UNCLASSIFIED

\qquad of \qquad

Contract number AT-33 $3=\operatorname{CEN}-53$

MOUND IBEORATOEE
Operated Ey
MOMBAMO CHELTCAL CORPAVY
memisbutc. OHEO
3. W. Haring

DENGTY OF MEAETE POLONHM

Classification chaneed authority of Pael B. Dowd lt, 6/23/1 by $\frac{\text { Alventa } D \text { - Weidine } ~}{1 / 14 / 70}$ (Tnomation Heoting faper No. 13)

Date: November $9,20 \%$
Dievmbutec: DEC 291948

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

UNCLASSIFIED

DISTRTBUTTON

$$
\begin{aligned}
& \text { 1. - Mo Mo Haring } \\
& \text { 2. Jo Jo Buxhege } \\
& \text { 3. - Los hlanos } \\
& \text { 4o - Los ALamos } \\
& \text { 5. - Axec Manger } \\
& \text { 6. - Area Minnger } \\
& \text { 7. Aree Janager } \\
& \text { Bo- Ro A, Stanirorth } \\
& \text { 9- Jo Po Eichelberger }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11. - Central Piles } \\
& \text { 12. - Gentrel Files } \\
& \text { 13. - Central Files } \\
& 140 \text { os Central Pies }
\end{aligned}
$$

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

UNCLASSIFIED

UNCLASSIFIED

INTEODUCTION

Polonium has been reported to exist in two allotropic forms. ${ }^{1}$. Evidence for this was gathered from resistivity measurements and erybal structure studies. X ray diffraction studies show that the low tompera$9,32 \mathrm{~g} / \mathrm{cc}$. whereas β polonium structure and a salculated density of salculated density of $9.51 \mathrm{~g} / \mathrm{cc}$ a simple mhombohedral oxystal with a measuring the rolume whin a known the aensity was also deteminod by capillary. The weight of p known mass of metal occupted in a small calorimetrieally, With this capillary and a length of 2 weights a dianeter of 0.258 nimo for the lonium tus calculated to be 9.38 for the "ingot", the density of pow made because it essentially chested onith only one detemmination was

Hore recent Xury data shom a dencity for a poloniun equal to $9.16 \mathrm{c} . / \mathrm{cc}, \mathrm{These}$ data also shew a coefficient of themal ampansion

It was feit that further work shoud be done on thie problen to confirm or dispute the values recorted

SUAMSARI AND CONCLUSIONS

Four deferminations of the density of polonium at $25^{\circ} \mathrm{C}$, heve
 9.20 g./cc. with a mobable experimental exror oi two per cent, 0.29 g./ce. The apterial used in the first des.emmination was not subjected In this instance procurtion which makes the value obtained doubteril. ation inom their more volatile fois were tised direstily withont a sercras reporited value from thet which constituents. The difference in the to a recalculation besed on the peess in the Ad Interim Report 3 is due stants of polonium. 4 on the latest iniomation on the physical conm

The value of using pure material and knowing the physicat properties of polonium are slearly indieated

UNCLASSIFIED

EYPERTMENTAL

The procedure used in making the density determinations was essentially the same in each case with the exception of the cne low value reported．

About 25 curies of poloniun were placed in a quartz tube which had another tube of about 4 mm ．internal diameter sealed to it（Figure 1）． The system was evacuated to a pressure of $10^{\circ 5} \mathrm{ram}$ ． Hg or better and the portion of the tube containing the polonium was heated with an oaygen torch until the polonium collected on the sooler portions of the tube＇s walls．The pumps were permitted to continue the evacuating operation during this step in order to pump off any orygen which might be fomed as a decomposition product of the oxice．The tube was then sealed under high vacuma and the poloniun concentrated by heating all but the very tip in a furnace at $500^{\circ} \mathrm{C}$ ．A ring of inactive material was visible toward the coler end of the tube folloved rery alosely by the polonium， The temperature of the furnace was then lowered to $300^{\circ} \mathrm{C}_{0}$ and the twbe placed in the fumace with the larger portion protruding．This tampera－ ture was high enough to drive a good bit of the impurity off and low enough to leave a sufficient quartity of poloniam benind to be used in the experiment．

The purity of the materfal finally used in the experiment was not known but shonid be reasonably high in view of the treatment to which it was subjected．

The tube contatning the polonium was sedled off and the activity driven to one end of it。 It was then broken open and placed in another tube to which a calibrated capilsary was attached（Figure 2）．Care was essential at this point to keep smell quarte chips from getting into the calibrated space．

