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SUMMARY 

? 

A tind-tunnel investigation has been conducted at subsonic Mach 
numbera up to 0.9 and Reynolds numbers from 1 to 2 tillion to messure the 
root-mean-square variation of the normal forces on 2'7 representative NACA 
airfoil sections. The effects of thickness-chord ratio, camber, location 
of minimum pressure, and leading-edge radius were investigated. The prin- 
cipal statistic&l measures descrfbing the unsteady normal.force as a sta- 
tionary random function of twe were also determined. These measures are 
the spectral densities (sometimes referred to as generalized harmonic 

I analyses) and the probability densities. 

For Mach numbers of 0.75 and above, and lift coefficients below 0.6, 
maxirnm~ thickness was found to have the greatest effect on unsteady 
normal-force characteristics, reductions from 12 to 8 percent applied to 
the symmetrical NACA 65-series profiles diminishing the force as much as 
two-thirds. Decreases below 8 percent for these sections generally pro- 
vided no further improvement, except in the small rsnge of Mach numbers 
between 0.75 snd 0.85 and for lift coefffcients above o .6. Camber up to 
0.4 design lift coefficient had little Wluence on unsteady normal forces. 
A further increase to 0.6 design lift coeffident resulted in decreased 
magnitudes for the X&percent-thick 65-series profiles even at Mach num- 
bers as high as 0.88. The variations with position of minimum pressure 
and leading-edge radius were mostly unimportant, although an abnormally 
large leading-edge radius increased to some extent the mag&tude of 
unsteady normal force. 

Unsteady normal force was found to be a stationary random function 
of time with probability densities that are normally distributed. Repre- 
sentative spectral densfties Wdicated that, for the 6-inch-chord models 
and the Reynolds numbers of the investigatfon, practically all of the 
unsteady normal force at low Mach numbers and high lift coefficients 
occurred st frequencies below 200 cycles per second. At hfgh Mach numbers 
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and high unsteady normal-force coefficients; however, evidence was found 
that a significant proportion existed above this frequency. 

Comparisans of buffet boundaries of four aircraft having straight 
wings, aspect ratios 4 to 6, with results for the corresponding airfoil 
sections show sufficiently go& correlation.at high Mach numbers and low 
lift coefficients to;auggeBt that the wind-tunnel measurements of uneteady 
normal force on the profile are directly related to the buffeting found 
in flight. 

: 

Some of the unsteady force measurements were affected by the airfoil 
structure and spanwise variation of the unsteady forces. The-methods 
derived to account for these effects , which make use of linear filter 
theory, the frequency response function of the airfoil structure, and the 
theory of stationary random time functions, may be useful in analyzing 
aircraft buffeting. 

_.,.. 

INTRODUCTION 

The buffeting of an airplane may be defined as an aerodynamically 
forced vibration of the airplane or of one or more of its componenta. Of 
the various recognized sources of buffeting - tail surfaces immersed in E 
the wake of the wing, separated flow about the fuselage adjacent to loca- 
tione such as the wing-fuselage juncture, and fluctuating lift on the wing __ '; 
associated with separated flow over the wing surface - the fluctuating lift l 

is the least understood. The results reported in references 1 and 2 for :- 
the buffeting of tailless aircraft, moreover, indicate this source to be 
important, particularly at transonic Mach numbers. 

Some wind-tunnel data doncerning fluctuating lift onwings has been 
obtained from the measurement of pressure pulsations on the surfaces of 
airfoil sections reported in references 3 and 4, and from the instantaneous 
measurements of normal force described and discussed in reference 5. The 
present investigation was undertaken to supplement and amplify these 
results.- In particular, it was desired to measure the unsteady normal 
forces of enough airfoil sections to determine the extent of occurrence 
and, in addition, the influence of the principal geometric parameters 
(maximum thickness, camber, position of minimum pressure, leading-edge 
radius) upon the unsteady force magnitudes. 

-- 

The term "unsteady normal force" is defined as the difference between 
the mean and instantaneous values of normal force. It is distinguished 
from buffeting in that buffeting is a structural vibration; unsteady normal 
force is the force causing the vibration. I 

During the course; of the investigation statistical analyses indicated 
recess. Application 

to the unsteady force 
t 
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problem determined the stati'stic+L functions required to define the pro- 
cess completely. The theory also suggested a means for relating unsteady 
normal force to the buffeting of elastic.bodiea. This relationship was 
applied to the airfoil models to obtain an alternative method for measuring 
unsteady normal forces. The successful outcome of this application sug- 
gested a procedure for relating aircraft buffeting to the unsteady normal 
force measured in two-dimensional flow; as a consequence, ft may eventually 
be possible to predict, from wind-tunnel data, the buffeting of an air- 
plane without the necessity of testing dynamically simrlar models. Because 
of its underlying importance, and relative unfamiliarity to aerodynami- 
cists, a short account of the theory of stationary random functions of time 
is presented before discussion of the investigation itself. 

SYMBOLS 

b airfoil span, ft 

section lift coefficient, dimensionless 

% 
* 

cn 
. 

Acn 

design section lift coefficient, dimensionless 

instantaneous section normal-force coefficient, 
dimensionless 

instantaneous section unsteady normal-force coefficient, 
corrected, ACn = on - En, dimensionless 

Acn' instantaneous section unsteady normal-force coefficient, 
uncorrected, dimensionless 

AC nav average of absolute value of section unsteady normal-force 
coefficient referred to the mean value, 
Acnav = jcn - EnI, dimensionless 

- 3 

AC nrms root-mean-*quare-sektion unsteady normal-force coeffi- 
cient, referred to the mean value, calculated from 

Acnav assuming the first-probability density to be 
normal, dimensionless 

root-mean-square value of Aen', ddmensionless 

airfoil chord, ft 
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f 

fA 

fT 

dx,t) 

G(f) spectral density, (time dependent variable)2/cps 

‘&,‘(f) 
GAcp 

cgf) 

j 

K 

k 
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amplitude of output voltage of t&-?.ave *analyzer, v 

instant aneous value of a voltage wave form, v 

frequency, cps 

resonant frequency of airfoil model, cps 

resonant frequency of wind tunnel, cps 

instantaneous normal loading per unit span, 
lb-force 

ft 

spectral density of uncorrected section unsteady normal- 
force &oefficient~ l/cps 

spectral density of the instantaneous pressure coefficient, 
l/CPS 

spectral density of unsteady normal force, (lb-force)2/cps 

J- -1, dimensionless 

constant of proportionality 

elastic constant of the bending of the airfoil model caused 
by the normal force, lb-force/ft 

Mach number, dimensionless 

. 
.- 

. 

-- 

- 

equivalent mass of airfoil model, slugs 

instantaneous normal force on airfoil model, lb-force 

pressure, lb-force/ft2 

autocorrelation function, (tim.e..dependent variable) 
2 

correlation coefficient, di.mensi_onles ct. _ 

spectral density of uncorrected section unsteady normal- 
force.coefficient..normaLi.zed.with respect to correspondfng 
mean-square value of Acn', dimensionless 

tfme interval over which the average value of a function is 
computed, set -*- - / .-, -~ 

. 

- - 

M 

m 

N 

P 

R 

r 

cf 
'ACn' u 0 
T 
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W 

wa 

time, set 

free-stream velocity, ft/sec 

probability density of a stationary random function of time, 
dimensionless 

distance along the airfoil span, ft 

frequency response function, dimensionless 

time dependent variable of a stationary random function of time 

variable of integration 

section angle of attack, deg 

velocity demping coefficient of atifoil model, 
lb-force 

ft/sec 

critical velocity damping coefficient of airfoil model, 
lb-force 

ft/sec 

deflection of aIrfoil model at midspan caused by the normal 
force, ft 

base of natural logarithms, dimensionless 

integral scale of correlation of normal loading per unit span, 

s 

co 
A= r(x)dx, ft 

0 

noise factor, a measure of the extraneous unsteady normal-force 
coefficient subtracted from Aen' to obtain Acn, dimension- 
less 

time interval between two values of a stationary random function 
of time, set 

frequency, used as a variable of integration, cps 

angular frequency, radians/see 

undamped natural angular frequency of the airfoil models, 
radians/set 



6 RACA RM A55CO2 

Superscripts 

y(t) average with respect to time of a stationary time-dependent 

variable,- = lim $ 
s 

T 
y(t)dt 

T-4a 0 

Subscripts 

A 

P 

R 

S 

T 

TC 

W 

i 

0 

airfoil 

pressure cell 

resonance compensating amplifier 

strain gage 

wind tunnel 

thermocouple meter 

wave analyzer 

input (except when used as cz 
1) 

output (except when used as' a~> 

_ . 

.- _ --- ._. 

L 

STATIONARY RANDOM F'UNCTIOR-SCF TIME- 

.- - -,_ 
A thorough understanding of the principles underlying the techniques 

developed for this project, and of many of the results obtained, depends 
upon a Imowledge of the principles of the theory of stationary randam _ 
processes. This theory has been employed extensIvel,y in the study of the 
effects of noise in communication networks, and in servomechanism theory 
(refs. 6 to 8). It has been found to be directly applicable to the inves- 
tigation of unsteady normal forces on airfoil sections as well. The chief 
aspects of this theory therefore will be briefly recounted, emphasis being 
placed upon an orderly development from basic principles. An effort will 
also be made to explain the physical significance of the main concepta; 
and, further to impart a feeling for the subject, the relationships most 
frequently used in practice till be distinguished from those which are . 
primarily of theoretical interest. The discussion will be confined to 
stationary random functions of time. A stationary random function of time _ 



. 

ie not the 8Sme thing as a stationary random process. The distinction 
between the two, however, and the relation of one to the other (See 
refs. 7 and 8) involve the use of the ergodic hypotheeis and other con- 
cepts, avoided here for the Bake of simplification. 

For the purpose of thfs report a random function of time is conBidered 
to be a single-valued function which varies in Buch a manner that no 
knowledge of previous values, however extensive or complete, is sufficient 
to predict any future value with certainty. Such a random function ie 
stationary if the statistical quantities defining it are invariant with 
time and, hence, do not depend upon the origin selected for time measure- 
ments. 

