Electronic Structure and Phase Stability of Pu-Ga Alloys

A. Gonis
P. E. A. Turchi
N. Kioussis

This paper was prepared for submittal to the
Topical Conference on Plutonium and the Actinides
Santa Fe, NM
August 24-27, 1997

March 1, 1997

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
INTRODUCTION

Plutonium metal has six different crystallographic allotropes from room temperature until it melts just above 600 °C. The room-temperature α phase is monoclinic with 32 atoms per unit cell, (an α phase with 16 atoms per cell also exists), which is the lowest-symmetry crystal structure known of any pure element. In fact, only the high-temperature δ (fcc) phase of Pu possesses one of the traditional close-packed structures. The low-symmetry and small lattice constants of the lowest-temperature phase of the light actinides can be used as an argument for f-bonding in these materials. The large volume increase in Pu in going from the α to the δ phase has been argued on phenomenological grounds to be the result of decreased f-bonding.

In addition, XPS data have been obtained for both the α and the δ phases. Both sets of data show the presence of a peak below the Fermi level (EF). This peak is 2.0 eV wide in the α phase and 3.0 eV wide in the δ phase. The XPS intensity calculations (for the two phases) which treat the f-electrons as bonding states agree with the measurements of the α phase spectra, but not with those of the δ phase. The calculated spectrum shows a narrow f-peak pinned at EF instead of the wide f-peak below EF seen in the XPS spectra. It can be argued that the wide spectra seen experimentally are due to the multiplet structure of localized f-states that do not participate very actively in the bonding.

In spite of the difference in the properties of the α and δ phases of Pu (for example α-Pu is brittle while δ-Pu is ductile), it is not difficult to retain either phase by alloying. Indeed, it is often desirable to retain the ductile δ phase for engineering purposes, by alloying, for example, Pu with Al, Ga, or Si.

DESCRIPTION OF WORK

We report on results of first-principles electronic structure calculations based on the full-potential LMTO (FP-LMTO) method for pure Pu as well as for Pu-Ga alloys. The aim of these calculations is to determine the energetics of Pu-Ga alloys, the bonding between impurity and host atoms, the relevant atomic interactions between atoms of different species and, ultimately, the phase-stability tendencies of Pu-Ga alloys. We use the Connolly-Williams method for determining these interactions through the study of ordered configurations of the alloy at stoichiometric concentrations, with the aim of eventually using methods based on the coherent-potential approximation (CPA) which can be carried out at arbitrary concentrations.

RESULTS

Figure 1 shows the energy of mixing as a function of atomic volume for Pu-Ga alloys at three Ga-concentrations. The main result that can be read from this figure is the tendency of the alloy to form at any composition (mixing energy negative). The density of states (DOS), shown in Fig. 2, of the alloy Pu3Ga in the Li2 (of Cu3Au-type) structure together with the bonding charge density (not
represented here) indicate that the presence of Ga modifies the electronic properties of pure Pu. In particular, we find that in the (100) plane the nature of the bonding tends to be ionic in character, with charge being transferred from Pu to Ga cells. The effect of these modifications on the stability of Pu-Ga alloys will be discussed.

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
FPLMTO/ fcc-based Pu-Ga / $\Delta E(V)$

![Graph showing ΔE (mRy/atom) vs. V_{atomic} (A3) for Pu-Ga phases.](image)
Density of States (Pu3Ga)

E (Ry)

0.0 0.1 0.2 0.3

Total

6d

5f

4s

4p
Extended abstract submitted to the Topical Conference on Plutonium and the Actinides

Title: Electronic structure and phase stability of Pu-Ga alloys

Authors:

Antonios Gonis
Chemistry and Materials Science (L-268)
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550

Tel: (510) 422-7150
Fax: (510) 422-7300
e-mail: gonis@athens.llnl.gov
or gonis1@llnl.gov

Patrice E. A. Turchi
Chemistry and Materials Science (L-268)
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94550

Tel: (510) 422-9925
Fax: (510) 422-7300
e-mail: turchi@melun.llnl.gov

Nicholas Kioussis
Department of Physics
California State University, Northridge
Northridge, CA 91330-8266

Tel: (818) 677-7733
Fax: (818) 677-5615
e-mail: nkioussi@newton.csun.edu