This second tube was evacuated and the polonium heated with an oxygen flame in a fashion similar to its preliminary breatment．After it had cooled，the pumps were turned off and the system filled to aboub 100 mm ．pressure with helium from which oxygen was removad by passing the gas through eopper turnings at about $100^{\circ} \mathrm{C}$ ．The tube was then sealed off from the rest of the system and placed in a furnace at $500^{\circ} \mathrm{C}$ ．in order to move the polonium past a constriction in the direction of the capillary． In this way a separation from lead which has a vapor pressure of about $10^{-5} \mathrm{~mm}$ ．at $500^{\circ} \mathrm{C}$ 。 compared with about 1 mm ．for polonium at $500^{\circ} \mathrm{C}$ 。is

UNCLASSIFIED

$12 T+230$
effected. 5
Arter cooling, the constriction was slosed and the tube again heated at $500^{\circ} \mathrm{C}$, to drive the polonium into the smaller bulb to which the capillary was sealed. It was sealed of a again and removed to a centrifuge cup specially dssigned to permit heating the sample just before centrifugation (Figure 3).

The temperature of the cup containing the tube in which the activity was enclosed was raised to about $400^{\circ} \mathrm{C}_{\mathrm{C}}$. The tenperature was well above the melting point of the poloniwa. The tentrifuge was perm mitted to spin at 2000 ropon. for about twenty minutes. During this time the polonium was able to collect in the calibrated tip and the sup cooled to below the melsing point of the polonitim. The length of the metallic thread wes measured by means of a traveling microscope. there bubbles were found in the thread, a measurement of the base and an esti-mate of the height permitted a correction to be applied.

The weight of polonium was detemined calorimetrically.

CALIBRATION OF CAPILLARY

A heavy walled quarcz eapiliary vas dram out by heating a piece of quartz tubing to thicken it and then exerting a fairiy miform but fest pull on either end of whe hot portion. This resulted in a slightly tapered capillarg wich was then cut at a reasonable distaneo and sealed at the small end. Oniy those oi about 0.2 man diameter rere used for further work. The tube was weighed empty and with a series of small droplets of mercury on an Ainsworth Type FDJ Hicrobalance, The dropiets were forced individually to the bottom of the apililary by centrifugation and were subsequently measured in length by means of a calibrated traveling misroscope. The volunes obtained in this fashion were corrected for the mercury menjseus and plotted against the lergth of the mercury thread. When a suffiejent number of points were obtained, the tube was inverted and centrifuged in order to remove the mercury from the tip.

CALCULATIONS ARD ASSUMPTTONS

In making the calculations it was assumed that the temporature of the thread was about $50^{\circ} \mathrm{C}$ 。 akove the temperature of the surrouncings on the basis of an observation that the firrnace temperature was oniy about $200^{\circ} \mathrm{C}$. when a mass of polonium melted. 5 when a themosouple is pleced directly in the metal it is observed to melt at about $254^{\circ} \mathrm{C}, 1$ This and
a vaiue of $20 \times 10^{-6} \mathrm{~cm} / \mathrm{cm} /{ }^{\circ} \mathrm{C}$. for the coefficient of linear expansion were used to calculate the length of the thread at $25^{\circ} \mathrm{C}$. close to the observed melting point of polonium. ${ }^{2}$ The assumption was also made that at the melting point and during centrifugation the molten netal completely filled the end of the capillary. Also, that it behaved like a normil metal in contracting when it solidified and cooled further to the semperature at which the length was measured.

The obsexved length was corrected back to the length close to the meleing point $250^{\circ} \mathrm{G}_{8}$, and the volume at that temperature was read from the calibration curve for the capillary. This volume and the calorinetric dea temination of the weight of polonium is necessary to calculate the density at $25^{\circ} \mathrm{C}$. This is then correctec to the density at $25^{\circ} \mathrm{C}$. The formulas used are:

$$
\begin{aligned}
& I_{i}=I_{t}\left(1+\alpha\left(t^{\prime}-t\right)\right) \quad l=16 \text { ngth }^{\circ} \text { of polonium thread. } \\
& t^{\prime}=250^{\circ} \mathrm{C} . \\
& t=75^{\circ} \mathrm{C} \text {. } \\
& D_{t^{i}}=3 / V \\
& D_{25}=\frac{D_{t}}{\left(1-3 d\left(t^{\prime}-25\right)\right)} \\
& \alpha=\text { Coefficfent of Inear expansion. } \\
& \mathrm{M}=\text { hass of polontur - gm. } \\
& V=\text { Volume of polonium - cs. } \\
& D=\text { Censity } \text {. }
\end{aligned}
$$

POSSTBLE SOURCES OF ERRCR

1. Calibration of Capillary

A smooth curve may be drawn through the points obtained with mercury. The deviation from the curve may be used to assign a value for the error in the volume determination. A typical calibration curve is shown in Figure 40
2. The error in measuring the length of the thread for these experiments is determined by the sensitivity of the traveling microscope.
3. An error may be present in making the temperature correction. If it is assumed that this correction is good to twenty per cent, the error is correspondingly reduced.
4. The orror in the calorimetric detemination of the weight of polonium used is 0.2 per cent 6
5. In a couple of cases one or two buobles appeared in the thread.

