NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT T
 ORIGINALLY ISSUED
 June 1943 as
 Advance Confidential Report 3 Fill

WIND-TUNTEL TESTS OF AILERONS AT VARIOUS SPEEDS
I - AILERONS OF 0.20 AIRFOIL CHORD AND TRUE CONTOUR WITH
0.35 AIIERON-CHORD EXITREME BLUNT NOSE BALANCE

ON THE NACA 66,2-216 AIRFOII
By W. Letko, H. G. Denari, and C. Freed

Langley Memorial Aeronautical Laboratory Langley Field, Va.

$\rightarrow A \subset A$

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were presviously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general, distribution.

$$
L-431
$$

MATIOMAS ADVISORY OOMOMTFTI YOR ABROMADTIOS

ADVATCE COHTIDEHTIII RHPORY

TIMP-TUNEHI TESTS OF AITMHOMS AT VARIOUS EPREDS
I - AIIMROKS OF 0.20 AIRTOII GHORD AND THOS CONTOUR WITH

OF THE HACA 66,2-216 AIRPOI工
By T. Latko, H. G. Depaci, and C. Freed

sumary

Hinge-moment, lift, and presaure-distribution measurements were made in the tro-dimensional test eection of the SACA stability tunnel on a bluntminose balance-type aileron on an NACA 66,2-2l6 airfoil at speeds up to 360 miles per hour correaponding to a Mach number of 0.475. The teats vere made primarily to determine the offect of speed on the action of this type of aileron. The balancenose radil of the alleron were varied from 0 to 0.02 of the airfoil ohord and the gep widh was varied from 0.0005 to 0.0107 of the airfoil chord. Tests were also made with the gep sealed.

The variationa in hinge momenta and lift with Mach number, angle of attack, and aileron deflection are given in the form of ourves of section hingemoment coefficients and section lift coefficients plotted againat aileron deflection for the variour conditions tested, together with crosa plota showing the general effect of Mach number. gap width, and balancernose fadii.

The respilts ghow that there was a considerable increane in the atalled range of the aileron with increased spead. Up to the stall, the variation it hingemoment coefficients and lift coefficionta fot the speqd range tested was amall but the variation may be appreciable when atick forces at high opeods are conaidered.

INTRODUCTION

Large increases in the size and speed g of current combat airplanes, in addition to high maneuverability required in combat, have made it necessary to balance almost exactly the hinge moments of ailerons and at the same time to maintain their effectiveness. Although most types of aileron balances in use today operate satisfactorily at low speeds, difficulty', arch as overbalance at high speeds; has been experienced with some existing aileron installatins. This difficulty is apparently caused by the large amount of balance coupled with the changes in hinge moment that result from compressibility effects. Consideration of these problems has made necessary further research on some of the currently used or recently proposed balance arrangements.

The HACA is therefor ie undertaking a study of some of the more promising aileron types at higher Mach numbers than Fere employed in previous developments. This report deals With the section characteristics of a bunt-nose balance type of aileron of 0.20 airfoil chord with a 0.35 aileron balance and of true contour used on an NACA 66.2-216 airfoil. The amount of balance; 0.35 aileron chord, was chosen because, from the data given in reference 1, it was estimated that this amount of balance would give almost complete balance on an airfoil of the NACA 230 series at a low angle of attack.

The section lift coefficient $c q$ and the section hingemoment coefficient cha were measured at various airspeeds up to 360 miles per hour, corresponding to a Mach number of 0.475 . These measurements were taken through an angle-ofeattack range from - 5° to 10° and an aileron deflection range of $\pm 20^{\circ}$. The influence of the gap width between the aileron and wing and the influence of the radii of the projecting corners of the balance were investigated. The data are presented in the form of curves of c and c_{a} plotted against aileron deflection with cross plots to show the effect of the aileron parameters.

