Photorefractivity in liquid crystals doped with a soluble conjugated polymer.

PDF Version Also Available for Download.

Description

Photoconductive polymers are doped into liquid crystals to create a new mechanism for space-charge field formation in photorefractive liquid crystal composites. The composites contain poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV) and the electron acceptor N,N{prime}-dioctyl-1,4:5,8-naphthalenediimide, NI. Using asymmetric energy transfer (beam coupling) measurements that are diagnostic for the photorefractive effect, the direction of beam coupling as a function of grating fringe spacing inverts at a spacing of 5.5 {micro}m. We show that the inversion is due to a change in the dominant mechanism for space-charge field formation. At small fringe spacings, the space-charge field is formed by ion diffusion in which the photogenerated anion ... continued below

Physical Description

10 p.

Creation Information

Niemczyk, M. P.; Svec, W. A.; Wasielewski, M. R. & Wiederrecht, G. P. July 7, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Photoconductive polymers are doped into liquid crystals to create a new mechanism for space-charge field formation in photorefractive liquid crystal composites. The composites contain poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV) and the electron acceptor N,N{prime}-dioctyl-1,4:5,8-naphthalenediimide, NI. Using asymmetric energy transfer (beam coupling) measurements that are diagnostic for the photorefractive effect, the direction of beam coupling as a function of grating fringe spacing inverts at a spacing of 5.5 {micro}m. We show that the inversion is due to a change in the dominant mechanism for space-charge field formation. At small fringe spacings, the space-charge field is formed by ion diffusion in which the photogenerated anion is the more mobile species. At larger fringe spacings, the polarity of the space charge field inverts due to dominance of a charge transport mechanism in which photogenerated holes are the most mobile species due to hole migration along the BEH-PPV chains coupled with interchain hole hopping. Control experiments are presented, which use composites that can access only one of the two charge transport mechanisms. The results show that charge migration over long distances leading to enhanced photorefractive effects can be obtained using conjugated polymers dissolved in liquid crystals.

Physical Description

10 p.

Notes

OSTI as DE00011891

Medium: P; Size: 10 pages

Source

  • SPIE Conference, Denver, CO (US), 07/21/1999--07/22/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/CHM/CP-99495
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11891
  • Archival Resource Key: ark:/67531/metadc619264

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 7, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 6:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Niemczyk, M. P.; Svec, W. A.; Wasielewski, M. R. & Wiederrecht, G. P. Photorefractivity in liquid crystals doped with a soluble conjugated polymer., article, July 7, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc619264/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.