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Abstract

The stability of magnetic island producing perturbations due to

fluctuations in the bootstrap current in stellarator configuration is examined.

The stability criterion depends on the sign of the derivative of the rotational

transform, the pressure gradient and the direction of the equilibrium bootstrap

. current which is determined by the structure of IBI. It is found that quasi-

helically symmetric stellarator configurations with p'/t" < 0 are unstable to the

formation of bootstrap current driven magnetic islands. The stability of

conventional stellarator configurations depends upon the field structure.

PACS numbers: 52.35.Py, 52.55.Hc, 52.30.Bt, 52.55.Dy



Fluctuating neoclassical bootstrap currents provide a mechanism for the

resistive reconnection of magnetic field lines and the concomitant magnetic

isiand formation in tokamak plasmas. 1'2 This mechanism is potentially

important in developing transport models based on interacting magnetic

islands, 3 and in understanding the origin of macroscopic island formation in high

performance tokamak plasmas. 4 Since bootstrap currents also are predicted to

exist in stellarator configurations, a natural question to ask is: do we expect this

mechanism for island formation also to be present in stellarators. In this brief

communication, we answer this question and predict how the magnitudes of

these islands are modified by the IB I-spectrum and how they compare to the

islands predicted to be unstable in tokamak configurations.

Much effort has gone into developing methods to understand and

improve the quality of magnetic surfaces in stellarator configurations. The effect

of plasma pressure on the magnetic structure and the appearance of magnetic

islands has received considerable attention in recent years. 5"14 Most analytic

predictions of pressure induced islands are based on magnetohydrodynamic

models where resonant Pfirsch-Schl6ter currents are predicted to provide a

mechanism for island formation. 5'6'8 In particular, Refs. 6 and 8 attempt to make

a connection between the predicted saturated island widths and the resistive

interchange properties of the plasma equilibrium. However, in long mean-free-

path plasmas neoclassical effects become important and tend to dominate the

pressure gradient/curvature driven terms.

In this communication, we derive the amplitude of a self-sustained

bootstrap current induced magnetic island in a stellarator plasma. The

calculation is made using a boundary layer theory similar to the method used in

Refs. 1, 5, 6, and 8. In this method a small island width is assumed at a particular

rational surface. The self-consistently produced plasma currents are derived in
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the island region. The "interior" solution is then asymptotically matched to the

"exterior" solution through Ampere's Law. The procedure is similar to deriving

the nonlinear evolution of tearing instabilities in tokamak plasmas. 15 For

simplicity and clarity of presentation, we will not include resonant Pfirsch-

Schlfiter current, resitive interchange and vacuum field error effects, however all

of these terms should be present in a more complete theoretical calculation.

For nested magnetic flux surfaces, the equilibrium magnetic field can be

" written as Bo = V_ x V0 + t(_)V_ x V_, where _ is the magnetic flux function,

0 and _ are the poloidal and toroidal angles, respectively, and t is the rotational

transform. We consider a magnetic island perturbation of the form B 1 = V_ x

V_l, where _1 = _sxC°S( m0 - n_) is a symmetry breaking magnetic perturbation

resonant with the magnetic surface t = n/m. We presume that the perturbation

does not vary rapidly in the radial direction, analogous to the constant-_

assumption of tearing mode theory. 16 It is convenient to transform the angle

coordinates to an angle resonant with magnetic perturbation given by a = 0 -

(n/m)_. The entire magnetic field is now given by

B = V_xVa + V_xVv* , (1)

where the helical flux function is given by

1 "x2
_* = J d_ (t- n) _ VsxC°S(m°0 --__2 t - VsxCOS(mo0 , (2)

t" = dt/d_ is evaluated at the rational surface, and x = _-_s is the distance in

flux space away from the rational surface t(_,s) = n/m. The helical flux function,

Eq. (2), describes a magnetic island configuration with island half-width w given

by w = 2%/_sx/t'. The magnet!c perturbation satisfies an Ampere's Law given

by B.V x (V{ x V_l ) = jl.B, where Jl is the perturbed plasma current.



