Estimation of hydraulic conductivities of Yucca Mountain tuffs from sorptivity and water retention measurements

PDF Version Also Available for Download.

Description

The hydraulic conductivity functions of the matrix rocks at Yucca Mountain, Nevada, are among the most important data needed as input for the site-scale hydrological model of the unsaturated zone. The difficult and time-consuming nature of hydraulic conductivity measurements renders it infeasible to directly measure this property on large numbers of cores. Water retention and sorptivity measurements, however, can be made relatively rapidly. The sorptivity is, in principle, a unique functional of the conductivity and water retention functions. It therefore should be possible to invert sorptivity and water retention measurements in order to estimate the conductivity; the porosity is the ... continued below

Physical Description

31 p.

Creation Information

Zimmerman, R.W. & Bodvarsson, G.S. June 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The hydraulic conductivity functions of the matrix rocks at Yucca Mountain, Nevada, are among the most important data needed as input for the site-scale hydrological model of the unsaturated zone. The difficult and time-consuming nature of hydraulic conductivity measurements renders it infeasible to directly measure this property on large numbers of cores. Water retention and sorptivity measurements, however, can be made relatively rapidly. The sorptivity is, in principle, a unique functional of the conductivity and water retention functions. It therefore should be possible to invert sorptivity and water retention measurements in order to estimate the conductivity; the porosity is the only other parameter that is required for this inversion. In this report two methods of carrying out this inversion are presented, and are tested against a limited data set that has been collected by Flint et al. at the USGS on a set of Yucca Mountain tuffs. The absolute permeability is usually predicted by both methods to within an average error of about 0.5 - 1.0 orders of magnitude. The discrepancy appears to be due to the fact that the water retention curves have only been measured during drainage, whereas the imbibition water retention curve is the one that is relevant to sorptivity measurements. Although the inversion methods also yield predictions of the relative permeability function, there are yet no unsaturated hydraulic conductivity data against which to test these predictions.

Physical Description

31 p.

Notes

INIS; OSTI as DE96001002

Source

  • Other Information: PBD: Jun 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96001002
  • Report No.: LBL--37492
  • Grant Number: AC03-76SF00098
  • DOI: 10.2172/110771 | External Link
  • Office of Scientific & Technical Information Report Number: 110771
  • Archival Resource Key: ark:/67531/metadc619257

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 5, 2016, 12:26 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zimmerman, R.W. & Bodvarsson, G.S. Estimation of hydraulic conductivities of Yucca Mountain tuffs from sorptivity and water retention measurements, report, June 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc619257/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.