Macroencapsulation of lead and steel SWARF

PDF Version Also Available for Download.

Description

The treatability study to macroencapsulate radioactively contaminated lead and steel swarf (cuttings and/or chips)and chunks, a low level mixed waste, from the dismantlement of excess surplus uranium fuel handling and transfer casks was successful. Macroencapsulation is the land disposal restriction treatment standard for this waste form per 40 CFR 268.42 Table 3. An epoxy-based thermoset system was employed due to cracking failures of other types of thermoset systems. Bench scale tests were performed with a two-part epoxy (resin and hardener) using cast iron chips as a surrogate waste media. A two stage encapsulation process was employed in treating the swarf. ... continued below

Physical Description

17 p.

Creation Information

Zirker, L.; Thiesen, T.; Tyson, D. & Beitel, G. December 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 50 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The treatability study to macroencapsulate radioactively contaminated lead and steel swarf (cuttings and/or chips)and chunks, a low level mixed waste, from the dismantlement of excess surplus uranium fuel handling and transfer casks was successful. Macroencapsulation is the land disposal restriction treatment standard for this waste form per 40 CFR 268.42 Table 3. An epoxy-based thermoset system was employed due to cracking failures of other types of thermoset systems. Bench scale tests were performed with a two-part epoxy (resin and hardener) using cast iron chips as a surrogate waste media. A two stage encapsulation process was employed in treating the swarf. Two liters of epoxy were added to a 2.8{ell} (3 qt) container of swarf under 51K Pa vacuum (-15-inch of Hg) during the first stage of the process. In this stage each individual particle or chip was wetted by epoxy and allowed to harden into an initial monolith. The second stage encapsulated the initial monolith with a secondary layer of epoxy forming a larger final monolith. By evacuating the air from the swarf and epoxy during the initial monolith encapsulation, a higher density (higher swarf to epoxy ratio) was achieved. Tensile and compressive strength tests were performed on samples and without any media (cast iron chips). The coupons were prepared from a series of monoliths featuring various mixtures ratios and vacuum levels. The tensile strength of epoxy without chips averaged 41M Pa (6000 psi) and 1.4M Pa (2000 psi) with cast iron chips. Compression strengths averaged 140M Pa (20,000 psi) without chips and 66.2M Pa (9600 psi) with cast iron chips.

Physical Description

17 p.

Notes

INIS; OSTI as DE96003507

Source

  • 3. American Society for Mechanical Engineers (ASME) biennial mixed waste symposium, Baltimore, MD (United States), 7-11 Aug 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96003507
  • Report No.: INEL--94/00063
  • Report No.: CONF-950877--24
  • Grant Number: AC07-94ID13223
  • Office of Scientific & Technical Information Report Number: 162481
  • Archival Resource Key: ark:/67531/metadc618277

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 24, 2016, 6:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 50

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zirker, L.; Thiesen, T.; Tyson, D. & Beitel, G. Macroencapsulation of lead and steel SWARF, article, December 1, 1995; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc618277/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.