SYMBOLS
c) airfoil section lift coefficient
$9_{m_{c} / 4}$ airfoil action pitching moment coefficient about quarter-chord point of airfoil ($\left.\frac{\mathrm{mc} / \mathrm{s}}{\mathrm{qc}}\right)$
$m_{0} / 4$ airfoil section pitching moment about quartercchord
point of airfoil point of airfoil
$h_{\text {自 }}$ aileron section hinge moment
c chord of basic airföil, including aileron
Ca chord of alieron measured from hinge axis beck to trailing edge
q dynamic pigsaure $\left(\frac{1}{2} \rho \nabla^{8}\right)$
V air velocity
ρ mass deriaity of air
α_{0} angle of attack for airfoil -of infinite aspect ratio
δ_{a} aileron deflection with respect to airfoil
y Mach number

APPARATUS AND MODELS

The tests were made in the two-dimenaional test secion of the stability tunnel at airspeeds up to 360 milan per hour. The teat section is rectangular, 2.5 feet wide and 6 feet high.

The modal af. an HACA 66.2-216, $a=1.0$ section mas made of laminated mahogany. It completely spanned the teat section and mas fixed intocircular end disk that were flush with the tunnel walls. The angle of attack of the model pas changed by rotating the end disks. Tablas I and II give the ordinates of the airfoil section and locations of centers of balancernosi radii, respectively. Figure 1 is a photograph of a model mounted in the tunnel.

The aileron of $0.20 c$ and $0.35 c_{a}$ balance and of true contour was made of steel with wooden noze pieces having $0,0.01 \mathrm{c}$, and 0.02 c balance-nose radil. (see fig. 2.) The aileron was supported at the onde by ball bearings monnted in eteel end plates attached to the airfoil.

The aileron deflection was varied and the aileron angle and hinge moments wera measured by a calibrated spring torque balance and sector syatem. Presaure orifices were locatod along the midapan of the wing and aileron and the pressure distribution was recorded photographically. In some cases hinge moments and lift were obtained from the pressure-distribution diagramp.

For some of the tests, the lift was also meagured by an integratiag manometer connected to orifices in the floor and ceiling of the tunnel. The integrating manomoter was calibrated againgt lift obtainod by presalure diatribution.

ris STs

Tests were made with balancemoge radil of $0,0.010$, and $0.02 c$. Fith zero radil only pressure-distribution teste were made. With radil of 0.010 and $0.02 \mathrm{c}, \mathrm{hinge}$ momente wore measured with gap Fidths of $0.0005 \mathrm{c}, 0.0030 \mathrm{c}$, 0.0055 c , and 0.0107 c and also Fith a 0.0056 c gap gealed with a flexible sheet thet extorided from wall to wall. In the tagt in which the 0.02c fadif was used - in addition to the pressure-distribution and hinge-moment: measurementa \rightarrow eection lift was measured by the integrat ing manometer.

Testa for each condition were made at five opoeds Which gave Mach numbers in a range between 0,195 and 0.475. The lowest spead correaponde to a Beypolds number of about 2, 800,000 and the highest speed to a Heynolda number of about 6,700,000. Figure 3 is plot of Reynolds number based on standard atmospheric conditions againat test Mach number. Teats मere made at angles of attack of $-5^{\circ}, 0^{\circ}$, 5°, and 10° with $-2^{\circ}, 2^{\circ}$, and 7. 5° added for the 0.0055 c gap (open and gealod). For each angle of attack feadinga were taken at the following ailefon angles: $0, \pm 2^{\circ}, \pm 5^{\circ}$, $\pm 7^{\circ}, \pm 10^{\circ}, \pm 13^{\circ}, \pm 16^{\circ}, \pm 18^{\circ}$, and $\pm 80^{\circ}$.

The high speads could not be attained at the large angles of attack with large aileron deflections becanse of limited tungel power.

Prennariondstribution record were taken at Mach mather: of 0.195 . 0.358 , and 0.475 for every angle of attack tested. Tor each angie of attack records were made at aileron mangles of $0, \pm 5^{\circ},-7^{\circ}, \pm 10^{\circ}$, and $\pm 16^{\circ}$.

PREOICIOT

Angles of attakwere set to within $\pm 0.1^{0}$ and aileron angles to within $\pm 0.3^{\circ}$. The hinge-moment coefficient d that were measured could be repeated te Within ± 0.003 and the lift coefficients ta within ± 0.01.

