Deformation response of Zr after shock-loading

PDF Version Also Available for Download.

Description

The post-shock stress-strain response and microstructural evolution of Zr shock-loaded to 7 GPa were investigated. A Bauschinger effect in the room temperature reload stress-strain behavior due to shock-loading has been observed following yielding. Deformation twinning is shown to play a more important role than slip during post-shock plastic deformation and work hardening. The work hardening rate of the shock-prestrained specimens is less temperature sensitive than that of annealed Zr. The underlying microstructures responsible for the Bauschinger effect and the differences in work hardening behavior are characterized. A new type of dense dislocation arrangement resulting from phase transformations during shock excursion ... continued below

Physical Description

6 p.

Creation Information

Song, S.G.; Gray, G.T. III & Lopez, M.F. September 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The post-shock stress-strain response and microstructural evolution of Zr shock-loaded to 7 GPa were investigated. A Bauschinger effect in the room temperature reload stress-strain behavior due to shock-loading has been observed following yielding. Deformation twinning is shown to play a more important role than slip during post-shock plastic deformation and work hardening. The work hardening rate of the shock-prestrained specimens is less temperature sensitive than that of annealed Zr. The underlying microstructures responsible for the Bauschinger effect and the differences in work hardening behavior are characterized. A new type of dense dislocation arrangement resulting from phase transformations during shock excursion is discussed.

Physical Description

6 p.

Notes

OSTI as DE96000008

Source

  • American Physical Society biennial conference on shock compression of condensed matter, Seattle, WA (United States), 13-18 Aug 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96000008
  • Report No.: LA-UR--95-2826
  • Report No.: CONF-950846--48
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 110737
  • Archival Resource Key: ark:/67531/metadc619235

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 21, 2016, 9:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Song, S.G.; Gray, G.T. III & Lopez, M.F. Deformation response of Zr after shock-loading, article, September 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc619235/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.