The fundamental quantities defining a stationary random function of 
tfme are the probability densities. For any stationary random function 
of time, y(t), such aa the one shown in part (a) of figure 1, it is pos- 
Bible to plot a histogram (fig. l(b)) illustrating the proportion of total 
time the instantaneous amplitude ILes between 0 and Ay, between ay and 
Z!Ay, between 2Ay and 3hg, etc. The choice of the interval fLy is arbi- 
trary; allow it to approach zero. In the limit the discontinuous stepped 
curve of figure l(b) will then approach the continuous curve of figure l(c). 
The function represented by this continuous curve ie the first probability 
density. It is a function of y only, and is not dependent upon time. 
&noting thiB function aB W,(y), W,(yn)hy represents the proportion of 
time the amplitude of y(t) lies in the interval between yn and yn + 4. 
It also represents - and it fs mainly for thiB reason that the concept 
is important - the probability of finding a value at any time t lying 
in such an interval. 

In a stiilar manner, one may conceive of the joint probability of 
finding a pair of values of y at tfmes t and t + T in the intervals 
(yk, yk +&k) and (yt, yz + L&x), Z'eBpeCtiVely. ThfS probability Will 
be equal to the product of the two intervals and the second probabiliw 
density; eXpreSBed symbolically it iB &(yk, yz, T)&Ly,. For a sta- 
tionary random funktion of time this probabiMty density lflrewise is not 
a function of time t, although it is dependent upon the time interval, T. 
Inasmuch as it is & function of the three independent variables, yk, yt, 
and T, its graphic representatfon would require, in the general case, a 
space of four dimensions. 

. 

It is possible to continue in this fashion. One may thus obtain the 
third probability density, w,(yk, yzP ym, TV, TV), representing the joint 
probability of finding a triple of values of y at times t, t + TV, and 
t + T2 in -the intervals (Yk, & + &k), (Yz, Yz + &I> 9 and (Ym, Ym + nYm), 
respectively. For a stationary random function of time this quantity 
likewise is independent of ttie. Mension to the.fourth and higher 
probability densities is obvious. 
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Since the firstand second probability denalties provide most of the '. 
information useful in applfcations, nothing further will be said concern- 
ing those of higher .order, other than to emphasize two facts: (a> for * 
any stationary random function of time, the probability densitiee f'urnish 
complete quantitative information, and may therefore be considered as 
defining the function, and (b) from the probability density of any order, 
all those of lower order may be derfved (see refs. 7 and 8); for example, 

Although the probability densities are the basic quantities defining 
a stationary random function of time and provide the foundation for the 
theoretical development of the subject, they are not extensively used in 
practice. Certain auxiliary variab.les derived from them are used instead. 
The more important of these are the mean value, the mean square, the 
aUtOCOrrelatiOn fklctiQ?& Ed t?l.e.epeCtral density. They are obtained from 
the probability densities by assuming that time averages are equal to the 
statistical averages furnished by the probability densities; namely, 

- 

-slim h 
s 

T 00 
Y y(t)dt = 

s 
Y WL(YbY (2) 

T-+a, 0 -a0 

y(t)y(t + 7) = lim + 
s 

T 
Y(t)Y(t + T)dt 

I+- o 
(34 

A little reflection~w3.11 BhOw that these relationships are plausible; a 
more sophisticated line of reasoning, developed from-fundamental considera- 
tions purposely avoided here, will be found in references 7 and 8. 

Proceeding on this basis, one obtains immediately from the first 
probability densfty the mean values: 

o= 
s 

m 
Y WdYMY = 1, 

-a0 

. 
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(6) 

(7) 

Also, the autocorrelation function, defined as 

N-r) = y(t>y(t + T> (8) 

comes directly from the second probability densFty by uBe of equations (3). 
Last of all, from the Wiener-Khintchine theorem, the spectral density is 
defined in terms of the autocorrelation function: 

s 

CD 

G(f) 3 4 R(T)coB 2dr dT (9) 
,O 

The significance of the autocorrelation function may be understood 
from consideration of the defUing equation 3(a). If one imagines two 
CurveB y(t) and y(t + T=) - the latter curve being derived from the former 
by shifting it -rl time units to the left - and computee the average 
value of the product of the two curveB over a time T, which in the limit 
approaches infinity, one value, R(T~), will have been calculated for the 
autocorrelation function. Repetition of this procedure for other values 
of T determines the function. It is apparent that the result (i.e., the 
autocorrelation function) is independent of t-e, being dependent only on 
the time interval, T. 

A further underetsnding of this function is provided by a comparison 
with the correlation coefficient, r, used fn probability theory and defined 
by the following equation for any two variables x, z: 

if 
x = Yb> 

2 = y(t + 7) 
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then 
x2 = [y(t)]2 = y2 
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22 = [y(t •F T)12 = [y(t)j2 = i= 

r = Y(t)Y(t + 7) 
F 

’ R(T) r=- 

F 
(11) 

It is thus apparent that, since y2 is independent of time, the 
quantity g(t)y(t + T) is a direct measure of the correlation coeffi- 
cient r of the two WXITiableB y(t) and y(t + T); hence, the source of 
the term "correlation" in "autocorrelation function." 

-. 

An interpretation of the spectral density can be derived from the 
defining equation (g), which, in effect, states it to be the cosine trsns- 
formation of the autocorrelation function, Inasmuch as this latter func- .,..- 
tion is even, the Fourier integral theorem may be used to establish the 
inverse relationshfp _. 

c 

s 

00 
R(T) = G(f)cos 2dT df (J-2) 

0 

For 7 = 0, there is obtained 

. 

.a0 
R(0) = J G(f)df 

0 

and from the definition of R(T) (eq. (8)) 

R(O) = YWYW = F 

hence . . . -- .-I .L .._I. --.--- -_--- , ---_,- I, 1 . . -,. ._ .._I_ 

s 

03 
G(f)df = F (13) 

0 . 
and 

y2= lim [G(O)Af + G(f,)df t G(f2)Af+ . . . ] Y 
nr jo 
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4 

The spectral density therefore represents the spectrum (or frequency 
content) of the mean square value of the time-dependent variable, y. If 
one considers y to be composed of-an infinite number of infinitesfmally 
small, time-dependent sinusoidal waves, the frequencies of which are con- 
tinuously distributed from zero to infinity (i.e., all frequencies are 
present), then the'spectral deneity represent.B the relative magnitudes of 
the sqUarea of the amplitudes of these infinitesimally sti 8inUBOidS. 
This interpretation cloeely parallels that of the Fourier transform of a 
transient function, which also decomposes a function of time into a fre- 
quency spectrum.l 

The central tiportance of the spectral density lies in the fact that 
not only does it furnish valuable informatfon in itself, but &LB0 most of 
the other useful quantfties can be calculated from it. It has already 
been shown (eqs. (=I and (13)) h ow the autocorrelation function and mean- 
BqUare value can be obtained from the spectral density. Another applica- 
tion, often used in the present investfgation, is the relation between the 
spectral densities of the Input and output of a linear filter2 (see 
ref. 8): 

Go(f) = IY(2Klf) rGi(f) 

where Y(2Jcjf) is the complex frequency-response function of the filter 
defined and discussed in reference 8. During the courBe of the investiga- 
tion it W&B experimentally observed that the airfoils behaved aB linear 
mechanical filters. Since the impreeaed aerodynemic forces were EtatiOnaI'y 
random functions of tfme, the experimental (or analog) solution of eqUa- 
tfon (14) afforded one means of measuring both the instantaneous normal 
force and the corresponding spectral denafty. 

This variable also furnishes the mean-square value of dy/dt, or of 
any higher derivative: 

lit is not surprising, therefore, to find that G(f) can be expressed 
in terms of the Fourier transform of y(t). This approach is used in 
references 7 and 8. 

2The term "linear filter" is used in the broad sense to designate any 
frequency sensitive device - electrical, mechanical, acoustical, etc. - 
the output of which is related to the fnput by a linear differential 
equation with constant coefficiente. It consequently is a device which 
(a) responds to a sinlasoidal input in such a fashion that the ratio of 
the aslplitUdeB of Output to input is a Function only of the frequency 
(together with the physical constants of the filter), (b) haB physical 
constants which are inmiant with tjme, and (c) yields an output come- 
Bponding to the sum of any number of inputs which is equal to the sum of 
the outputa corresponding to each inditidual fnput (i.e., conforms to the 
principle of linear sumsition). 
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($J = lrn (2Yrfj2%y(f)df (151 . 

a relation which may be established with the aid of equation (14). Set 

z(t) = s 
Then 7, the quantity desired, is: 

This brief sketch of the theory of a stationary random function of 
time may be summarized in the followingmanner. First, the basic variables 
from which the mathematical rel+tionsh$ps are developed_are the proba- -~ 

:r---- 
bility densities, _ -. a knowledge of which‘is both~suf%&e&and necessary 
to define the functign cmletely. Second, the- principal tool required in 
this development is the hypothesis that time averages are equal to statis- 
tical averages. Third, the most useful quantities:in practice are ordI- 
narily not the probability densities; but the-&<tiTvalue, the mean sq&e, 
the spectral density, the autocorrelation function, and others, all of 
which (except the mean value) can be computed directly from the spectral 
density. Fourth, for any lfnear filter-there .exists.a.s_imple relationship _.--_. 
between the spectral density of the input and the output. 

s 

00 
P G,( f)df 

0 

= 
s 

m( 2cpGywdf (15) - 
0 

One additional observation should be made. If the first probability 
density is normally distributed, that is, is -of &he form 

. 
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then a knowledge of it, together.tith the autocorrelation function, is 
sufficient to obtain the second and all higher probability densities, 
which also are normally distributed. The stationary random function of 
time is therefore defined completely. Furthermore, when such a signal is 
transmitted through a linear filter, the probability densities of the out- 
put signal likewise are normally distributed, and may consequently be 
calculated by use of the foregoing equatfons. 