Corrections for tunnel-wall effects were not applied to the section hinge-mamont coefficients. The following corrections rare applied to the section lift and section pitohing-momont coofficiants and to the angle of attack:

$$
\begin{gathered}
o_{q}=[1-I(1+2 \beta)] o_{b^{\prime}} \\
c_{m_{c / 4}}=(1-2 \beta Y) c_{m_{c} / 4}{ }^{\prime}+\frac{Y c_{l^{\prime}}}{4} \\
a_{0}=(1+F) \alpha^{\prime}
\end{gathered}
$$

where
$I=\frac{\pi^{g}}{48}\left(\frac{c}{h}\right)^{B}$
h height of tunnel
$\beta=0.304$ (theoretical factor for pal 66,2-216, a $\begin{gathered}\text { airfoil) }\end{gathered}$ =1
al' measured lift coefficient
$c_{m_{c} / 4}{ }^{\prime}$ measured pitching -moment coefficient
α^{\prime} uncorrected or geometric aggie of attack
The values need ares

$$
\begin{gathered}
0_{\mathrm{m} / 4}=0.986 \mathrm{c}_{\mathrm{m} / 4}+0.006 \mathrm{cq} \mathrm{c}^{\prime} \\
\alpha_{0}=1.023 \mathrm{c}^{\prime}
\end{gathered}
$$

Hinge moments : were measured simultaneounly by preasure distribution and by the spring torque balance for a number of varied conditions and the results are shown in figure 4. The variation in the values is probably due to the fact that the spring balance measures the hinge moment on the entire aileron, rhich includes effectac of boundary layer at the tunnel mall and of gapa at the enda of the aileron as well as the offects of any cross flow over the aileron; whereas the pressure digtribution gives the hinge moment at one seation of the aileron and is subject to some orrors in fairing the presaure-distribution diagrame.

RTSULTS AND DISCUSSION

In order that the results for the tests of various model configurations may be more easily found table III gives the figure numbers, the variationg shown on the figure, and the corresponding model configuration. Only part of the data are presented for the 0 and 0.01 c balancemose radi1.

The resulta ghow that for all conditiong the aileron apparently atalled at an angle of deflection that depended on the apeed, the angle of fettack, the gap width, and the balance-nose radil and that the hinge moments increased rapidiy in the atalled range. At the transition point between the atalled and ungtalled range the aileron was observed to oscillate between the gtalled and ungtalled condition. As the repeed increased the ungtallod range of deffections of the aileron generally became amaller. The effect was most.pronounced with. the zero balancernose radii.

Hinge Koment of Ailerou
The aileron section hingemoment coefficients cha plotted againgt aileron deflection 8_{a} are given in figures 5 to 7. The values of $c_{h_{a}}$ given infigure 5 are
from prossure-distribution recörds" (ino óther gatiafactory masamrementa were available); those given in figures 6 and 7 are from apring-balance measurementa (a comparison of resulta obtained by the two methods is given in figure 4). These results shor that for a limited range of aileron deflections and angles of attack the aileron balance was fairyy effective. An average value of the glope of the curve of section hingemoment coefficient plotted againat aileron angle, $\frac{\partial c h_{a}}{\partial \delta_{a}}$, of -0.0057 was obtained from values of ch_{a} at a δ_{a} of $\pm 5^{\circ}$ as compared to a value of -0.011 given by unpublighed data for a 0.20 chord plain eseled aileron on the same wing section. Although the value of $\frac{\partial h_{a}}{\partial \delta_{a}}$ of -0.0057 is reletively large for combat airplanes, the increment reduction in the value of $\frac{\partial c_{h_{a}}}{\partial \delta_{a}}$ is, according to data reported in reference l, about the same as would be obtained for a $0.35 c_{a}$ balance aileron on an NACA 230-8erios section.

For the range of Kach numbera K teated the moat noticeable effect of increasing apeed on the hinge-moment characteristics of the ailerons vas a considerable increase In the stalled fange of the aileron. The general trend of the effect of M on $c_{h_{a}}$ in the ungtalled deflection range is shown by figure 8 to be an increase in c_{a} with increase of K. some of this trend may be due to the change in Reynolds number. Approximate values of peynolda number for any value of M may be obtained fromfigure 3 .