UNCLASSIFIED

These were assumed to be spherical segrents and with the measurement of the base and an estimation of their beight, a correction could be applied. It appeared that all the bubbles present were observed, although the small possibility exists that some were present within the thread and escaped observation.

If the polonium sample is essentially 200 per cent pure then the overall error in such a determination should be about two per cent.

RESULTS

The essential data are listed in the following tabie:

Length of Thread (mm.	$\begin{aligned} & \text { Tolume } \\ & \text { at } 25000 \\ & \left(\mathrm{cc}, \times 10^{-5}\right) \end{aligned}$	WC. Poloniwn (mg.)	$\begin{gathered} \text { Density } \\ \text { 2t } 25^{\circ} \mathrm{C} \\ \mathrm{~g} . / \mathrm{cc} . \end{gathered}$	Possible Error R:/cc.
4.273	14.59	1.249	8.69	± 0.19 (knomn to be jmpure)
7.734	20.22	1.866	9.34	± 0.14
8.047	35.32	3.253	9.34	± 0.21
9.447	29.42	2.670	9.20	± 0.17

A fairly typical thread of the metal in a capillary is shom in Figure 5.

Fron the way in which these deteminations were made the value reported is that for polonium in the β modification provided the previous observations on the transition from β to α polonium are correct． 1

On the basis of the last three determinations one may say that the density of polonium is $9.29 \mathrm{~g} / \mathrm{cc}$ ．with a standard deviation from the mean，$\sigma= \pm 0.07 \mathrm{~g}$ ，／cc．and a probable error equal to $\pm 0.06 \mathrm{~g} / \mathrm{cc}$ ，for a single determination．

REFERENCES

1．C，Rn Haxwell and W．H．Beaner，Report No，LA－604 Physical Properties and Crystal Structure of Poloniva，August 30．1946．

2．H．E，Brocklehurst and L．Fo Vassamillet，Report No。MLMaj2， Physics Progress Report．s June $1-30,1948$.

3．B．B．Brcdy．Report No．NLM－ 103 ，Deneity of Mesallie Polonima－ Ad Interim，Hay 18\％1948。

4o Rs A．Staniforth，Information Report No．37，Fundamental Con stants and Conyersion Factors，December 31． 1947.

S．Po Davis and io Brocks，Physies Group Progress Report，November $16 \cdots 30,1946$.

6．DoAnger，Calorimetry Researeh Group Progress Report，Oetober 1－15．194．6．

The following illustrations are the slides used in presenting tais paper at the Information Meeting。

UNCLASSIFIED

MLM 230

\rightarrow FIGURE 2-
 quartz tube used in density determination

$480 \% 04$
MLM 230

UNCLASSIFIED

CENTRIFUGE CUP EQUIPPED WITH FURNACE

 -SCALE: FULL SIZE-

二LEGEND -
RiVn Bross Centrifuge Cus

[IIIIIIIll Nichrome Wire Furnace in Thermocouple Insulators

Iron Tube and Cover
Transite Insulator
Modified Pyrex Centrifuge Cone to hold Quartz Capillary
UNCLASSIFIEB
MLM 230
$\operatorname{Un} \quad \because \quad \therefore-\infty$

UNCLASSFFED
UNCLASSIFIED
CALCULATION OF DENSITY
ASSUMPTIONS:

POLONIUM THREAD $50^{\circ} \mathrm{C}$. ABOVE SELECTED STANDARD TTMMPERATURE.

1.
2.

FORMULAS:

VOLUME OF POLONIUM
DENSITY OF POLONIUM

UNCLASSIFIED

CALCULATION OF DENSITY

POSSIBIE SOURCES OF ERROR

1. CALIbration of capillary.
2. MEASUREMENT OF POLONIUM THREAD LENGTH.
3. ASSIGNMENT OF TENPERATURES.
4. CAIORIMETRIC DETERMINATION OF MASS.
5. "BUBBLE" CORRECTIONS.

If THE POLONIUM SAMPIE IS ESSENTIALIY 100 PER CENT PURE, THEN THE
OVERALL ERROR IN SUCH A DEPRRMINATION SHOULD BE ABOUT 2 PER CTANT.

