Effects of minerals on the pyrolysis of Kern River 650 F{sup +} residuum

PDF Version Also Available for Download.

Description

Kern River 650 F{sup +} residuum (Kern Co, CA) and mixtures of Kern River 650 F{sup +} residuum with solids were examined by micropyrolysis at nominal constant heating rates from 1 to 50 C/min from temperatures of 100 to 700 C to establish evolution behavior, pyrolysate yields, and kinetics of evolution. The profiles for all samples generally exhibited two regimes of evolution: (1) low temperature (due to distillation), and (2) high temperature (due to cracking and distillation). The pyrolysate yields of the residuum alone and residuum with solids exhibited, with increasing sample size, a broad maximum at 0.005 to 0.010 ... continued below

Physical Description

28 p.

Creation Information

Reynolds, J.G. & King, K.J. April 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Kern River 650 F{sup +} residuum (Kern Co, CA) and mixtures of Kern River 650 F{sup +} residuum with solids were examined by micropyrolysis at nominal constant heating rates from 1 to 50 C/min from temperatures of 100 to 700 C to establish evolution behavior, pyrolysate yields, and kinetics of evolution. The profiles for all samples generally exhibited two regimes of evolution: (1) low temperature (due to distillation), and (2) high temperature (due to cracking and distillation). The pyrolysate yields of the residuum alone and residuum with solids exhibited, with increasing sample size, a broad maximum at 0.005 to 0.010 g of {approximately} 1,000 mg pyrolysate/g residuum (relative to Green River oil shale Fischer Assay yield) as well as shifting of distribution from distillation to cracking regime. For kinetic parameters, because much of the low temperature evolving data was due to volatilization and not cracking, determinations were limited mostly to the discrete method. The best fits exhibited very similar parameters for all the samples have principal E{sub discrete} of 50 to 51 kcal/mol (accounting for {approximately}30% of total energy) and A{sub discrete} around 10{sup 12} to 10{sup 13} sec{sup {minus}1}. These results indicate the use of heat carriers, such as alumina or dolomite, in pyrolysis processing of heavy oils may effect the overall yields of the pyrolysate, but will probably not effect the pyrolysis cracking rates.

Physical Description

28 p.

Notes

OSTI as DE96000073

Source

  • 6. international conference on heavy crude and tar sands, Houston, TX (United States), 11-18 Feb 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96000073
  • Report No.: UCRL-JC--120301
  • Report No.: CONF-950202--2
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/113857 | External Link
  • Office of Scientific & Technical Information Report Number: 113857
  • Archival Resource Key: ark:/67531/metadc618283

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 23, 2016, 6:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Reynolds, J.G. & King, K.J. Effects of minerals on the pyrolysis of Kern River 650 F{sup +} residuum, report, April 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc618283/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.