Ion-Beam-Induced Defects and Defect Interactions in Perovskite-Structure Titanates

PDF Version Also Available for Download.

Description

Ion-beam irradiation of perovskite structures results in the production and accumulation of defects. Below a critical temperature, irradiation also leads to a crystalline-to-amorphous transformation. The critical temperature for amorphization under 800 keV Kr{sup +} ion irradiation is 425,440 and 550 K for SrTiO{sub 3}, CaTiO{sub 3} and BaTiO{sub 3}, respectively. The results of ion-channeling studies on SrTiO{sub 3} irradiated with 1.0 MeV Au{sup 2+} ions suggest that the crystalline-to-amorphous transformation is dominated by the accumulation and interaction of irradiation-induced defects. In SiTiO{sub 3} irradiated with He{sup +} and 0{sup +} ions at 180 K, isochronal annealing studies indicate that there ... continued below

Physical Description

13 pages

Creation Information

Boatner, L.A.; Jiang, W.; Meldrum, A.; Thevuthasan, S.; Weber, W.J. & Williford, R.E. August 23, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 42 times , with 6 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Ion-beam irradiation of perovskite structures results in the production and accumulation of defects. Below a critical temperature, irradiation also leads to a crystalline-to-amorphous transformation. The critical temperature for amorphization under 800 keV Kr{sup +} ion irradiation is 425,440 and 550 K for SrTiO{sub 3}, CaTiO{sub 3} and BaTiO{sub 3}, respectively. The results of ion-channeling studies on SrTiO{sub 3} irradiated with 1.0 MeV Au{sup 2+} ions suggest that the crystalline-to-amorphous transformation is dominated by the accumulation and interaction of irradiation-induced defects. In SiTiO{sub 3} irradiated with He{sup +} and 0{sup +} ions at 180 K, isochronal annealing studies indicate that there is significant recovery of defects on both the oxygen and cation sublattices between 200 and 400 K. These results suggest that defect recovery processes may control the kinetics of amorphization. A fit of the direct-impact/defect-stimulated model to the data for SrTiO{sub 3} suggests that the kinetics of amorphization are controlled by both a nearly athermal irradiation-assisted recovery process with an activation energy of 0.1 plus or minus 0.05 eV and a thermal defect recovery process with an activation energy of 0.6 plus or minus 0.1 eV. In SrTi0{sub 3} implanted with 40 keV H{sup +} to 5.0 x 10{sup 16} and 1.0 x 10{sup 17} ions/cm{sup 2}, annealing at 470 K increases the backscattering yield from Sr and Ti and is mostly likely due to the coalescence of H{sub 2} into bubble nuclei. Annealing at 570 K and higher results in the formation of blisters or large cleaved areas.

Physical Description

13 pages

Notes

OSTI as DE00011335

Source

  • NATO Advanced Research Workshop, Jurmala (LV), 08/23/1999--08/25/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ORNL/CP-104443
  • Report No.: KC 02 02 02 0
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 11335
  • Archival Resource Key: ark:/67531/metadc618891

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 23, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Aug. 3, 2016, 1:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 6
Total Uses: 42

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Boatner, L.A.; Jiang, W.; Meldrum, A.; Thevuthasan, S.; Weber, W.J. & Williford, R.E. Ion-Beam-Induced Defects and Defect Interactions in Perovskite-Structure Titanates, article, August 23, 1999; (digital.library.unt.edu/ark:/67531/metadc618891/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.