative effect of many individual random collisions, fluctuations in the energy loss rate will occur, leading to a probability distribution $f(s, \Delta)d\Delta$ from which the energy loss Δ for the step of length s can be sampled. Landau13 studied this situation under several simplifying assumptions, including the assumption that the formal upper limit of energy loss can be extended to infinity. With these simplifications, Landau found that the energy loss distribution can be expressed as

$$f(s, \Delta)d\Delta = \phi(\lambda)d\lambda,$$

(1)

in terms of $\phi(\lambda)$, a universal function of a single dimensionless variable λ related to Δ, s, the energy of the electron, and various properties of the medium. The asymptotic form of $\phi(\lambda)$ is such that an unrestricted sampling
of λ leads to an unbounded mean energy loss. Therefore, a cutoff value λ_c is imposed to ensure a finite mean energy loss $\overline{\Delta}$.

Blunck and Leisegang14 extended Landau's result to include the second moment of the expansion of the cross section. Their result can be expressed as a convolution of Landau's distribution with a Gaussian distribution:

$$f^*(s, \Delta) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} f(s, \Delta') \exp \left[\frac{(\Delta - \Delta')^2}{2\sigma^2} \right] d\Delta',$$

with the variance of the Gaussian $\sigma^2 = 10eV \cdot Z^{4/3} \overline{\Delta}$, as given in Blunck and Westphal.15

Earlier versions of MCNP, following Version 1.0 of the ITS, sampled Δ from Eqs. 1 and 2 using a 501-point tabulation of $\phi(\lambda)$ in the range $-4 \leq \lambda \leq 100$, based on the work of Börsch-Supan.16 This approach suffered from two major shortcomings. First, the resolution of the table was insufficient to provide a smooth sampled function for large values of λ. Second, the arbitrary fixing of $\lambda_c = 100$ caused the mean energy loss to be incorrect except in a limited electron energy range. As is done in the current version of ITS, MCNP now employs a tabulation with greater resolution (5001 points in $-4 \leq \lambda \leq 100$), an analytic approximation to the asymptotic form given by Börsch-Supan for $\lambda > 100$, and a variable energy- and
material-dependent cutoff λ_c to ensure correct mean energy loss. In addition, an empirical modification of σ^2 described and recommended by Seltzer is made. Figure 1 shows the effect of these improvements on the energy-loss spectrum for 10-MeV electrons in silicon, and also shows the excellent agreement between the current version of ITS and the new version of MCNP for this case.

Conclusions

The current methods used in MCNP for condensed history electron transport have been briefly presented. An important correction to the energy-loss algorithm has been successfully implemented and tested.

References

(MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory.)

8. S. Goudsmit and J. L. Saunderson, "Multiple Scattering of Electrons,"

\[\phi(\lambda) = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} e^{\mu \ln \mu + \lambda \mu} d\mu \]

Figure Caption

Fig. 1. Collisional energy loss spectrum for 10 MeV electrons in silicon as calculated by ITS 1.0, ITS 3.0, MCNP4A, and the new modified MCNP.