APPARATUS AND INSTRUMEECATION 

Tunnel, Models, and Instrumentation for 
Steady Force Measurements 

This investigation was conducted in the Ames I- by 3-l/2-foot high- 
speed wind tunnel, which is a two-dimensional flow tunnel having a test 
section of the dimensions indicated. The two-dimensional airfoil models, 
of 6-inch and X&inch chord, were constructed of solid aluminum alloy and 
mounted in the tunnel to span completely the l-foot dimension of the test 
section (fig. 2). Contoured sponge-rubber gaskets were compressed between 
the model ends and the tunnel walls to prevent end leakage. 

Static lift forces were measured by integrating the pressure reactions 
on the tunnel floor and ceiling, produced by the forces on the airfoil, in 
a manner similar to that described in reference 9. The pressure fluctua- 
tions at the orifices arising from unsteady lift forces were small and had 
no perceptible effect on the static values. Drag forces, used for Mach 
number corrections, were determined from wake survey measurements made 
with a rake of total head tubes. Angle of attack was measured to the near- 
est O.@O. 

Instrumentation for Unsteady Normal-Force Measurements 

Two separate sets of instrumentation, each based upon a different 
principle, were developed to measure the instantaneous airfoil normal force. 
The first unit - the pressure-cell equipment - integrated the inatantane- 
ous pressure distribution around the profile. The second unit - the 
strain-gage equipment - measured the instantaneous normal-force re.a.c-!Xon .- -- 
of the model itself. +.J &,l. bratee 

Pressure-cell equipment.- The general arrangement and some of the 
details of the pressure-cell equipment are shown in figures 2 to 5. This 
equipment consisted of a group of capacitance-type pressure cells mounted 
in one wall of the tunnel adjacent to the model surface, as shown in 
figures.2 and 3. The output of the cells was combined electrically to 
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obtain an integrated signal proportional to the Instantaneous normal force. 3 
Twenty-two pressure cells disposed in two lines of eleven cells each . 
(fig. 3) were employed. Two different cell arrangements were utilized - I 
straight line and curvilinear. The straight-line arrangement was better 
adapted to accommodate the-variety of profiles tested, and consequently 
supplied the majority of the data reported. 

A cross-sectional view of a pressure cell showing the main features 
and over-all dimensions is presented-in-figure 4. A complete description 
of the cell and soBelnformation concerning the methods of fabrication 
may be found in reference 10. As may-be ~seen~from~the figure, the dia- 
phragm forms one plate of a c_apacitpr,.and the sfindle, the--other. In .- .-LL-- 
operation, the diaphragm deflects under pressure, thus changing the capa- 
citance by an amount proportional to the pressure imposed. .The rear face 
of the diaphragm was vented to test&section static pressure for a known 
reference. -- 

The cells were statically calibrated, after installation in test posi- 
tion, to fO.l inch of water for a calibration range of &60 inches of water. 
Repetition of the calfbration from time to time showed the cells to be 
very stable, no significant drift from any source, including temperature, 
being detected during the course of the investigation. The cell resonant 
frequency was high enough - approximately 25,000 cycles per second, or 20 
times the highest aerodynamic component - to have no influence on the ,- 
results. The sensitivity of each cell was kept within 5 percent of the 
average value of the group. , ;-- 

Power was supplf>d to the cells at'100 kilocycles per second and 50 e 
volts (see fig, 5). This carrier wave was modulated by the change in cell 
capacitances caused by the variation-of pressure on the diaphragms; after 
amplification it was demodulated, filtered to reject all frequencies above 
3000 cycles per second, and measured with standard laboratory indicating 
instruments capacitor-coupled to reject the direct-current component. A 
highly damped, average-reading, vacuum-tube voltmeter indicated the average 
unsteady normal force, and a thermocouple.meter indicated the root mean 
square. 

The side-wall location of the pressure-5eXs-for the measurement of 
-. I -unsteady normal forces has no precedent; 

i 

4.. ?,\ 
-1 

it was chosenl&gely because of 
the mechanical difficulties inherent in any other arrangement. The results 
reported in reference 11, together with calculations based upon potent1a.l 

+\ 

theory, however, suggested that approximately 90 percent of the static 
normal force would be measured. To verify this conclusion a comparison 
was ude between the static normal force, measured by the pressure cells, 
and the static lift force, measured with the conventional wind-tunnel 
instrumentatfon, for a few models over the range of Mach numbers and angle8 - 
of attack of interest. A typical result is summarized in figure 6 which -- 
shows several loci, on the Mach number and lift-coefficient plane, for 

(,’ 5 y(I’tc f$\ - 
-I 

y.%F fi //> & e . 
pg+/ f-&/f . 

I%% /$?A JdL k 

,r(./c Q “-=-+ .y i “7 *f*k 

e?wAf- 7%* C7,&..,~ &+ &*d l It *A/s’ . $3 4 
&0 &G-.~;rur<~.. ~Ydk~ -i4l &W&f &, &: #A’;.:- * .67 -@-ii 
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r- _- which the ratio of static normal force to static lift force Is constant. 
Using this figure, it is possible to estimate immediately, for any com- 
bination of Mach number and lift coefficient, the proportfon of normal 
force measured by the pressure cells. The area in whidh unsteady normal- 
force coefficient exceeds O.pO5, the smallest magnitude reported in the 
ensuing results, is also shown. Comparison of this region with the loci 
demonstrates that, in the region of unsteady normal forces, the expecta- 
tion of measuring 90 percent of the static normal force was approximately 
fulfilled. 

A direct parallel cannot, of course, be drawn between results obtained 
for steady and unsteady normal force. The influence of the tunnel-wall 
boundary layer and the measurement of preasures in a nonisotropic turbulent- 
flow stream perpendicular to the direction of the desired component would 
be expected to exert a greater influence upon the unsteady results than on 
the steady onea. The realization of these difficulties, in fact, and the 
desire to appraise these and other effects was one of the major factors 
motivating the development of an alternative method of measurement. For 
reasons dfscussed further on, however, the pressure-cell arrangement was 
considered adequate for investigation of unsteady normal-force trends with 
airfoil geometry. 

t 
Strain-gage equipment.- The measurement of unsteady normal force with 

the strain-gage equipment, in essence, consisted of measuring the instan- 
taneous vertical deflection of the airfoil at midspan by use of a strain 
gage, and of computing the imposed force causing this displacement from 
the differential equation describing the motion. To perform the required 
computations readily, an analog computer (termed a '%esonance compensating 
amplifier"), operatLng directly on the strain-gage signal and providing 
the unsteady normal force continuously during testing, was developed. The 
root-mean-square value of the output of the resonance compensatFng ampli- 
fler was measured with a thermocouple meter. 

The theory underlyfng the strain-gage technique, schematfcally 
illustrated in figure 7, is dependent upon the experimentally eatablished 
fact that the airfoil models, when subjected to unsteady aerodynamic 
forces, behave very nearly as simply supported beams vibrating Fn the 
fundamental mode. The differential equation descrfptLve of this system 
(derived in ref. 12) is: 

d8 d28 Ni=J&+Ydt+rn- 
dt2 (16) 

This equation is more suitable for the present investigation if the 
dependent variable 8 is replaced by an equivalent normal force. Define 
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6= + No 

Substituting equation (18) in equation (16): 

Ni 
y dNo =No+E-+ mdqo -- 

k dt2 

k -3 m wn2 

Y 2 Y 
-=Gr, k 

27% Ni = No + - - 
0, 7c dt 

; 1 d2No 
yl' dt2 
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(18) 

(19) 

Where No, according--to the defining equation (17), is the static normal 
force required to produce the displacement 6. The quantity No may 
therefore be taken as the output normal force corresponding to the input 
normal force N-l for the system described by equation (16). Since equa- 
tion (16) is a linear-differential equation with constant coefficients; 
the airfoil may be regarded as a linear mechanical filter, having input 
Ni and output No. Accordingly, by ap@litiTation ‘ofe@ia‘tion (lb), 

%iotf) = )yA(jw) [ 2%i(f) (20) 

If the amplitude of the frequency-response function-of the resonance 

compensating amplifier, IY~(jw)l, is the reciprocal of the amplitude of 
the frequency-response function of the airfoil, lYA(j~)l, that fs, if 

IYR(j4f = 
1 

(21) 
~yA(hJ) i 

the mean-square value of the output of the resonance compensating ampli- 
fier will be directly proportionalto the mean-square value of the input 
normal force. From equation (13): 

w 

[q(t)]” = e$ = &df>df 

- 
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GA(f) 
(k(f) = K= lyA(j# 

GA(f) = Iy&W)12$(&f) 

s 

Co 
eR2 = KL2 

0 
C+$f)df 

T 

This derivation assumes nothlng about the effect of the resonance 
compensating amplifier on the phase relationships of the input and output 
Signal. Consequently, if mean-sqmre values are the only results required, 
it is not necessary to preserve phases, although the resonance compensat- 
ing amplifier does so. 

The amplitude of the frequency response function of the amplifier, 
obtained directly from the differential equation (19) by taking the Fourier 
transform of both sides, is 

= 1 + c $- jw + --& (jw)“l I 
C 

d 

The strain-gage bridge used to measure airfoil deflection consisted 
of four active legs, connected to minimize thermal effects, and mounted 
as indicated in figure 2 in shallow pockets machined in the airfoil surface. 
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The bridge was located at the chordwise position of maximum thickness at 
the midspan station, and the individual gages were oriented to msximize 
the signal resulting from lateral bending in the ffrst mode. c 

The resonance- Compensating amplifier performed the computations indi- 
cated by the right-hand side of equation (19). It consisted of an ampli- 
fier follawed by 2 units, each composed of &differentiating circuit plus 
an amplifier. The outputs-of the first tiplifier-6&d the two following 
units, after passing through attenuators, were combined in a summing cir- 
cuit, the output of titich represented the Lnstantaneous unsteady normal 
force . The attenuators were used to adjust the coefficients of the time 
dependent terms on the right-hand side of equaticn(19) to their proper 
relative magnitudes. A filter in the circtit_ahead of the resonance can- 
pensating amplifier limited the band tidth of the strain-gage signal to 
frequencies between 10 and 600 cycles per second, a. range determined ade- 
quate by inspection of typical unsteady-normal-force spectral-density 
curves. The mean-ec@re value of the unsteady normal force was indicated 
by the thermocouple meter. -. 