A change in the ungtalled range of the aileron is ghown by figures 6 to 7 to be the principal effect on the hingem noment charactefiatics resulting from changes in balance-nose radii and gap width. An increase in radil from 0 to $0.02 c$ changed the ungtalled range from about $\pm 4^{\circ}$ to abort $\pm 10^{\circ}$ and increased the hinge-moment-coefficient slope. Hor all cases, the aileron with gap sealed had the greateat unatalled range. An increase in tine gap decreased appreciably the unatallad range; the amount of change varied with angle of attack and the effect was uaualy greater for the positive range of aileron deflectiong than for the negative range.

Pigure 9 ehoys that the effect of gap on $c_{h_{a}}$ in the unstalled range is uaually mali. The general variation of Ch_{a} With α_{0} is ghown in iigure 10. Here again the offocts of M, balance-nose radil, and gap are amall.

Lift

The airfoil section lift curves, cq (obtained with the integrating manometer) for a balancennose radii of $0.02 c$ with aileron neutral, are presented in figure 11 and ghow that the slope of the lift curve increases with Wach number. The variation of lift-curve slope fith speed for the various gap widths is given in figure l2 together with a curve showing the theoretical variation. It is believed that closer agreement would have been obtained if the comm pressibility effect on tunnel-wall interference and Reynolds number effectis on the airfoil characteristica had been .taken into account. Figure 12 also shows that the highest glopes were obtaiued rith the gap sealed. Then the gap Fas ungealed, an increase in the sap ridth caused a decrease in the slope except at the highest speed tested where an increase in gap regulted in an increase in the slope.

Figure l's is a plot of section lift coefficient againgt aileron angle. In order to avoid confusion, faired curves have been drann in this figure only through the test points for a Mach number of approximately 0.36 . For lor and medium angles of attack on increage in the spead increases the value of the glope of thege curves $\left(\frac{\partial c l}{\partial \delta_{a}}\right)_{\alpha}$ and the amount of increase varies rith the angle of attack. At high antiles of attack an increase in apeod generally caused a decrease in the value of $\left(\frac{\partial c q}{\partial \delta_{a}}\right)_{\alpha}$.

Figure is also shoms that the value of $\left(\frac{\partial c_{l}}{\partial \delta_{a}}\right)$, for a range of δ_{a} of ± 5, was highest at low and medium angles of attack with the gap sealed and, at high angles of attack, the slope was highest for the 0.005 bc gap. Increases in gap ugnally decreaged the aileron deflection at which the stall occurred and deoreased considerably the effectivenegs of the aileron at large aileron deflections. The loge in
effectivenese due to the gap át large"aillofon deflections тai least at the high apeeds.

The airfoil eection lift and section pitching-moment coefficienta obtained by. presaure distribution.for balancenose radil of 0 and 0.02 c are presented in figure 14. Figure 14(a) shows, as might be expected, that there is iittie change in the iift curve (aileron peutral) with changes in balancernose fadii. Figure 14(b) shows the variation of the airfoil section lift coefficient ci with aileron deflection for the different radif. It is ovident that the aileron Fith $0.02 c$ radii has a much larger effective range than either of the other tro allerons and that the aileron with gero radil is inefficient becanse it loses all its effectiveness at a poitive aileron deflection of 5°.

Variations of airfoil aection lift coefficient cq With Mach number for balance-nose radil of 0.02 c are shown in figure lf for three aileron deflectiong. The general tendency, as expected, is for the lift coefficient to increase with Mach number; part of this increase probably is due to Reynolds number. ht an angle of attack of 10°, hovever, the lift coefficient decreased after a certain value of Mach number was reached as a result of critical speed occurring over the leading edge of the airfoil.

Increasing the gap width from 0.0005 c to 0.01070 generaliy caused a siight decrease in the value of ci. (see fig. 16.) The aileron with 0.02c balance-nose radil used in this teat is eomewhat more effective in producing lift at an angle of attack of 10° than a plain gealed flap of 0.20 c on the ame type airioid at approximately the same leynolds number, as is indicated by the data given in Feference 2.

