Development of mixed-conducting ceramics for gas separation applications.

PDF Version Also Available for Download.

Description

Mixed-conducting oxides are used in many applications, including fuel cells, gas separation membranes, sensors, and electrocatalysis. This paper describes mixed-conducting ceramic membranes that are being developed to selectively remove oxygen and hydrogen from gas streams in a nongalvanic mode of operation (i.e., with no electrodes or external power supply). Because of its high combined electronic/ionic conductivity and significant oxygen permeability, the mixed-conducting Sr-Fe-Co oxide (SFC) has been developed for high-purity oxygen separation and/or partial oxidation of methane to synthesis gas, i.e., syngas, a mixture of carbon monoxide and hydrogen. The electronic and ionic conductivities of SFC were found to be ... continued below

Physical Description

9 p.

Creation Information

Balachandran, U. December 2, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Mixed-conducting oxides are used in many applications, including fuel cells, gas separation membranes, sensors, and electrocatalysis. This paper describes mixed-conducting ceramic membranes that are being developed to selectively remove oxygen and hydrogen from gas streams in a nongalvanic mode of operation (i.e., with no electrodes or external power supply). Because of its high combined electronic/ionic conductivity and significant oxygen permeability, the mixed-conducting Sr-Fe-Co oxide (SFC) has been developed for high-purity oxygen separation and/or partial oxidation of methane to synthesis gas, i.e., syngas, a mixture of carbon monoxide and hydrogen. The electronic and ionic conductivities of SFC were found to be comparable in magnitude and are presented as a function of temperature. The oxygen flux through dense SFC tubes during separation of oxygen from air is compared with the oxygen flux during methane conversion. Unlike SFC, in which the ionic and electronic conductivities are nearly equivalent, BaCe{sub 0.80}Y{sub 0.20}O{sub 3} (BCY) exhibits protonic conductivity that is significantly higher than its electronic conductivity. To enhance the electronic conductivity and increase hydrogen permeation, metal powder was combined with the BCY to form a cermet membrane. Nongalvanic permeation of hydrogen through the cermet membrane was demonstrated and characterized as a function of membrane thickness. A sintering aid was developed to avoid interconnected porosity in and improve the mechanical properties of the cermet membrane.

Physical Description

9 p.

Notes

OSTI as DE00010845

Medium: P; Size: 9 pages

Source

  • Materials Research Society 1998 Fall Meeting, Boston, MA (US), 11/30/1998--12/04/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-96660
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10845
  • Archival Resource Key: ark:/67531/metadc618335

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 2, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 7:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Balachandran, U. Development of mixed-conducting ceramics for gas separation applications., article, December 2, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc618335/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.