-. 

_. 
Three series--of tests were made to determine the extent to which the 

airfoil obeyed the relationship (lg), that is, constituted a linear mechan- 
ical filter: (a) dead -weight calibration6 to determine linearity of 
deflection and of strain-gage output with load, (b) impact loading to c 
measure ltiearity of velocfty damping and conformance of No with the 
transient solution of equation (lg), and (c) comparfson of the calculated .- 

value of resonant frequency with that measured during free vibration, and -, 
with the resonant frequency existing during tunnel operation. 

From the first group of tests it-w-a6 determined that the strain gage 
versus load curve wa6 Mnear within 1 percent and that the deflection was 
directly proportional to the load to the nearest 0.0001 inch, the limit 
of resolution of the measuring instrument. 

The proportionality constant of velocity damping was more variable, 
in the worst case departing as much aa 10 percent from the selected value, 
a result of nonlinear effects inherent in the complete eystem. However, 
since the contribution to the total unsteady force arising from the damping 
W&B lese than 5 percent, this relatively large percentage error influenced 
the net result to a very small degree. Examination of the recorded oscil- 
loscope traces of the-transient motion and comparison with the exponen- 
tially damped sine-w%.Ve &alculated from equation (19) showed satisfactory 
agreement in all other. respects. 

The resonance compensating amplifier uaa tested by comparing observed 
values of gain at various frequencies with the corresponding quantftiee 
calculated from equatxon (22). As may be seen from figure 8, the agree- 

w 

ment was excellent throughout the frequency range of interest. 
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Another test also was made. Calculated values of the spectral den- 
sity of unsteady normal force (obtained by applying eqs. (20) and (22) to 
the spectral density of the strain-gage signal) were compared with corre- 
sponding values measured tith the resonance compensating amplifier for air- 
foils at various combinations of Mach number and angle of attack. Results 
of one such experiment are shown ti figure 9. While the agreement is not 
so good as was achieved by the direct comparison of the preceding test, 
it is considered satisfactory. Most of the discrepancy is thought to 
result from the inability to maintain wind-tunnel conditions completely 
constant for the period remed to record the data. 

Auxiliary Fnstruments.- Certain'auxiliary instruments were employed 
in conjunction with the measurement of unsteady normal forces. An assem- 
bly consisting of a narrow band pass (4.64 cps) wave analyzer, whfch auto- 
matically swept through the frequency range 'at a slow rate,.and which drove 
a recording potentiometer , was used to obtain the continuous spectra.from 
which spectral densities were computed. In addition, a pair of capacftance- 
type pressure cells L identical to those already described - was installed 
in the floor and ceUng of the tind tunnel as shown in figure 2. The 
signal from these cells was monitored to determine the onset of wind-tunnel 
resonance. 

TESTS 

Test Variables 

Twenty-seven profiles, listed in table I, were selected to provide a 
variation of maximum thickness from 4- to XLpercent chord, of camber from 
0 to 0.6 design lift coefficient, of position of minimum pressure from 
30- to 60-percent chord, and of leading edge radius from 0- to 1.5-percent 
chord. These profiles were tested through the Mach number range between 
0.5 and 0.9 and at lift coefficients generally extending from zero to maxi- 
mum. Maximrrm lift, however, was not obtained at the highest Mach numbers 
because of choked flow. The Reynolds numbers of the tests are plotted as 
a function of Mach number for 6-tich-chord models in figure 10. Inaddi- 
tion, Reynolds number was varied in two cases by doubling the chord of the 
model. 

Test Procedure 

Comparative results for the two different methods of measuring 
unsteady normal force indicated that, although results obtained with the 
strain-gage fnstrumentation were considered the more reliable, data 
obtained with the pressure cells would be suitable for studying trends tith 
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geometry. Inasmuch as the latter arrangement was better sufted for test- 
ing large numbers of profiles, it was adopted, and strain-gage measure- 
ments were made for a few airfoil sections for comparison. An account of 
these comparative measurements may be found in Appendix A. 

-5 
-. 

i 

At each test point the signal from the floor and ceiling cells was 
recorded to indicate the effect of tunnel reSonanCe.~ A subsidiary-investi- - 
gatfon conducted to appraise these results demonstrated that, while reso- 
nance existed, its effects were-small and could be ignored. The details 
of this work are recoiurted in Appendix B, in which also is discussed the 
influence of airfoil .resonance. -This latter phenomenon likewise was 
decided to be of no importance. 

- 

The procedure for using the pressure-cell equipment was straightfor- 
ward as, for the most part, was that entailed in the use of the strain- 
gage equipment. For the-latter Instrumentation,. however,-it was-necesear;, 
to adjust the resonance compensating amplifier properly to account for the 
inertial, damping, and spring forces of each airfoil model. The method 
for doing so was established by noting from..equat-ion (lgrthat the adjust- 
ment depended only upon the airfoil resonant fi;ecj$ency '~jn, and the- d&i-&n@; 
ratio 

Y/Y, l 
Both of these quantitfes were measured with the tunnel oper- 

ating at the test conditions for which the aerodynamic data were obtained. 
The resonant amplitude was suffTcientl:r-pronounced to permit direct reading 
of the frequency from the uncompensated strain-gage signal. The damping G 
ratio was computed from the frequency spectrum of the uncompensated atrain- 
gage signal; its determination vaielependent upon the fact that at reso- 
nant frequency, for the low damping ratios (0.02 to 0.04) invariably I 
present, the ratio of the amplitudes of the' compensated and uncompensated 
strain-gage signal is.practically equal to 27/7c. The latter amplitude 
was read directly from the frequency spectrum; that for the former was 
obtained by fairing a curve for the estimated value of the compensated 
strain-gage signal through the point of resonant frequency. It further 
turned out in practice that the damping ratios were so low that the corre- 
sponding adjustment was not at all critical. For thfs reason, after 
experience had demonstrated that 0.04 damping ratio was not likely to be 
exceeded, this value was used throughout the tivestigation. 

Reduction of Data 

Root-mean-square values of-the unsteady normaliforce coefficients -- 
were obtatied by two different methods. Most of the pressure-cell results 
were calculated from the average values indicated by the vacuum-tube volt- 
meter, using the theoretical ratio 4s = 1.253, of root mean square to 
average for-a normally diatributed probability- density. Experimental data 
confirming the use of this ratio are presented during discussion of the 
statistical aspects -of the data in the Results and Discussion section. 
The strain-gage results, on the other hand, as well-as all comparative 

.. -. 
.- 
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pressure-cell data, were-observed directly with a thermocouple meter, 
which provided correct root-mean-square values for all signals. 

21 

Some corrections were applied to the observed data. The lift coeffi- 
.cients and the free-stream Mach number were corrected for tunnel-wall 
effects by the methods of reference 13. Unsteady normal-force coefficients 
at all Mach numbers were corrected to remove the small amounts (tare 
values) of unsteady force invariably present at Mach numbers below 0.5 and 
lift coefficients near 0. These tares are thought to result from the tur- 
bulence inherent in the wind-tunnel air stream, as well as from that pre- 
sent in the tunnel-wall boundary layer. The procedures for making the 
corrections are described in Appendix C. 

Spectral densitfes were computed from the wave snalyzer results with 
the aid of the equation: 

(23) 

where YW(2njq) is the frequency-response function of the wave analyzer, 
and 2fo is the band pass width of the analyzer. The numerical value of 

s 

+f0 
IY&Wd [=W (4.64 cps) was obtained by mechanical integration 

‘f0 

of an experimental curve. Unless otherwise noted, the spectral-density 
plots of unsteady normal-force coefficients were calculated from the spec- 
tral densities of the output force, 
with equations (15) and (22). 

No, by use of this equation, together 
Correct fairing of the curves between pofnts 

was determined from inspection of the continuously recorded frequency 
data. 

The relationship (23) was derived in the following manner (see fig. 7). 
For any particular frequency setting, f,, of the wave analyzer, 

s 
+fo Cqq(frH2 = ‘+a@, + ddcp 

‘f, 

where cp ia the frequency dependent variable of the output spectra. 
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@&)I” = G2 s,“” IY~C2gj(f~ + cp)l 1” %(fl + cph (24) 
0 

It is a characteristic of the wave analyzer employed that -- IY@df, t dl[ 
is the same for all frequency settings, therefore 

IYWC2flcj(f, + cp) II = tY~(2flJv) 1 

Also within the small range -f, < f < f, (approximately 10 cps wide) 

and - ;, 

%(fl) = 1 YR(jd I2 h21 YA( Jd I2 GNi (fl) 

= K12GNi (fd 
Substitution of these.rejationsh$ps 

thus 

[q&H2 
K1=K2= 

s 
+fo 1 Y,(Wd I'd9 

‘f0 

which is the equation desrred. 

REEUITS AND DISCUSSION 

(23) 

The principal results obtained in this investigation consist of 
(a) an appraisal of the effect of geometric parameters on the unsteady 
normal-force characteristics of airfoil sections over the Mach number range 
of 0.75 to 0.9 for lift coefficients of 0 to 0.6, (b) comparison of wind- 
tunnel results with flight measurements, (c) evaluation of the effect of 
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Reynolds number on the unsteady force measurements, (d) measurements of 
quantities describing unsteady normal force as a stationary random func- 
tion of time, and (e) a suggested method for applying unsteady force data 
to the problem of airplane buffeting. Each of these topics fs discussed 
in turn. 

