Minimum-Time Trajectory Tracking of an Under-Actuated System

PDF Version Also Available for Download.

Description

Minimum-time trajectory tracking of an under-actuated mechanical system called the Acrobot is presented. The success of the controller is demonstrated by the fact that the tracking error is reduced by more than an order of magnitude when compared to the open-loop system response. The control law is obtained by linearizing the system about the nominal trajectory and applying differential dynamic programming to the resulting linear time-varying system, while using a weighted sum of the state-deviation and input-deviation as the cost function.

Physical Description

10 p.

Creation Information

DRIESSEN,BRIAN & SADEGH,NADER October 26, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Minimum-time trajectory tracking of an under-actuated mechanical system called the Acrobot is presented. The success of the controller is demonstrated by the fact that the tracking error is reduced by more than an order of magnitude when compared to the open-loop system response. The control law is obtained by linearizing the system about the nominal trajectory and applying differential dynamic programming to the resulting linear time-varying system, while using a weighted sum of the state-deviation and input-deviation as the cost function.

Physical Description

10 p.

Notes

OSTI as DE00014105

Medium: P; Size: 10 pages

Subjects

Source

  • American Control Conference 2000, Chicago, IL (US), 06/28/1999--06/30/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-2757C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 14105
  • Archival Resource Key: ark:/67531/metadc619108

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 26, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 7 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

DRIESSEN,BRIAN & SADEGH,NADER. Minimum-Time Trajectory Tracking of an Under-Actuated System, article, October 26, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc619108/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.