An asymptotic analysis of the perturbed Ampere's Law yields an equation

for the island width. As in the tearing mode problem, the exterior solution

ignores the effects of inertia and dissipative terms such as resistivity and electron

viscosity. As such, the exterior solution is determined through the exterior kink

equation, which produces a jump in the logarithmic derivative of the exterior

vector potential. We presume that the value of the equilibrium bootstrap current

is not large enough to cause a resistive tearing instability. Therefore, we will take

the matching parameter to be given by A" = -2m/r s, indicating tearing stability.

The island amplitude is now deduced from determining the interior

solution, near the rational surface. The interior solution is matched to the

exterior solution by integrating the parallel plasma current through the island

region:

+oo
da jl "B 1 1 m

Jdx _ _ cos(mo0 B.V_ IV_l 2 A'_sx = - r-__sx , (3)
--..OO

which can be derived from Ampere's Law.

We will compute the plasma current by solving the drift kinetic equation

for the plasma species and computing the needed moment from J ll = sZ qJ dv

v I Ifs• The electron drift kinetic equation is written

vii

--B--B.Vf + Vd.Vf = C(f) , (4)

where the magnetic drift is written in the low-_ approximation as

vtl Vl iB
v d = "-_VX_ , (5)

R e

R e is the electron gyroradius, and the curl operator is taken with fixed particle

magnetic moment _t = meV]/2B and energy. The collision operator is taken to be

a Lorenz pitch angle scattering operator,
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C(f) = v _ _ (%__--_), (6)

where _, = v2/Bv 2, _ -- (5(1 - )_B)1/2, (5 = sgn V ll , v = Ve(Vt/V) 3, Vt is the electron

thermal velocity, and v e is the electron collision frequency. An important

distinction between tokamak and stellarator configurations is the magnetic drift

velocity since it depends on the IBI spectrum. In this work we write this

spectrum

e(iMO- iN_)
IBI = MXNBMN = B00(V)[1 + lVlXNeMNcos(M0 - N_ + qlMN)], (7)

' where q0MNis a phase factor.

Equation (4) is solved for with two small parameters. 1'3 We define, "y=

(VeR/vt) and 8 = (P0e/W), where fl0e is the poloidal electron gyroradius. We also

take w/a - T2 where a is the minor radius. To order 80, Eq. (4) can be solved by

letting the leading order distribution function be a Maxwellian with the density

and temperature that are functions of the helical flux function _/*, given by Eq.

(2). To leading order, the electron density and temperature equilibrate along the

modified magnetic field lines. This results in the plasma profiles taking on the

topology of the magnetic island.

To first order in 8, the drift kinetic equation is given by

- 13x V(_]).Vf 0 = 0, (8)
B.Vf 1

where the collisional term is higher order in Y. If the magnetic field spectrum is

given by a single helicity, i. e. I BI = B00[1 + 8MNCOS(M0-N_)], the perturbed

distribution function is given by

M GVll 3fo(_*)

fl = - Mt-N f2e 3x + gl , (9)



where G = B.(3x/3_) is evaluated on the rational flux surface and gl can be

determined from drift kinetic equation to O(Sy). The solution for gl is given by

G

gl = - Ov --_e<_)xf°(xg*)>I(k), (10)

where the brackets denote an average over the modified magnetic surfaces,

'Boodk
I(X,) = ®(kc- X) j 2i_ ' (11)

and Xc = 1/Boo(1 + EMN). In the single magnetic helicity case, the bootstrap

current in the vicinity of the island can then be computed and is given in the limit

that EMN is small (the large aspect ratio assumption) by

8_MMN [Te<3xn> + kn<3xTe>] , (12)
M G

J ll = - 1.46 Mt-N BOO

where k is a positive constant and we have ignored ion temperature gradient for

simplicity.

Equation (12) is valid as long as N/M ¢ n/re. In the special case that the

spectral harmonic of i B I is resonant with a rational surface in the plasma, Eq. (8)

can be solved for fl and is given by

G df0 [vii ¢svI(_,)] (13)
fl = - _-e d_----_ - "

The difference between this singular case and that described by Eqs. (9) and (10)

is that the derivative of the leading order Maxwellian is taken with respect to _*,

not x. This leads to an island current given by

G dn dT e

J ll = - 1.46 8__ BOO[Te_w, + kn_--_] , (14)

6
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Since _r* is double valued, the direction of this current changes sign on either side

of the island region.