Control-Porce Criterion

Tho vafiation of $\Delta \mathrm{ch}_{\mathrm{a}} \mathrm{\delta}_{\mathrm{a}}$ with $\Delta \mathrm{c}_{\mathrm{f}}$-is a coptrolforce criterion that takes into account not.only the reduction in Δc_{a} but alao the posaible feduction in $\Delta c i$ (fof a given deflection) that may be caused by the balafer ing device. Therefore, even though $\Delta c h_{a}$ may be reduced conaiderablyं if it is necesaary to move the control surface through a very large angle (docreasing the otick leverage of the ailerong) the product may be increased somewhat to obtain the ames Δc_{z}. The critarion as used herein is strictiy valid only at the instant that the
aileson is defiected. The uge, of this criterion for computing atick forces duringearoflwill give an erropeous indication of these forces because difierences in the rates of variation of hingemoment coefficients with angle of attack ($\partial c_{h} / \partial \alpha$) of the allororis that are being compared are not taken into account.
 various Mach numbers, ghows that the effoct of Mach number on the balance effectiveness is pmall excapt for high alleron deflections. Generally there is a decrease in the range of balance offectiveness with speed. In some cases, however, the effective range increases with amall changes of gpeed but is deoreased tith further fincreases in epeed.

Pigure 18 shows the variation of $\Delta c_{h_{a}} \delta_{a}$ with $\Delta \mathrm{c}$ for the different balancenose radii. The effective liftproducing range is.very emall for the zero radil and is greatast for the 0.02c radil.

Figure 19 ghows the variation of $\Delta c_{h_{a}} \delta_{a}$. With Δc_{q} for the verious gap widtha. For small and negative anglas of attaclc the results were begt with gap sealed but at higher angles the resulte were best with a gap. width of 0.00550 .

A plot to ghow the variation of $\Delta \mathrm{ch}_{\mathrm{a}} \delta_{a}$ Fith Δc_{q} for various angles of attack (fige. 20) has been included as a matter of intorest apd, also, for possible comparisons with other ailefong.

The results of these testa indicate that agreater amonnt of balance than that used in this investigation is neceseary if the ailerons are to give satisfactory hinge moments for use on combat afrplanes. the range of balance effectiveness and the range for which the aileron is effecm tive in praducing roliing momenta could probably be ex tended by an increase ip the balance-riose radil.

For the range of speods tested, inareases in apeed cansed a considerable increase in the atalled range of the aileran and in the ungtalled range there were amall in. reases in the hinge moments: . Higher speeds, however. probably would have more effeot because it is ugually not until higher apeode are ragohed that the lift and drag characteristicis of aiffoils are seriously affected by comm pressibility.

concutsions

The results of the tegta of ailerons of 0.20 airfoil chord and true contour with 0.35 aileron-chord extreme blunt nose balance on the HAOA 66,8-216 airfoil indicate the following general conclueions:

1. Increaging the Mach number up to 0.470 generally causes a small increase of the hingemoment and lift coefm ficients but increases the stalled range of the ailerong conaiderably.
2. An increase of the balance-nose radil from 0 to 0.02 chord increasea the range for which the aileron is effective by about 8° but results in increaged hingemoment coefficients vith little change in lift coefficients in the ungtalled range.
3. An increase of the gap midth increased the hingemoment coefficients slightly vith little change in lift coefficient; however, a coxisiderable increase in the gtalled range of the aileron results. The magnitude of the increage varies with the angle of attack.
4. The amount of balance tested, 0.35 aileron chord. gave no case of complete balance and in some casea the unbalance was relatively large.

Lengley Nemorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics, Langley rield, Va.

1. Purser, Paul Fi., and Toll, Thomas A.: Tind-Tunnel Inveatigation of the Characteristics of Blunt-Noge Allerong on a Tapered Fing. Naca A.R.R.. Feb. 1943.
2. Jacobs, Gastman M., Abbott, Ira H., and Davidson, Milton: Supplement to NACA Advance Confidential Report, Preliminary Low-Drag-Airfoil and Flap Data from Togts at Large Reynolda Fumbers and Lov Turbulence. IACA, (Ioose leaf), Karch 194ス.