Effect of Airfoil Geometric Parameters 

The effect of airfoil geometry was examined by comparing the unsteady 
normal-force characteristics of 23 profiles (see table I) having a varia- 
tfon in maximum thiclmess from 4- to 12-percent chord, in camber from 0 
to 0.6 design lift coefficient, in position of minimum pressure from 30- 
to 60-percent chord, and in leading-edge radius from 0- to 1.5-percent 
chord. Lift coefficient versus angle of attack, unsteady normal-force 
coefficient as a function of lift coefficient, and contour plots of con- 
stant magnitudes ofunsteady normal-force coefficient on the lift- 
coefficient and Mach number plane are shown in figures ll to 34 for each 
of these profiles. The (a) and (b) parts of each figure contain the basic 
data from which part (c) is derived; The dashed lines appearing on some 
of the contour plots Indicate portions of the curves obtained by extra- 
polating the nCnrms VS. cl curves, such extrapolations being resorted 
to only when supported beyond reasonable doubt by the trend of adjacent 
data. No symbols appear on parts (a) and (b) of figures 16, 17, and 19 
to 22 because these figures were derived from cross plots of measurements 
at constant angle of attack (instead of constant Mach number). Results 
shown in figures 19 to 22 were obtained from the curvilinear cell instal- 
lation (fig. 3); as shown in Appendix A they are not directly comparable 
with those measured with the straight-line-cell installation. 

Inspection of the &nrms VS. cz curves for these airfoil sections 
(part (b) of figs. 11 to 34) discloses that certain features are often 
present. At low Mach numbera the very sharp rise of &nrms from ini- 
tially small values with little, or in some cases no, increase in lift 
coefficient is most noticeable. Reference to part (a) reveals that these 
sharp increases occur in the vicinTty of maximum lift. For the higher 
Mach numbers, above 0.8 approximately, sfzable amounts of unsteady normal 
force are present even at low Lift coefficients. 

From an examination of the contours of part (c) of the figures it is 
clear that, although the contour values are in geometric progression, the 
curves generally become more closely spaced as the regfon of unsteady 
normal force is progressively entered. The corresponding maximum unsteady 
normal-force gradient therefore rises sharply. 

Data from the contour plot-s of these figures.were cross-plotted to 
show the variation of unsteady normal force with thiclmesa in figure 35, 
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with camber in figure 36, with position of minimum pressure in figure 37, 
and with leading-edge radius in figure 38. Ai till be noted from these 
figures, the data pertain primarily to lift coefficients between 0 and 
0.6, md Mach numbers from 0.75 to 0.89. This lift-coefficient range !8 
selected because of the limitations imposed--by low Reynolds number, dis- 
cussed f'urther on. 

Of these four parameters, thickness is shown to have the greatest 
influence. For the symmetrical NACA 65-series sections (fig. 35(a)), a 
reduction of thickness from 12 to 8 percent is accompanied at all lift 
coefficients by a marked decrease in unsteady normal force. With further 
reductions of thickness below 8 percent, however, this trend dZsappears 
and, for some combinations of lift coefficient and Mach number (e.g., 
c2 = 0.4, M = 0.85 tid cl L 0.6, M = 0.‘775), even reverses itself, the 
unsteady normal force becoming larger as the thickness decreases. This 

reversal, however, is not universally present, as indicated by inspection 
of the comparative plots of Acnrms VS. cl presented in figure 39 for the 
NACA 65-series sections. Notice particularly that for Mach numbers 0.785, 
0.809, and 0.832, above 0.6 lift coefficient, the 4- and 6-percent-thick 
sections show distinctly smaller values of unsteady normal-force coeffg- 
cient than do those of 8-, lo-, and l2-percent thickness. These observa- 
tions are generally substantiated by the results of references 3 and 5, 
although the pressure pulsations discussed in the former reference give 
little Fndfcation of increased unsteady normal-force coefficients with 
decreased thickness below 8 percent. 

The results for the NACA g-series airfoil sections for lift coeffi- 
cients of 0.6 and below (fig. 35(b)) are by no means so clear cut, reduc- 
tions of thickness below 8 percent sometimes being accompanied by increased 
unsteady normal force (cz = 0.2, M = 0.890 and ct = 0.4, M = 0.890), and 
sometimes, notably for cz = 0.6, by,a decrease. The trends however, 
except at cz = 0.6, are not pronounced, and the conclusion that little 
is gained by reducing thickness below 8 percent appears valid for this 
family of profiles also. 

There are few unqualified statements which can be made concernfng the 
effects of camber, summarized in figure 36. The most interesting result 
is the decrease in unsteady normal force of the-l2-percent-thick, NACA 
65-series section accompanying an increase of camber from 0.4 to 0.6 design 
lift coefficient, which takes place at Ma&h numbers-even as high as 0.875. 
Amounta of camber less than 0.4, however, in general have but little effect 
on unsteady normal-force magnitudes, not only for these sections but for 
the corresponding h-percent-thick sections (fig. 36(b)) as well. 

- --. _. 

c 

The trends of unsteady normal force with&ord$Lse iocation of the- 
position of minimum pressure for the lo-percent-thick, symmetrical, NACA 
6-series airfoil sectiona (fig. 37) are considered relatively unimportant. 
At the higher lift coefficients (0.4 and 0.6), however, it is possible to v 
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conclude that the moat re arward position of minimum pressure investigated, 
60-percent chord, ia slightly unfavorable. 

Results appraising the effect of leading-edge radius are summarized 
in figure 38. Inspection of thFs figure shows that, in general, although 
there is a slight trend in the direction of increased unsteady normal- 
force coefficient with fncreasfng leading-edge radius, the tendency is 
not sufficiently pronounced to be conclusive. The weight of the evidence 
does indicate, however, that an abnormally large leading-edge radius is 
not favorable. This conclusion is supported by comparison of the results, 
previously presented in figure 35(a), for the NACA 65-series airfoil sec- 
tions with those for the more bulbous nosed 2-series sections, fig- 

ure 35(b) l At comparable values of Uft coefficient, Mach number, and 
thickness, the latter sections display a generally greater value of 
Acnrms than do the former. 

In summary it is seen that maximum ttickuess, of the four geometric 
parameters investigated, has the greatest effect upon unsteady normal- 
force characteristics at high subsonic Mach numbers and lift coefficients 
up to 0.6. The influence even of this parameter, however, is noticeably 
diminished for thitiesses below 8 percent for the proflles investigated, 
being pronounced only at lift coefficients above 0-6 and for just the 
small Mach number rsnge extending from 0.76 to 0.86. For the E-percent- 
thick NACA 65-series, camber above 0.4 design lift coefficient also 
affects unsteady normal force to a significant degree, showing beneficial 
results up to as high as 0.875 Mach number. Trends with leading-edge 
radius for radii below 1.2-percent chord, with camber for &percent-thick 
NACA 65-series profiles, and with position of minimum pressure for the 
NACA 6-series, IO-percent-thick, symmetrical profiles are relatively 
unimportant. Abnormally large leading-edge radii appear to be disadvan- 
tageous at high subsonic Mach numbers. 

Comparison With Airplane Ruffe-Mng 

The buffet boundaries reported fn reference 14 for four straight- 
wing airplanes, aspect ratios 4.17, 5.17, 6.00, snd 6.39, are compsred in 
figure 4-O with the unsteady normal-force coefficient contours measured for 
the corresponding airfoil sections at the wing-fuselage juncture. Buffet 
boundaries sxe used instead of contours because the boundaries mark the 
beginning of structural -bration and, by the same token, the first appear- 
snce of the aerodynamic force causing buffeting. There should therefore 
be some correspondence between the boundary snd the 0.005 unsteady normal- 
force coefficient contour since this quantity, which is the smalLLest that 
could be reliably measured, also marks the first appearance of the dis- 
turbing force in the wind tunnel. This cijmpsrison, of course, fails to 
recognfze differences due to Rqnolds number. From inspection of this fig- 
ure it is concluded that, while discrepancies &st (chiefly in the region 
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of high lift coefficients and moderate &iach numbers, as would be expected), \ 
the agreement Is good enough to infer that the tind-tunnel measurements 
of unstesdy normal force on the-profile-are-directly related to the buf- 
feting found in fJ&ht. 

c 

It is interest- to note the extremely sharp gradient of unsteady 
normal force across the contours displayed by the NACA 23018 airfoil 
section (fig. 40(a)), which, as will be seen later, also exists for the 
23013 section. No other profile investigated shows such an abrupt rise 
of intensity, and the fact that the airplane e&pped with this profile 
is known to have particularly violent buffeting characteristics may be 
taken as further evidence supporting the wind-tunnel results. 

Effect of Reynolds Number 

To gain some insight concerning the effect of Reynolds number on 
unsteady normal force, 12-inch-chord models of the RACA 23013 and of the 
65-213, a = 0.5 airfoil sections were tested up to the tunnel choking %ch 
number (0.7 approximately). The results are compared with B-inch-chord 
airfoil data, figures 41 and 42, both the 6-inch- and l2-inch-chord data 
being obtained with the strain-gage instrumentatfon. Shown also in 
figure 42 is the same buffet bound.q plotted in figure 40(b) for the air- 
plane having the NACA 65-213, a = O-5 wing section. Although these data 
are scanty, they do tidicate that increasing the Reynolds number from 
approximately 2 million to approxfmately 4 mfllion significantly altere 
the unsteady normal-force characteristics. --Comparisons, moreover, of 6- 
inch-chord data with flight data, and of 6-inch-chord.data with XLinch- 
chord data, show discrepancies that are in the ssme direction and of 
comparable magnitude, a result which further indicates that the Reynolds 
numbers of 1 to 2 million are undesirably low. 

- 

- 

c 

It will be observed that increased Reynolds numbers generally result 
in shifting the unsteady normal-force coefficient contours in the direc- 
tion of increased lift coefficient (figs. 41 and 42). A possible explana- 
tion for this shift is the higher lift coefficients realized at higher 
Reynolds numbers at the same angle of attack. To investigate this posse- 
bility comparative plots of unsteady normal-force coefficient versus angle 
of attack were examined. It was found that practically all of the differ- 
ences for the NACA 23Ol3 airfoil section could thus be explained, but that 
practically none for the 65-213, a = 0.5 section could be. Apparently, 
therefore, while the differences for this latter airfoil are connected in 
some way with the higher lift coefficients obtained at higher Reynolds 
numbers, the relationship is not direct and the available data are not 
sufficient to isolate the ultimate cause. --- - 

Some additional information concerning this matter is to be found 
from comparison of the spectral densities of figure 43. The upper half -- 
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of this figure presents the data, both ordinate and abcfssa, in absolute 
. units; in the lower half the ordinate is normalized with respect to 

bcd2 (1 .e., the area under the curve) and the abcissa, with respect 
to reduced frequency, or Strouhal number. The agreement of the normalized 
plots is certainly good enough to provide hope that extrapolation to 
larger scales may be acccxtrplished on the basis of Strouhal number; how- 
ever, it cannot be emphasized too strongly that the supporting evidence 
for doing so is very meager. 