For a more general three-dimensional configuration, Eq. (8) cannot be

simply analytically integrated. However, solving for fl is qualitatively similar to

the computation of the equilibrium value of the bootstrap current in stellarator

configurations. 17"21 The effect of the island is important in establishing the flux

surfaces in real space near the island, but has a small effect in changing the

velocity space properties of the plasma. For this reason, the magnitude of the

• bootstrap current can be given as a function only as a function of IBI and t.

Following the suggestion of Boozer and Gardner, 21 the value of the boot3trap

current near the island is given by

G 1.46_mn G e__,J ll = - Ao _ [Te<3xn> + kn<igxTe>] - _ BOO[T + d_,.,(15)

where the factor Ao is the factor that contains information about the magnetic

spectrum and is given by

1.46 MCMN
_" (16)

A° = _-MN Mt- N '

where b is the total fractional variation of IBI on the flux surface, the sum is

over all helicities except that part of IB I resonant with the rational surface which

is described by the last term in Eq. (15).

The kinetic theory calculation restricts the density and temperature

profiles to be functions of _*. In order to obtain the form of the plasma gradients

in the interior region, a simplified transport equation can be solved. 22 By

neglecting plasma particle and heat sources in the island region, the continuity of

thermal and particle flux reveals a simple description of the plasma gradients.

Within the island separatrix the profiles are flattened and outside the separatrix,

' "' il ' ' ir , _l_ ,,i .............. r ............ ........ _.............



vl*

dn/d_* = dn/dw [ _ da (2n) -1 Oxll/*]-1 where dn/d_g is the "radial" derivative

evaluated in the exterior region. 22

Now that the parallel plasma current near the rational surface is derived,

Eq. (15) can be inserted into Eq. (3) so that the width of the magnetic island can

found. After integrating the parallel current, Eq. (3) reduces to

_sx[r_s - ko-_ 2_toP'Gt,B.vtvvl] = o, (17)

where Ao is given by Eq. (15) and k o is a positive constant of order unity. Since

the last term in Eq. (14) changes signs across the vational surface it does not

contribute to the matching integral. Equation (16) gives a condition for having

the bootstrap current cause the formation of a magnetic island. The instability

condition is given by

ao_ > 0 . (18)

If the instability criterion, Eq. (18), is violated the predicted value for the radial

extent of the magnetic island induced by the fluctuating bootstrap current is

given by

Wsat kors t2Ao 2_top"
- , (19)

IV_l - m t" B2

where the approximation IVW12B.V_/G = B2/t 2 is made.

The stability criterion for the formation of bootstrap current driven

magnetic islands in toroidal plasmas is given by Eq. (18). Since Ao = 1.46q_ > 0

for tokamak plasmas, this criterion is violated for normal operation with p'q" < 0.

For quasi-helically symmetric stellarators, the bootstrap parameter is given by Ao

= 1.464e h M/(Mt-N), where M and N are the poloidal and toroidal mode

numbers of the helical symmetry. For the proposed HSX device, 23 N > Mt so that

a o < 0 and quasi-helically symmetric stellarators with p'/t" < 0 are unstable to
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these modes. In conventional stellarators with Ao > 0 (the toroidal field-strength

variation dominates the helical field strength variation), these modes are stable

when p'/t" < 0.

For unstable cases, the predicted magnitude of the island width scales as

w --- Aot2_0/mt ", so that for quasi-helical configurations the saturated island

width is reduced by the factor M/(N- Mt) compared to a tokamak with similar

poloidal beta and shear length. If neoclassical bootstrap current driven magnetic

islands are important in reactor relevant tokamak plasmas, 24 they should also

" have an impact on the operation of reactor grade quasi-helically symmetric

plasmas, but at a level reduced by the factor M/(N- Mt).
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