Characterizing transverse beam dynamics at the APS storage ring using a dual-sweep streak camera.

PDF Version Also Available for Download.

Description

We present a novel technique for characterizing transverse beam dynamics using a dual-sweep streak camera. The camera is used to record the front view of successive beam bunches and/or successive turns of the bunches. This extension of the dual-sweep technique makes it possible to display non-repeatable beam transverse motion in two fast and slow time scales of choice, and in a single shot. We present a study of a transverse multi-bunch instability in the APS storage ring. The positions, sizes, and shapes of 20 bunches (2.84 ns apart) in the train, in 3 to 14 successive turns (3.68 {micro}s apart) ... continued below

Physical Description

11 p.

Creation Information

Yang, B. May 27, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present a novel technique for characterizing transverse beam dynamics using a dual-sweep streak camera. The camera is used to record the front view of successive beam bunches and/or successive turns of the bunches. This extension of the dual-sweep technique makes it possible to display non-repeatable beam transverse motion in two fast and slow time scales of choice, and in a single shot. We present a study of a transverse multi-bunch instability in the APS storage ring. The positions, sizes, and shapes of 20 bunches (2.84 ns apart) in the train, in 3 to 14 successive turns (3.68 {micro}s apart) are recorded in a single image, providing rich information about the unstable beam. These include the amplitude of the oscillation ({approximately}0.0 at the head of the train and {approximately}2 mm towards the end of the train), the bunch-to-bunch phase difference, and the significant transverse size growth within the train. In the second example, the technique is used to characterize the injection-kicker induced beam motion, in support of the planned storage ring top-up operation. By adjusting the time scale of the dual sweep, it clearly shows the amplitude ({+-}1.8mm) and direction of the kick, and the subsequent decoherence ({approximately} 500 turns) and damping ({approximately} 20 ms) of the stored beam. Since the storage ring has an insertion device chamber with full vertical aperture of 5 mm, it is of special interest to track the vertical motion of the beam. An intensified gated camera was used for this purpose. The turn-by-turn x-y motion of a single-bunch beam was recorded and used as a diagnostic for coupling correction. Images taken with uncorrected coupling will be presented.

Physical Description

11 p.

Notes

INIS; OSTI as DE00010694

Medium: P; Size: 11 pages

Source

  • Beam Instrumentation Workshop (BIW'98), Palo Alto, CA (US), 05/04/1998--05/07/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ASD/CP-95930
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10694
  • Archival Resource Key: ark:/67531/metadc618841

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 27, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 7:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yang, B. Characterizing transverse beam dynamics at the APS storage ring using a dual-sweep streak camera., article, May 27, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc618841/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.