Tests were also made to see if the effective Reynolds number could be 
increased artificially with a turbulent boundary layer, obtained in the 
usual way by roughening the leading edge of the airfoil surface. No change 
in unsteady normal-force characteristics was observed. Assurance that 
the entire boundary layer up to the point of separation was turbulent was 
provided by liquid film tests, coupled with schlieren observations of the 
shock-wave pattern. The same technique disclosed that without roughness 
the flow remained laminar to the point of separation. 

Statistical Aspects of the Data 

- 

- 

A princfpal result of this investigation is the conclusion that the 
unsteady normal force on a two-dimensional airfoil is a stationary random 
function of time, and can be defined by measurement of the chief vsriables 
pertaining to this type of function. 

Stationary character of the unsteady normal force.- A statfonary ran- 
dom function of time is, by deffnition, one for which all the probability 
densities are invariant-tith time. Although the evidence available is - 
insufficient to demonstrate conclusively that the densities are invariant, 
it is enough to allay reasonable doubts. 

Equations (5) and (6) express the mean value and the mean-square 
value of a random function fn terms of the first probability density. It 
is an experimentally observed fact that both of these quantities are time- 
invariant. Accordingly, although it is still mathematically possible for 
the first probability density, W1(y), to be a function of time, the contin- 
gency is remote. More direct evidence is furnished by the probabflity- 
density measurements described below. 

A similar line of reasoning may be applied to the second probability 
density, which in equation (3b) is used to define the autocorrelation 
function and, indirectly, via equation (g), the spectral density. The 
repeatability of this latter function under test conditions is well illus- 
trated in figure 44, in which two spectra observed at widely different 
times are compared. The agreement is very good, and leaves little doubt 
that the spectral density and, hence, the autocorrelation function are 
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both time-invariant. It therefore seems quite probable that the second 
probability density is time-invariant. 

No evidence was obtained concerning the natwe.of..the third and higher .I_- 
probability densities. These quantities, however, do not enter into any 
aspect of this investigation and their characteristics are not of direct 
interest. 

Form of the first probability density.- The first probability density 
was directly measured for a typical case by constructing a histogram of 
the unsteady normal-force coefficient from a high-speed film record of an 
oscilloscope trace. The result, based on 10,013 points abstracted from a 
1.70-second fflm record, is shown in figure 45, fitted to a normal proba- 
bility curve. The apparent good agreement is substantiated by the more 
objective measures ccffmnonly employed, that is, skewness (3rd moment), and 
kurtosis (4th moment) which are itemized in the upper left-hand corner of 
the figure. The agreement is extraordinary and, if this one case is 
representative, demonstrates conclusively that the firstprobability den- 
sity is normally distributed. The spectral density corresponding to this 
histogram appears in figure 47(c). 

An indication of the extent to which the results of figure 45 are 
representative is provided by comparing the ratio of the mean of the abso- 
lute value of section unsteady normal-force-coefficient (i.e., the mean 
value of the fully re7tified unsteady normal-force signal) to the root- 
mean-square value. For a normally distributed probability density this 
ratio is m= 1.253. A summary of 887 simultaneous comparisons for - 
nine airfoils is presented in the histogram of figure 46, which typifies 
histograms for each of the airfoils individuslly. The mean values were 
experimentally obtained with an average reading meter, and the mean- 

.- 

square values with a thermocouple meter, as previously described. As the 
figure shows, the ratios are-heavily concentrated in the-neighborhood of 

-- 

the 1.253 value, the small displacement of the median from 1.253 being 
- 

within the accuracy of calibration. This result strongly suggests that ..I 
the unsteady normal force of the 10,013-point distribution is typical, 
and that the first probability densities of the unsteady normal force of 
the airfoil sections are, in general, normally distributed. 

The implicationof this result has many ramifications, not the least 
of which is the conclusion pointed out in the discussion of the theory of 
stationary rsndom fuwtions of time, that, if the spectral density (or the 
autocorrelation function) is known, the function Is completely defined; 
that is to say, all of the probability densities are determinable. The 
spectral density therefore furnishes virtually complete information con- .- 
cerning the unsteady normal-force characteristics of an airfoll section. 
This result also is the reason for reporting values of Acnrms calculated 1 
from the mean-value readings with the 1.253 ratio, as previously described. 
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The data of figure_&5 were also examined to see if the first proba- 
bility density were stationary. This was done by subdividing the original 
record into ten parts, and comparing the defining parameters of the corres- 
ponding histograms with each other and with those of the original. No 
si@pificant deviations or trends were found, a result which shows directly 
that the first probability'denaity of this portion of the data is station- 
UY- 

3ectral densities of unsteady normal-force coefficient.- Several 
spectral densities of the unsteady normal-force coefficient, calculated 
from the strain-gage spectrum as previously described, are shown in fig- 
ure 47 at the Mach number and lift coefficient loci noted on the accompany- 
ing contour plots,s which are based on stra@-gage data. Included with 
each curve is the unsteady normal-force coefficient measured by integrating 
the area under the curve. When available, the corresponding value measured 
with the resonance compensating amplifier and thermocouple meter is shown 
for comparison. The reSOnZ3nt frequenCie8 Of the airfoil, fAj and Of the 
wind tunnel, fT, are also shown. 

Inspection of the 16 spectral densities contained in the figure indi- 
cates that the majority of the curves have the common characteristics of 
peaking in the low-frequency range, below 200 cycles per second, and drop- 
ping to a low value above this range. The exceptions to this generaliza- 
tion (NACA 23013 airfoil at M = 0.707 and 0.760, and the 65-2~3, a = 0.5, 
airfoil at M = 0.705) display spectrums having many random peaks of roughly 
equal amplitude, rather than a single, prominent spike. None of the 16 
spectra can be adequately represented by the "'white noise" spectrum some- 
times assumed for calculations. 

It is to be observed that the three spectral densities having multf- 
ple peaks differ from the others in that they correspond both to tigh Mach 
numbers and large unsteady normal-force coefficients. For this reason it 
may tentatively be suggested that spectrums at high Mach numbers and hfgh 
unsteady normal-force coefficients are of a different nature from those at 
low Mach numbers or at small unsteady normal-force coefficients. Under 
the last named cfrcumstances, unsteady normal force as a function of time 
approaches a harmonic variation much more closely than it does for the 
former. 

The precipitous drop sometimes observed in the vicinity of the - 
nel resonant frequency (NACA 65-110 airfoil at M = 0.655, Q = 8.2 
and at M = 0.704; 23013 airfoil at M = 0.563, and 0.608, etc.) is &n- 
sidered to be a combination of aerodynamic characteristics and a tunnel 

[S 1 
l/2 

%Phe disagreement between the value of ~‘+$f) df tabulated 

on the spectral-density curve of figure 47(a) for 0.6O3 Mach nuuiber and 
the corresponding value indicated by the contour plot.results from measur- 
ing the spectral density at an angle of attack above that of maximum lift. 
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resonance phenomenon discussed in A pendix B, the conjecture being that 
in the absence of tunnel resonance P or in the event of its occurrtig at a 
higher frequency) the decrease would be more.gradual, resembling that for 
the NACA 65-213, a = 0.5 profile at 0.555 Mach number, for example. 

A cursory inspection is sufficient to demonstrate that the airfoil 
resonant frequency, fAJ is irrelevant to the results. 

Tabulated below fs a comparison (cf. eq. (13)) of the unsteady normal- 
force coefficients obtained by integration of the area under the spectral 
density curves with those measured with the thermocouple meter in conjunc- 
tion with the resonance compensating amplifier: 

Thermo- Integration of 
NACA Chord, a0.l M 

couple spectral density, 
proffle in. de@; 

meter, 

iI (Aen I21 J2 If 

l/2 
GAcnr (f)df 

1 
23013 

2 2 
0.707 0.0355 o .o36g 

23013 9707 -0355 l 0379 

23013 10 .0416 .0422 
23013 

2 
10 

2;: 
.0400 00433 

23013. IL2 4.7 .711 .0280 90307 
23013 I2 10.7 9556 .0450 .0476 

;5-213, a = 0.5 6 8 9705 90317 .0310 
55-213, a = 0.5 12 12 9557 .0368 00351 

65-110 
2;; 

.0160 .0158 
65-110 l 0495 -0505 

0006-64 9556 .0465 00454 
Similar comparisona for six additional observations are also shown in 
figure 47. 

Inspection of these data shows that, for unsteady normal-force coeffi- 
cients greater than 0;02, discrepancies between corresponding values in 

-. the last two columns are generally of the order of 5. percent. This agree- 
ment, obtained for 17 observations at greatly different times, and over a 
wide range of geometric and aerodynamic variables, provides very persua- 
sive evidence of the accuracy not only of the root-mean-tiqkre unsteady 
normal-force measurements made with the resonance compensating amplifier, 
but of the spectral dt?nSitieS as well. 

It would be an omission to end the discussion of the spectral densi- 
ties without pointing out some Important limitations to these data. First, 
because of the rapidity with which the wind tunnel overheated above 0.75 
Mach number, it was impractical to obtain spectral densities above this 
speed. Second, as has already been mentioned, the Reynolds number avail- 
able at the lower Mach numbers is too small to provide representative 
msximum lift data. Third, 6 of the 16 spectral densities pertain to the - 
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NACA 23013 profile, and there is reason to suspect that the characteris- 
tics of this section are not representative. The steep gradient across 
the contours typify5ng this profile has already been mentioned. In $ddi- 
tion, figure 47(b) shows a tendency for large amounts of unsteady normal 
force to exist close to zero frequency and above 200 cycles per second. 
The entire picture concerning spectral densities therefore is suggestive 
rather than definitfve, and much work remains to be done before well 
founded conclusions can be drawa. 

