Influence of radial electric field on Alfven-type instabilities

PDF Version Also Available for Download.

Description

The influence of the large scale radial electric field, E{sub r}{sup (0)} on the frequency of shear-Alfven-type instability is analyzed. A frozen-in-flux constraint and the moderate-{beta} ion gyrokinetic equation are used in the derivation. The analysis indicates that the frequency predicted by a theory with E{sub r}{sup (0)} effect should be Doppler-shifted by k {center_dot} V{sub E} for comparison to the experimentally observed frequency. A specific example of the practical relevance of the result is given regarding possible identification of the edge-localized-mode-associated magnetic activity recently observed in PBX-M tokamak experiment.

Physical Description

11 p.

Creation Information

Hahm, T.S. & Tang, W.M. March 1, 1994.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The influence of the large scale radial electric field, E{sub r}{sup (0)} on the frequency of shear-Alfven-type instability is analyzed. A frozen-in-flux constraint and the moderate-{beta} ion gyrokinetic equation are used in the derivation. The analysis indicates that the frequency predicted by a theory with E{sub r}{sup (0)} effect should be Doppler-shifted by k {center_dot} V{sub E} for comparison to the experimentally observed frequency. A specific example of the practical relevance of the result is given regarding possible identification of the edge-localized-mode-associated magnetic activity recently observed in PBX-M tokamak experiment.

Physical Description

11 p.

Notes

INIS; OSTI as DE94008842

Source

  • Other Information: PBD: Mar 1994

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE94008842
  • Report No.: PPPL--2964
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/142539 | External Link
  • Office of Scientific & Technical Information Report Number: 142539
  • Archival Resource Key: ark:/67531/metadc618381

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 1994

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 15, 2016, 5:33 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hahm, T.S. & Tang, W.M. Influence of radial electric field on Alfven-type instabilities, report, March 1, 1994; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc618381/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.