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" Criteria for a reliable/robust 3-D

electromagnetic field solve

« allow use of unstructured non-orthogonal grids while
retaining accuracy

. allow a variety of cell or element types

- reduce to standard FDTD method when orthogonal grids
are used

~» preserve charge/divergence locally (and globally)
« conditionally stable
 non-dissipative
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Face values for B advance (&
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Node values of B dot

k
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dt J
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Face values of B dot |8

The node B dot values are averaged to
obtain a single B dot value for the face

The fully volume weighted scheme

where the weight
©y=N; o(Ng xNg )

represents the volume of the jth
coordinate system at node i of face F

works out well in our implementation.




DSI* algorithm forB (B

9B (3B
Face aligned T.NF;Q( o .n) *= _J(VXEK).ndS ~
F
dB%
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dt !
Node centered dB; |
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* Niel Madsen, February, 1992, UCRL-JC-109787
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Particle Tracking &

» Locate the element in which the particle resides. The first
guess is the element associated with the particle's previous
position.

» Calculate the interpolation weights required to deposit the
particle current and to interpolate the E and B fields to the
particle position. |

» Mesh elements are decomposed into tetrahedral volumes
defined by the particle location and the element faces.

» A negative weight indicates that the particle has left the
current element and provides some clue as to where to
- look next. |




Hexahedral Element =

Eight of the twelve volumes
required to calculate the
interpolation weights.

40— = - - ==
7/

A simulation particle within a hexahedral mesh
element.




Test Problem @

Test Problem: Space Charge "Almost" Limited Injection

We inject 80 kKA/m”2 of 100 keV electrons from all 36 zones on the face of the
"pedastal" shown in the grid below. There are 16 zones in all three dimensions with

AX = Ay = Az = 0.01 meters. A square mesh is chosen to allow comparison with the

results from other well tested EM PIC codes. The "coarse" resolution accentuates
the effects of interpolation.
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Bz Contour Plot
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Ex Contour Plot
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Marder current correction M

PROBLEM: Gauss' law V e D =p is not preserved due to numerical inaccuracies.

The Marder pseudo-cUrrent algorithm adds diffusion to Ampere's Law in order to
bound the error in Gauss' Law.

Define: F=eVeE—p then ¢ dEdt=VxB/y ~J+ c VF
3000 At without the Marder correction with the Marder correction

Py—Px Py—Px

D3D D3D soon




Divergence Calculation LLE |

The conventional finite-difference method of calculating
divergence on an orthogonal grid -

VeE = (E*-EH)/2AX + ...

does not generalize to an unstructured grid. Instead we use the
definition of divergence:

divergence = the outgoing flux per unit volume.

We obtain the divergence of E by taking the dot product of the
primary edge E values with the associated dual-face area
normals for all the primary edges connected to a primary node.
This sum is then divided by the volume of the dual cell, yielding
the divergence at the primary node.




Weighting Algorithms &

A2

A3

A4

A3

A2
A1

2

Area weighting using conventional PIC technique on a
1 X 1 square: |

W(n1) = Area 1 = 9/16
W(n2) = Area 2 = 3/16
W(n3) = Area 3 = 1/16
W(n4) = Area 4 = 3/16

Weighting using our present side-based scheme on an

3 "unstructured grid":

W(n1) = w2*w3 = 9/16
W(n2) = w3*w4 = 3/16
W(n3) = wi*w4 = 1/16
W(n4) = wi*w2 = 3/16

where A1 =1/8 A2=3/8 A3=3/8 A4=1/8

2 and

wi=A1/(A1+ A3) = 1/4 w2 = A2/(A2 + Ad) = 3/4
w3 = A3/(A1+ A3) = 3/4  wd = A4/(A2 + Ad) = 1/4



Distorted Element ' LE

Our present hexahedral weighting algorithm
produces erroneous results:

W(n1) = 27/91 W(n2) = 36/91
W(n3) = 16/91 W(n4) = 12/91

In-addition we would like to have consistent weights
calculated by our triangular and quadrilateral element
algorithms. If side 2-3 of the above quad vanishes (the
element becomes a triangle) the weights become

W(n1) =0 W(n2) = 2/3
W(n3) = 1/3 W(n4) =0

while our current triangular element weighting scheme
yields |

W(n1) = A1/(A1+A2+A3) = 1/2
W(n2) = A2/(A1+A2+A3) = 1/4
W(n3) = A3/(A1+A2+A3) = 1/4




|Isoparametric Maps LLQ

We are considering the use of isoparametric maps in order to circumvent these
difficulties. Mapping distorted elements to regular elements allows the use of
standard bi or tri-linear weighting.

Consider a quadrilateral element — triangular element as side 2-3— 0. The
quadrilateral element maps to a 2x2 square in (&,n) space.

A2 A1
____> .
3 ©  hoooooglecomnoacononosgoononon! E_,
............ A3 A4
A 2 1 2
In the mapped coordinate space we use bilinear Weighting »
W(n1) = (24+3¢)/(48+4¢) = 1/2 W(n2) = (8+¢)/(48+4¢) = 1/6
W(n3) = 1/(12+¢) = 1/12 W(n4) = 3/(12+¢) = 1/4

As £e— 0 the weights at nodes 2 and 3 combine to give a weight of 1/4. These
results are consistent with the triangular element weighting scheme.






Post Processing L@

¢ During a run the code dumps data that can be read by
several different LLNL-developed graphics packages:
- GRIZ, PDBview, and Mesh-TV.

» GRIZ produced the twisted waveguide field plot.

« PDBview produced the primary and dual grid plots and the
plot of particles in the twisted waveguide.




Parallel Particles @

» The particle push will coexist nicely with the domain
decomposed field blocks

. particles will be sorted in spatially distinct domains

e each particle domain will be completely contained in a
single field domain

e every field block will keep at least 1 particle domain (may
have zero particles) - |

e particle domains can be split or combined arbitrarily

* load balancing is accomplished by moving daughter
particle blocks to idle processors (with a rather large
communications penalty) or returning particle blocks to the
original field processor




Computer Science

» Standard Fortran77 coding

« all variables explicitly declared

- COMMON blocks avoided

* no POINTER statements

« static memory management (for now)
 GRAPHICS based on GL or GKS

 source code control via CVS |

» Parallel processing via domain decomposition

» Field regions split automatically via the Recursive Speﬁctral
Bisection algorithm (H. D. Simon - NASA Ames)

« About 4000 elements are required per node on the Intel
iIPSC/860 to amoritize communication time



Summary LB

» Self-consistent plasma simulation on grids composed of
tetrahedrons, hexahedrons, triangular prisms, and
pyramids.

* Successful simulation of beam injection and field emission
In a twisted waveguide.

* Divergence errors controlled by the Marder pseudo-current
algorithm.

» Simple particle and field boundary conditions.

* Future plans include more boundary condition options
(periodic, etc.)

* Parallel implementation on the Meiko CS-2 is underway,
with general procedures for handling parallel particles
currently undergoing tests.



