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Criteria for a reliable/robust 3-D 

allow use of unstructured non-orthogonal grids while 

allow a variety of cell or element types 
reduce to standard FDTD method when orthogonal grids 

preserve charge/divergence locally (and globally) 
conditionally stable 
non-dissipative 

retai ning accuracy 

are used 
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Face values for B advance 



Node values of B dot 

dBk IJ oNF = -$Ek *dl 
dt F 

dBf O N  = - f E k a d l  
Fi,j dt F;. . 



Face values of B dot 

The node B dot values are averaged to 
obtain a single B dot value for the face 

The fully volume weighted scheme 

dBk, 

where the weight 

a ij =NF*(N Fi,j X N  Fi+l,j ) 
represents the volume of the jth 

coordinate system at node i of face F 

works out well in our implementation. 



DSI" algorithm for B 

Face aligned 
B dot 

Node centered 
B dot 

Interpolate to face 
centers 

Leapfrog advance 

Project to dual 
edge 

- * N F = ! ( t * n )  3Bk aBk d S =  - i ( V x E k ) * n d S  
at 

= - f E k * d l  
F 

-- dB$ - 
dt 

dBk 1 k-- 1 k +- B 2 = B  2 + A t -  
dt 

* 
Niel Madsen, February, 1992, UCRL-JC-109787 
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Particle Tracking kL3 
0 

0 
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Locate the element in which the particle resides. The first 
guess is the element associated with the particle’s previous 
position. 
Calculate the interpolation weights required to deposit the 
particle current and to interpolate the E and B fields to the 
particle position. 
Mesh elements are decomposed into tetrahedral volumes 
defined by the particle location and the element faces. 
A negative weight indicates that the particle has left the 
current element and provides some clue as to where to 
look next. 



Hexahedral Element H 
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Eight of the twelve volum 
required to calculate the 
interpolation weights. 
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Test Problem H 
Test Problem: Space Charge "Almost" Limited Injection 

We inject 80 kA/mA2 of 100 keV electrons from all 36 zones on the face of the 
"pedastal" shown in the grid below. There are 16 zones in all three dimensions with 
Ax = Ay = Az = 0.01 meters. A square mesh is chosen to allow comparison with the 
results from other well tested EM PIC codes. The "coarse" resolution accentuates 
the effects of interpolation. 
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Marder current correction H 
PROBLEM: Gauss' law V D = p is not preserved due to numerical inaccuracies. 

The Marder pseudo-current algorit 7m adds diffusion to Ampere's Law in order to 
bound the error in Gauss' Law: 

Define: F = E V E - p then 

3000 At without the Marder correction 

E dE/& = V x B/po - J + c VF 0 m 0 

with the Marder correction 

I D3D 

Py-Px 

I 

1 I 
D3D 3000 



Divergence Calculation I!!!! 
The conventional finite-difference method of calculating 

divergence on an orthogonal grid 

V E = (E X '+'-E X  AX + ... 

does not generalize to an unstructured grid. Instead we use the 
definition of divergence: 

divergence = the outgoing flux per unit volume. 

We obtain the divergence of E by taking the dot product of the 
primary edge E values with the associated dual-face area 
normals for all the primary edges connected to a primary node. 
This sum is then divided by the volume of the dual cell, yielding 
the divergence at the primary node. 



Weighting Algorithms H 
4 -I 

Area weighting using conventional PIC technique on a 
1 X 1 square: 

- 3  

A2 : A I  
W(n1) = Area 1 = 9/16 
W(n2) = Area 2 = 3/16 
W(n3) = Area 3 = 1/16 
W(n4) = Area 4 = 3/16 

................-. 
A3 : A4 

1 2 

L 

1 

Weighting using our present side-based scheme on an 
"unstructured grid": 

W(n1) = w2*w3 = 9/16 
W(n2) = w3*w4 = 3/16 
W(n3) = wl*w4 = 1/16 
W(n4) = wl*w2 = 3/16 

where A I  = 1/8 A2 = 318 
and 

A3 = 318 A4 = 118 

WI = AI / (AI+  A3) = 1/4 
~3 = A3/(A1+ A3) = 314 

~2 = A2/(A2 + A4) = 314 
~4 = A4/(A2 + A4) = 114 



Distorted Element H 
A 

1 2 

Our present hexahedral weighting algorithm 
produces erroneous results: 

W(n1) = 27/91 
W(n3) = 16/91 

W(n2) = 36/91 
W(n4) = 12/91 

In addition we would like to have consistent weigh 
calculated by our triangular and quadrilateral element 
algorithms. If side 2-3 of the above quad vanishes (the 
element becomes a triangle) the weights become 

W(n1) = 0 
W(n3) = 113 

W(n2) = 213 
W(n4) = 0 

while our current triangular element weighting scheme 
yields 

W(n1) = AI/(Al+A2+A3) = 112 

W(n3) = A3/(AI+A2+A3) = 1/4 
W(n2) = A2/(AI+A2+A3) = 114 

S 



lsoparametric Maps I!!!! 
We are considering the use of isoparametric maps in order to circumvent these 

difficulties. Mapping distorted elements to regular elements allows the use of 
standard bi or tri-linear weighting. 

Consider a quadrilateral element -+ triangular element as side 2-3+ 0. The 
quadrilateral element maps to a 2x2 square in (5,q) space. 

4 

1 

3 

2 

In the mapped coordinate space we use bilinear weighting 
W(n1) = (24+3~)/(48+4&) = 112 
W(n3) = 1/(12+&) = 1/12 

W(n2) = (8+~)/(48+4~) = 116 
W(n4) = 3/(12+~) = 114 

As E-+ 0 the weights at nodes 2 and 3 combine to give a weight of 114. These 
results are consistent with the triangular element weighting scheme. 
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Post Processing H 
During a run the code dumps data that can be read by 
several different LLNL-developed graphics packages: 
GRIZ, PDBview, and Mesh-TV. 
GRIZ produced the twisted waveguide field plot. 

0 PDBview produced the primary and dual grid plots and the 
plot of particles in the twisted waveguide. 



Parallel Particles H 
The particle push will coexist nicely with the domain 
decomposed field blocks 
particles will be sorted in spatially distinct domains 
each particle domain will be completely contained in a 

every field block will keep at least 1 particle domain (may 
single field domain 

have zero particles) 
particle domains can be split or combined arbitrarily 
load balancing is accomplished by moving daughter 
particle blocks to idle processors (with a rather large 
communications penalty) or returning particle blocks to the 
original field processor 
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Computer Science H 
Standard Fortran77 coding 
all variables explicitly declared 
COMMON blocks avoided 
no POINTER statements 
static memory management (for now) 
GRAPHICS based on GL or GKS 
source code control via CVS 
Parallel processing via domain decomposition 
Field regions split automatically via the Recursive Spectral 

About 4000 elements are required per node on the Intel 
Bisection algorithm (H. D. Simon - NASA Ames) 

iPSC/860 to amoritize communication time 



Summary H 

0 

Self-consistent plasma simulation on grids composed of 
tetrahedrons, hexahedrons, triangular prisms, and 
pyramids. 
Successful simulation of beam injection and field emission 
in a twisted waveguide. 
Divergence errors controlled by the Marder pseudo-current 
algorithm. 
Simple particle and field boundary conditions. 
Future plans include more boundary condition options 
(periodic, etc.) 
Parallel implementation on the Meiko CS-2 is underway, 
with general procedures for handling parallel particles 
currently undergoing tests. 
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