Application to Aircraft Buffeting 

A principal objective in the investigation of unsteady normal-force 
phenomena is to derive the means and obtain the data which till enable the 
designer to predict from wind-tunnel data for airfoil sections the buffet- 
ing of an a-lane. To do this it is necessary: 

1. To select the significant quantities which describe 
both the aircraft buffeting and the unsteady aerodynamic forces 
caus5ng buffeting. 

2. To measure these qusntfties for the unsteady forces in 
the wind tunnel. 

3. To establish the relationship between these quantities 
for the wind-tunnel aerodynamic forces and the aircraft buffet-. 

The theory of stationary random functions of time points out the 
significant quantities to be used. Measurements at low Reynolds numbers 
made of these quantities for a selected group of profiles have been dee- 
cribed and discussed in preceding portions of this report. There remains 
the problem of establishing the relationsh-lp between unsteady normal forces 
and buffeting. 

The solution of this problem requires the development of a means for 
accounting for both the filtering effect of the aIrcraft structure and the 
spanwise variation of the unsteady lift. Both of these difficulties were 
encountered in the development of the atraIn-gage technique; the procedure 
in fact represents a practical solution, under ad-tunnel conditions, of 
the inverse problem - given the buffeting of a two-dImensiona airfoil, to 
determine the corresponding aerodynamic forces. For this reason, the 
methods applied to the wind-tunnel case, or similar methods also derived 
from the theory of stationary random processes, seem to offer consfderable 
promise in the analysis of aircraft bufYetIng. This same suggestion is 
made in reference 15, where a theory based essentially on what corresponds 
to equations (15) and (19) of the present report is developed in some 
detail. 
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The conclusion that the wind-tunnel models could be treated as linear, 
mechanical filters simplified the airfoil calculations considerably. A 
similar conclusion for the structure of aircraft is suggested by the 
following reasoning. Inertial and spring forces in aircraft structure are 
usually linear; investigations of structural damping force ordinarily show 
that, although it is nonlinear, it is small compared to the crftical dsmp- 
ing force and may be adequately represented by linear equations. The 
characteristics of the aerodynamic damping are more in doubt, but the 
reasoning used in reference 15 to conclude that it is linearly proportfonal 
to velocity is appealing. 

i 

The question of whether the structure is linear may also be approached 
from another point of view. A propositfon exists in filter theory to the 
effect that, if the probability densities of both the input and output 
signals are normally distributed, the filter is linear. It has been con- 
cluded In this report-that the unsteady normal ftce on an airfoil profile 
is normally distributed; hence it is possible for the force input to an 
aircraft structure also to be normally distributed. If the first proba- 
bility density of the output force (buffeting) is normally distributed, as 
appears to be the case in some observed instances, it is more than likely 
that an aircraft structure may be dealt with as though it were a linear 
filter. 

Even in the event that aircraft structure cannot be generally repre- 
sented as a linear filter, however, the suggested procedure still offers 
promise. Methods are outlined in reference 7 for dealing with nonlinear 
filters; possibly they can be adapted to the flight problem in much the 
s&me fashion as those pertaining to a ltiear filter have been adapted to 
the wind-tunnel calculations. 

CONCLUSIONS 

The principal conclusions obtained from this experimental investiga- 
tion of the unsteady normal force characteristics of 27 representative 
NACA profiles at Mach numbers up to 0.9, and Reynolds numbers of 1 to 2 
million, may be briefly summarized: 

1. Unsteady normal force occurred for some range of lift coefficient 
and Mach number for all airfoil sections investigated. 

2. The magnitude of unsteady normal force is a function of Reynolds 
number. While the Reynolds number r%rigeFof' -the tests appears in general 
to be too 10~ to provide quantitative results directly applicable to full- _ . 
scale aircraft, the data are considered adequate for evaluation of trends. 

3. Of the four geometric parameters investigated, maximum thickness, 
camber, position of minimum pressure, and leading-edge radius, the first 
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has the greatest effect upon unsteady normal force, decreased thickness 
providing noticeable reductions in magnitude. There is a maxfmum -- +.&q" 
thickness-chord ratio, h&ever, below which In general little reduction ,-,".s,A 
takes place, this thickness being 8 percent for the symmetrical NACA 65-/ 
series sections of the investigation. 

&l=*b-.V c&7 &: ;i;;+ 

the magnitude of 
coefficient had little effect on 8 11;/ 

coefficient appl 
An increase to 0.6 design lift 

ick NACA 65-series sections 
reduced the unst 
as 0.88. YCdAI /NJ c1 rn& r,=.r .7 

* 
even at Mach numbers as high 

5. Variations of unsteady normal force tith position of minimum 
pressure from 30 to 60 percent of the chord, 

‘y 
and with leading-edge radius 

below 0.15 chord were unimportant. ._-- 
6. ,Abndrmally large leading-edge radii increased to some extent the 

magnitude of unsteady normal force at high subsonic Mach numbers. 

7. Unsteady normal force was a stationary random function of time, 
for which the first and higher probability densitfes were normally dis- 
tributed. The spectral density is therefore sufficient to define the 
function. 

8. At low Mach nnmbers and high lift coefficients the principal fre- 
quency components of unsteady normal force were largely confined to values 
below 200 cycles per second for the 6-inch-chord airfoils examined. Above 
0.7 Mach number for high unsteady normal forces there appears to be a 
wider spread in the range of frequencies represented. None of the spectral 
densities was adequately represented by a %hite noise" distribution. 

9. Comparisons of unsteady normal-force section data tith buffet 
boundaries measured for four straight-wing aircraft indicate there is a 
direct relationship, and provide evLdence that unsteady normal. force on 
the wing is one source of buffeting. 

10. The methods derived to account for the influence of airfoil struc- 
ture and spanwise variation of loading, which make use of linear-filter 
theory, frequency response functions, and the theory of stationary random 
time processes, may be useful in analyzing aircraft buffeting. 

Ames AeronautScal Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Mar. 2, 1955 



34 NACA EM A55CO2 

APPENDIX A 

PRESSURE-CELL RESULTS COMPARED WITH STRAIN GAGE 

To appraise the results obtained with the preseure celle, simulta- 
neous measurements of the root-mean-square unsteady normal forces were 
made for four profiles with the pressure cells and with the strain-gage 
equipment, using a common group of indicating instruments. The results 
are compared in figures 48 to 51. The forces in both cases were measured 
with the thermocouple meter to eliminate all discrepancies due to d!.ffer- 
ences in wave form (i.e., differences in the first probability densities). 
The data have been addusted in the manner descr-lbed in Appendix C. 

An examination first of the contour plots shous that, while discrep- 
ancies exist, the agreement on the whole is remarkably good. However, 
comparison of the root-mean-square unsteady normal-force coefficient 
verBus lift-coefficient curves (part (b) of the figures) discloses vari- 
ances somewhat larger than are apparent in the contour plots, the biggest 
differences usually occurring in the low M&?h number and high-lift- 
coefficient region. The maskFng of this effect by the contour curveB is .- 
due largely to the very sharp increases of unsteady normal force with 
small changes Fn lift coefficient. 

These differences are tittributed largely to errors in the pressure- - 
cell results. The cells were not only somewhat removed from the airfofl 
surface, but also were submerged in the tunnel-wall boundary layer. In 
addition they were oriented to measure pressure in the spanwise direction 
instead of perpendicular to the model surface. For streamline steady- 
state flow closely apjjroximating potential conditions, of.course, orienta- 
tion would have no influence on the results. Unsteady normal force, 
however, is generally accompanied by large regions of separated flow over 
the rear portion of the airfoil; and the turbulence in such a flow field 
is quite probably nonisotropic (ref. 16). Conseqtlentlyj it would be 
expected, as already noted, that the largest discrepancies would occur 
at moderate Mach numbers and high angles of attack, where regions of 
separated flow are greatest,. 

Further information suggesting that most of the error is attributable 
to the pressure cells appears in figure 52, which compares the unsteady 
normal-force coefficients measured both by the straight-line and by the 
curvilinear pressure-cell installations (fig. 3), for the NACA 65-010 afr- 
foil section. The data,= which are typical of those obtained for several 
other profiles, indicate that the unsteady norm&l forces measured are 

- 

'The curvilinear pressure-cell data were obtained from tests at 
constant a. and have been cross-plotted in figure 52 at constant' M. 
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dependent upon cell location. Inasmuch as no detailed investigation was 
made to determine the best location, the arrangements chosen being a. 
compromise between mechanical convenience and the desire to locate the 
cells as close to the model surface as possible, there is little reason 
ti expect either combination to provide optimsuu results. 

Not all the differences, however, can be charged to pressure-cell 
errors. Because the strain gage responds to area loading, the forces 
measured can, in accordance with the calculations described below and 
seized in figure 53, be independent of span only if the instantaneous 
magnitude of the fluctuating load at each spanwise station is at every 
instant identical to that at all other spanwise stations. This condition 
requires that the correlation coefficient between all chordwise loadings 
be unity. In all other cases the forces will be less. No correlation 
measurements between spanwise stations were made, but the correlation 
coefficient between the instantaneous pressures at two spanwise points 
in the region of separated flow was determined in one instance and found 
to be low. It is therefore quite unlikely that the correlation coeffi- 
cient between spanwise stations is one. Judging from the results of the 
calculations summarized in figure 53, however, and schlieren observations 
during the tests of the shock-wave motion and the coincidence of shock- 
wave location with the point of separation, it is felt that the correla- 
tion was sufficient to obtain upwards of 80 percent of the chordwise 
normal force per unit span from uncorrected strain-gage measurements. 

Further comparisons of pressure-cell and strain-gage results are 
provided by the spectral-density curves of figure 54 obtained in the low 
Mach number and high lift coefficient region where the differences between 
results from the two sets of instrumentation are large. In each of these 
figures it is clear that the significant differences are not confined to 
a narrow range of frequencies, but are distributed over the entire spec- 
trum. There is proportionately as much variance in the higher frequencies 
as in the low, although the absolute differences are of course larger in 
the latter region. 