TABLE I. - ORDINATES FOR NACA 66,2-216, a $=1.0$ AIRFOIL [Stations and ordinates in percent of wing chord]

Upper surface		Lower surface	
Station	Ordinate	Station	Ordinate
0	1230	9	130
. 4010	1.230 1.484	. 599	-1.130
1.128	1.858	1.372	-1.644
2.362	2.560	2.638	-2.188
4.846	3.604	5.154	-2.972
7.340	4.428	7.660	-3.580
9.838	5.140	10.162	-4.106
14.845	6.276	15.155	-4.930
19.860	7.156	20.140	-5.564
24.879	7.85	25.121	-6.054
29.900	8.366	30.100	-6.422
34.924	8.736	35.076	-6.676
39.949	8.980	40.051	-6.838
4.974	9.092	45.026	-6.902
50.000	9.060	50.000	-6.854
55.025	8.875	54.975	-6.685
60.048	8.496	59.952	-6.354
65.067	7.862	64.933	-5.802
70.081	6.941	69.919	-4.997
75.087	5.860	74.913	-4.070
80.085	4.644	79.915	-3.052
85.075	3.395	84.925	-2.049
90.055	2.103	89.945	-1.069
100.000	-913.	100.000	-. ${ }^{-281}$
L.E. radius: 1.575			

TABLE II. - LOCATION OF CENTERS OF BALANCE-NOSE RADII [Stations and ordinates in percent of wing chord]

Balance-nose radi1	Upper surface		Lower surface	
	Station	Ordinate	Station	Ordinate
0	75.17	5.83	75.00	-4.04
1	75.50	4.75	75.33	-2.96
2	75.87	3.62	75.79	-1.83

$\begin{gathered} \text { Fig } \\ \text { ure } \end{gathered}$	Variation shown	$\begin{gathered} \text { Balance- } \\ \text { nose } \\ \text { radil } \end{gathered}$	Gap width
5	$\left\{\begin{array}{l} \text { Cha against } \delta_{a} \\ \text { (by pressure distribution }) \end{array}\right.$	Oc	$0.0055 c$
6	$\mathrm{Ch}_{\text {a }}$ against δ_{a}	.01c	. 0055 c
7	Cha against C_{a}	.02c	$\begin{cases}(\mathrm{a}) & .0005 c \\ (\mathrm{~b}) & .0030 c \\ (c) & .0055 c \\ (\mathrm{~d}) & .0107 c \\ (\mathrm{e}) & .0055 c \text { (sealed) }\end{cases}$
8	$\mathrm{Cha}_{\text {a }}$ against M	$\begin{cases}(\mathrm{a}) & .01 c \\ (\mathrm{~b}) & .02 c\end{cases}$	$.0055 c$.0055 c (sealed)
9	cha against gap	$\begin{cases}(\mathrm{a}) & .01 \mathrm{c} \\ (\mathrm{b}) & .02 c\end{cases}$	Varies
10	$c^{c} h_{a}$ against a_{0}	$\begin{cases}(\mathrm{a}) & .01 \mathrm{c} \\ (\mathrm{b}) & .02 \mathrm{c}\end{cases}$	$\left\{\begin{array}{l}0.0055 c \\ .0055 c\end{array}\right.$
11	c^{\prime} against a_{0}	.02c	$\left\{\begin{array}{l} .0005 c \\ .0055 c \\ .0107 c \\ .0055 c \text { (sealed) } \end{array}\right.$
12	$\left(\frac{\partial c_{2}}{\partial a}\right)_{0_{a}=0} \text { against } M$	$.02 \mathrm{c}$	$\left\{\begin{array}{l} .0005 c \\ .0055 c \\ .0107 c \\ .0055 c \text { (sealed) } \end{array}\right.$
13	${ }^{c} 2$ against $\mathbf{\sigma}_{\mathbf{a}}$.02c	$\begin{cases}(a) & .0005 c \\ (b) & .0055 c \\ (c) & .0107 c \\ (d) & .0055 c \text { (sealed) }\end{cases}$
14	$\left\{\begin{array}{l} c i \text { and } \mathrm{cm}_{\mathrm{c}} / 4 \text { obtained by } \\ \text { pressure distribution } \\ \text { (a) Variation with } a_{o} \\ \text { (b) Variation with } \delta_{a} \end{array}\right.$	$0 c$.01c .02c	. .0055 c
15	c_{2} against M	.02c	$\begin{cases}.0055 c \\ .0055 c \text { (sealed) }\end{cases}$
16	c_{l} against gap	.02c	Varies
17	$\left\{\begin{array}{cc} \Delta c_{a} \delta_{a} & \text { against } \Delta c_{l} \\ (\text { showing change with } \end{array}\right)$.02c	0.0055 c
18	$\left\{\begin{array}{c} \Delta c_{\theta} \delta_{a} \text { against } \Delta c_{l} \\ \left(\begin{array}{c} \Delta h o w i n g ~ e f f e c t ~ o f ~ b a l a n c e-~ \end{array}\right. \\ \text { nose radii) } \\ (\text { by pressure distribution }) \end{array}\right.$. 02c	$.0055 c$
19	$\left\{\begin{array}{c} \Delta c h_{a} \delta_{a} \text { against } \Delta c l \\ (\text { showing effect of gap }) \end{array}\right.$.02c	Varies
20	$\left\{\begin{array}{c} \Delta c h a \delta_{a} \text { against } \Delta c_{2} \\ \left(\text { showing spread with } a_{0}\right) \end{array}\right.$.02c	0.0055 c

