Plasma synthesis of alumina films on metal and ceramic substrates

PDF Version Also Available for Download.

Description

The authors are exploring the feasibility of the plasma synthesis of highly-adherent films of alumina and chromia on SiC and FeAl substrates. A magnetically-filtered cathodic arc plasma deposition technique is used in which a high density metal plasma (Al or Cr) is formed and deposited on the substrate in the presence of a low pressure gaseous oxygen background. The substrate is simultaneously repetitively pulse biased, providing a means of controlling the incident ion energy. In the early stages of the process the ion energy is held in the keV range so as to produce atomic mixing at the film-substrate interface ... continued below

Physical Description

8 p.

Creation Information

Brown, I. & Wang, Zhi April 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The authors are exploring the feasibility of the plasma synthesis of highly-adherent films of alumina and chromia on SiC and FeAl substrates. A magnetically-filtered cathodic arc plasma deposition technique is used in which a high density metal plasma (Al or Cr) is formed and deposited on the substrate in the presence of a low pressure gaseous oxygen background. The substrate is simultaneously repetitively pulse biased, providing a means of controlling the incident ion energy. In the early stages of the process the ion energy is held in the keV range so as to produce atomic mixing at the film-substrate interface (ion stitching), and in the latter stages of deposition the energy is reduced to {approximately}200 eV (IBAD range) to provide a means of controlling the film structure and morphology. Films that are dense and highly adherent can be formed in this way. The authors have produced near-stoichiometric films of alumina and chromia on small SiC and FeAl substrates and characterized the films in a number of ways, including RBS, X-ray diffraction and adhesion, and we`ve also done some preliminary temperature cycling experiments. The alumina films are of thickness from 0.2 to 1.5.{micro}, amorphous prior to heat treatment, and show an {alpha}-alumina phase after heat treating at 1,000 C for up to 16 hours. The film substrate adhesion is typically greater then {approximately}70 MPa prior to heating, and initial results indicate that the films maintain their adhesion after repetitive cycling in temperature between ambient and 1,000 C. Here they describe the plasma processing method and outline the experimental results obtained to-date.

Physical Description

8 p.

Notes

OSTI as DE96000119

Source

  • 9. annual conference on fossil energy materials, Oak Ridge, TN (United States), 16-18 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96000119
  • Report No.: LBL--37091
  • Report No.: CONF-9505204--13
  • Grant Number: AC03-76SF00098
  • DOI: 10.2172/106524 | External Link
  • Office of Scientific & Technical Information Report Number: 106524
  • Archival Resource Key: ark:/67531/metadc618823

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 5, 2016, 10:26 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Brown, I. & Wang, Zhi. Plasma synthesis of alumina films on metal and ceramic substrates, report, April 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc618823/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.