THE α-DECAY PROPERTIES OF 181Pb

K. S. Toth (a), J. C. Batchelder (b), L. F. Conticchio (c), W. B. Walters (c), C. R. Bingham (d), J. D. Richards (d), B. E. Zimmerman (d), C. N. Davids (e), H. Penttilä (e), D. J. Henderson (e), R. Hermann (e), and A. H. Wuosmaa (e).

(a) Oak Ridge National Laboratory, Oak Ridge TN 37831 USA
(b) Louisiana State University Baton Rouge LA 70803 USA
(c) University of Maryland, College Park, MD 20742, USA
(d) University of Tennessee, Knoxville, TN 37996 USA
(e) Argonne National Laboratory, Argonne IL 60439, USA

Following the production of 181Pb in 92Mo irradiations of 90Zr the isotope's α-decay energy was measured to be 7065 (20) keV. This E_α agrees with one previously published value for 181Pb but not with another.

The α-decay energy of 181Pb has been measured as 7211(10) keV \(^1\) and 7044(15) \(^2\). In the first study \(^1\) the isotope was produced in 90Zr bombardments of 94Mo and, after traversing a velocity filter, implanted in a position-sensitive Si detector; no half-life for 181Pb was reported. In the second study \(^2\) the isotope was produced in 40Ca bombardments of 144Sm and transported to a position in front of a Si(Au) surface barrier detector with a fast He-gas-jet capillary system; an estimate of 50 ms was determined for the 181Pb half-life.

Recently we investigated 181Pb α decay at the Argonne National Laboratory ATLAS accelerator facility as part of a survey experiment in which a 1-pnA beam of 400-MeV 92Mo was used to irradiate targets of 89Y, 90,92,94Zr, and 92Mo to examine yields for one- and two-nucleon evaporation products from symmetric cold-fusion reactions. Recoiling nuclei of interest were passed through the Fragment Mass Analyzer \(^3\) and implanted in a double-sided silicon strip detector for α-particle assay.

The accompanying figure shows spectra accumulated with the 90Zr target during two separate runs. In both spectra we observed an α group at 7065 (20) keV which was...
correlated with $A = 181$ recoils and had a half-life of 45 (20) ms. Our new results for 181Pb therefore agree with those of Ref. 2). There was no indication in our 90Zr + 92Mo data of the 7211 (10)-keV α particles seen by Keller et al. 1). The interested reader is referred to the 1993 atomic mass evaluation wherein the input α-decay energies and resultant masses of the light Pb isotopes (including 181Pb) are discussed 4). In the evaluation the 7211-keV E_α rather than the 7044-keV value 2), is used as the 181Pb ground state decay energy. This leads to an apparent pairing energy in 181Pb which is significantly larger than values calculated with two separate formulae. Given the fact that our new measurements agree with the data in Ref. 2) the 181Pb pairing energy deduced in Ref. 4) needs to be reexamined.

Oak Ridge National Laboratory is managed by Lockheed Martin Energy Systems, Inc. for the U.S. Department of Energy under contract No. DE-AC05-84OR21400. Work at the Argonne National Laboratory is supported by the U.S. Department under contract No. W-31-109-ENG-38. This work was also supported by the U.S. Department of Energy under contract Nos. DE-FG05-84ER40159 (LSU), DE-FG05-88ER40418 (UM), and DE-FG05-87ER40361 (UT).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.