Figure 1.- Airfoil and aileron mounted in tunnel.

Figure 2.- Aileron section of NACA 66, 2-216, $a=1.0$ airfal showing variotions of balance-nose radii and gap.

Figure 3.- Reynolds number for values of test hach number for a 2-foot chord airfoil in the 2.5 -by 6 -foot test section of the stability tunnel.

Aileron section hinge-moment cuefficient obtainel by

Figure 4.- A comparison between spring-balance and pressure-distribution section

Figure 5. - Voriation of atteron section hinge-moment caetficient with oileron
angle (Dy pressure distribution). Bakune-mose madil. $=0$; gop $=0.0055 \mathrm{c}$.

Figure 7. - Variation of aileron section hinge-moment coefticient with aileron ongle. Balance-nose radii $=0.02 c$. (Continued)

Figure 7. - Voriotion of aileron section hinge-moment coefficjent with
aileron angle. Balance-nose rodil $=0.02$. (Concluded)

(a) Balance nose radii $=0.01 \mathrm{c}$.
Gap $=0.0055 \mathrm{c}$
Gap $=0.0055 c$ (sealed)

Figure 8. - Variation of aileron section hinge-moment coefficiewt with Mach number.

(b) Balance nose radii $=0.02 c$.

Gap $=0.0055 \mathrm{c}$

Figure 12.- Variation of lift curve slope Bcl/ Z ? with lach number for varicus gap widths. $\delta_{a}=0$.

(a) Gap $=0.0005 c$.

Figure 13. - Variation of section lift coefficient with alleron angle.
Balance-nose radil $=0.02 c$.
NACA

(b) $G a p=0.0055 \mathrm{c}$.

Figure 13. - Variation of section lift Coefficient with alleron angle.
Balance-nose radil $=0.02 c$. Continued)

Figure 13. - Variation of section lift coefficient with alleron angle
Balance-nose radil = O.O2c. (Continued)

NACA

Figure 13. - Voriation of section lift coorficiont with aileron angle
Balance hose radii $=0.02 c$. (Concluded)

Fig. 14 a

(a) Variation with $\alpha_{0} ; \delta_{a}=00$.

Figure 14(a,b).- Section lift coefficients and section pitchingmoment coefticients obtained by pressure-distribution. $M=0.358 ;$ gap $=0.0055 \mathrm{c}$.

NACA

Section lift coefficient, c_{2}
-4
Balance-nose radii
.-2

Aileron angle, 8_{a}^{4}, deg
(b) Variation with σ_{a}.

Figure 14. - Section lift coefficients and section pitching-mament coefficients obtained by pressure-distribution. $11=0.358$;
gap $=0.0055 \mathrm{c}$. (Concluded).

Figure 18.- Variation of $\Delta c_{a} \delta a$ with $\Delta c \eta$ (by pressure distribution) showing effect oí balance-nose redii. $M=0.358$; gap $=$.

(a) $k=.417$

Pigure $20(6, b)$.- Tariation of control-force criterion wital increment of section litt

