Phosphate ceramic solidification and stabilization of cesium-containing crystalline silicotitanate resins.

PDF Version Also Available for Download.

Description

This paper reports on the fabrication and testing of magnesium potassium phosphate (MKP)-bonded cesium-loaded crystalline silicotitanate (CST) resins. Typical waste loading of CST resins in the final waste forms was 50 wt.%. Physical and chemical characterization of the MKP materials has shown them to be physically, chemically, and mineralogically stable. Long-term durability studies (using the AN 16.1 standard test) showed a leachability index of {approx}18 for cesium in the phosphate matrix when exposed to deionized water under ambient and elevated temperatures. Leaching of cesium was somewhat higher than in glass waste forms as per PCT and MCC-1 tests. MKP-based final ... continued below

Physical Description

17 p.

Creation Information

Langton, C. A. May 11, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper reports on the fabrication and testing of magnesium potassium phosphate (MKP)-bonded cesium-loaded crystalline silicotitanate (CST) resins. Typical waste loading of CST resins in the final waste forms was 50 wt.%. Physical and chemical characterization of the MKP materials has shown them to be physically, chemically, and mineralogically stable. Long-term durability studies (using the AN 16.1 standard test) showed a leachability index of {approx}18 for cesium in the phosphate matrix when exposed to deionized water under ambient and elevated temperatures. Leaching of cesium was somewhat higher than in glass waste forms as per PCT and MCC-1 tests. MKP-based final waste forms showed no significant weight changes after exposure to aqueous media for {approx}90 days, indicating the highly insoluble nature of the phosphate matrix. In addition, durability of the CST-MKP waste forms was further established by freeze-thaw cycling tests.

Physical Description

17 p.

Notes

INIS; OSTI as DE00011175

Medium: P; Size: 17 pages

Source

  • American Ceramic Society 101st Annual Meeting, Indianapolis, IN (US), 04/25/1999--04/28/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-97897
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11175
  • Archival Resource Key: ark:/67531/metadc618327

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 11, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2017, 3:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 23

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Langton, C. A. Phosphate ceramic solidification and stabilization of cesium-containing crystalline silicotitanate resins., article, May 11, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc618327/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.