On the basis of all these considerations it is concluded that, while 
1 differences exist and neither method of meas urement is free of defects, 

the agreement is sufficiently good to provide assurance that the unsteady 
normal force occurring in the wind tunnel was measured with reasonable 
accuracy. 

The calculations relating the totalunsteadyloadmeasuredbythe 
strain gage to the unsteady normal load per unit span, were carried out 
by (a) replacing the instantaneous load across the span with an equiva- 
lent load at midspan giving the ssme deflection, (b) computing the mean- 
square value of this equivalent load as a function of 
mining the limiting value of (b) for h/b+oD 

h/b, and (c) deter- 
and dividing by this 
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quantity to determke the proportion of normal force indicated by the 
strain gage for any scale of correlation A/b. 

By application_ of.the_.prLn.c.iple of virtual displacements to a simply 
supported beam loaded at any point a distance x from the end: 

q+bt) w = - g(x,t)dx 
61 

where 62 is the displacement at midspan resulting from the load 
g(x,t)dx at point x. Also, from the equation for deflection of such a 
beam loaded in the manner described 

therefore 

and 

6(x) _ 3xb2-bxs 

62 bs ; o<x<g 

Yq(x,t) = 
jxb2 - 4x’ 

bS 
dx,t)~ 

-- 

- 
--- 

Ni(t) = 2 
b/2 3xb2 -4x' g(x 

J 
t)ax 

b= 

-. 
* 

The mean-square value of IQ(t) is obtained in the following fashion, 
which is the ssme as that usea in reference 17: 
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s 

T 
Ni2 = m 1 

T-+mT o 
LNi(t) 12dt 

tNi(t)12 = 4 
b/2 3xb2 -4x' 1 

2 

bS 
dx,t) dx 

b/2 (3xb2- 4x9 (3yb2 - 4YS>dX,a3(Y,aY dx 

- Ni2 z 4 b6 _limrn$ ldtlb'21b'2(3xb2 - 4xs)(3yb2 -k?g(x,t)g(Y,t)dy dx 

= $ ~b'2~b'2(~xb2-4iP)(3yb2 -4s)dydxT=mm $g(x,t)g(y,t)dt 

T 
lim 1 

s T-+mT 0 
g(x,t)dy,t)dt = ddgb) = hiit?Js r(x,y) 

. 

where r(x,y) is the correlation coefficient between g(x) and g(y). 

No data are available for determining r(x,y); but, for want of a 
better assumption, a function sometimes used to approximate the correla- 
tion coeffLc5en-k between the pressures at two points in a turbulent flow 
field (ref. 17) may be assumed: 

r(x,y) = ( 1 - b-4 
> 

_ ly-4 
E h 

21 

- 
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Also, 

r@;(x) I2 = IdY)12 = iF 

Substitution of these values in the expression for Ni2 yield6 

NACA RM A55C02 

g2 [Nih/b)12 = 4 -+ f 
b/2 

(3xb2- 4x9~ 
0 s 

b/2 
(3yb2-4p) 

X 

g2 b/2 
4 p 

s 
(3xb2 - 4x9~9~ 

0 s 
x(3yb2 

0 

-4y7(L - $ex-?dy 

The second of these two integrals may be shown t0 be equal to the first. 
by substituting 

u=y 

v=x 

for which 

Hence, finally 

[Ni(h/b)12 = 8 $f b/2 
(3xb2- 4xS)dx 

0 s 
b/2 

X 

(3yb2- by=+ - s)!- Y ay . 
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The evaluation of this integral, although tedious, is straight- 
forward. Only the result is stated here: 

For large values of A/b this equation may be more compactly 
expressed as a 'power series in terms of its reciprocal, 

. 

INi(h/‘b)12 1 54 
b23 = F (Z)! + (n+5)! - (nz)! - n=. 

(ntz! + 
c-1)11 

(nz! (27+)n 1 
= 25 0.1595 + CM&58 -0.009560 + om1670 

64 2MJ ca/w2 mvw 

0.0002469+ . . . 
(2h/b)4 - (2T1/b)~ ' 

The ratio of mean-square unsteady normal force indicated by the 
strain gage for a scale of correlation, h, to that for inffnite scale of 
correlation is therefore 

CNi(h/b) I2 
[W(m) 1 

g 

where f(h/b) is the right-hand side of equation (Al). 
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Numerical result8 are plotted against semFlogarithmic coordinate6 
in figwe 53. It is apparent that the strain-gage results are dependent 
upon the scale of correlation for values of h/b less than 1; and, 
since the results were not corrected to ac'count for the scale of corre- 
lation, they understate the true unsteady normal force per unit span. 
This error is, of course, directly opposite to that introduced by the 
preesure cells, which overestimate the force per unit span. 

. 

. 
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APPENDIX B 

Tunnel Resonance 

The experimental and theoretical work reported in references 18, 19, 
and 20 indicates that the oscillating lift measured for an airfoil mounted 
in a wind tunnel is affected by the presence of the tunnel walls. This 
interference is greatest when the frequency of oscillation coincides with 
the acoustic frequency corresponding to a wave length twice the tunnel 
height, or any odd divisor of.this length, and is evidenced by a large 
loss in measured ltit at that frequency. Lift forces at frequenctes 
other than resonance (or odd multiples thereof) are also affected, the 
amount of distortion depending primarily upon free-stream Mach number and 
airfoil-chord to tunnel-height ratio. The @sating lift upon which the 
theory of these references is based was obtaFned by assuming the existence 
of oscillating pressure doublets. The results therefore, should be appli- 
cable to this investigation as well as to the meas urement of the lift of 
an oscillatLng airfoil, for whFch they are primarily intended. 

The resonant frequency at which unsteady normal force should vanish 
(with no damping present) is noted on the 16 spectral-density plots of 
figure 47. In every case loss of unsteady normal force at the indicated 
frequency is apparent. There is no evidence of loss at odd multiples of 
the resonant frequency, but the measured forces are too small to conclude 
whether the effect is present or not. The magnitude of the loss of 
unsteady normal force at the fundamental resonant frequency is generally 
somewhat less than muld have been expected. For some Sp32trB.l. ChISitieS, 
however, resonance appears to occur withfn the fre uencg range of the 
large peak (e.g., fig. 47(a), M = 0.655 (a~ = 8.2 78 ), M = 0.704; 
fig. 45(b), M = 0.563, 0.608, 0.655, 0.707, 0.76O; and fig. 47(c), 
M= 0.705) and protides a plausible explanation for the precipitious loss 
of unsteady normal force with increased frequency which is so noticeable. 

Some additional information concerning thfs phenomenon is presented 
in figure 55, which is a plot of the spectral density of the output of 
the cells installed in the floor and ceFling of the tunnel obtained for 
the same airfoil and test conditions as the spectral density of fig- 
ure 47(d) for Mach number 0.556. The fundamental resonant frequencies 
indicated by both sets of data are identical. In addition, the 3rd, 5th, 
7th, and 9th harmonics were detected by the pressure cells, although 
nothing is shown by the airfoil spectral density. 

For the test point just discussed, the amount of unsteady normal 
force in the immediate vicinity of fT is small. A larger proportion 
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of unsteady normal force at fT would result in increased pressures at 
the floor and ceiling cells. The output of these cells can therefore be 
used to detect the coincidence of tunnel resonant frequency with pre- 
dominant normal-force frequency; This condition was actually encountered 
in a few isolated instances, but only for airfoils not included in this 
report. 

In summary, there is smple evidence that the resonant condition 
investigated in references 18 to 20 was present during the tests and that 
it affected the data in measurable degree. The effects for the most part, 
however, are unimportant, appearing small even in the vicinity of reso- 
nance. As an estimate, the area under the spectral-density curves 
(i.e.2 (ACn'12) is distorted by not more than 10 percent, corresponding 
to 5 percent of the root-mean-square mstehdy normal-force coefficient. 

-- .- 

Airfoil Resonance 

Although the spectral densities indicate that airfoil resonance was 
of little consequence in unsteady normal-force measurements, it is inter- 
esting to note that the pressure pulsations created by the model vibra- 
tion, while weak, were nevertheless picked up by the floor and ceiling 
cells during measurements of the specQal,density.of figure 55. (The 
small discrepsncy between the airfoil frequency noted here and in fig- 
ure 47(d) is attributed to difference of wind-tunnel conditions existing 
during the two observations.) The conditions which would result should 
the model frequency coincide with either the tunnel resonant frequency 
or with one of the predominant unsteady normal-force frequencies furnish 
an interesting topic for speculation. Such a combination of events, 
however, was never encountered during this investigation. 
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An!EmIx c 

TJNSTEADYNO~-FORCE CCRRRCTIONS 

The unsteady normal-force coefficients measured by the strain gage 
were corrected by use of the following equatfon: 

where Y, the noise factor, is the unsteady normal-force coefficient 
measured at zero lift coefficient and approxImatel.y 0.5 Mach number 
(values at lower &ch numbers were substantially the same). This equa- 
tion was derived by assuming that the correlation coefficient, rS, 
between the noise factor and the corrected unsteady normal-force coef- 
fFcient was zero: 

A%'(t) = &n(t) + V(t) 

(A%')' = (&n)2 + V2+ 2V(ACn) 

(Acn) 2 = (&n')2 - F- 2VCACn) 

v(Ac,) = rs tlzlz7 

rS = 0 

V(ACn) = 0 

While it probably is not true that the unsteady normal force and noise 
* factor are totally uncorrelated, it is certa-in that the correlation is of 
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a very low order; and in the absence of more precise knowledge thFs 
assumption is considered reasonable. It is further to be observed that, 
since 0 was always less than-0.004,-the corrections would be small 
even in the extreme case of rg = 1. 

.L 

. 

The pressure-cell data were corrected on the assumption that the 

correlation coefficient rp = 
Vi? 

zqig 
was unity, leading to the 

equation - 1...-- .-.--I - ._- .-- -- 

The values of 47 were determined in the same manner as for the strain- 
gage data; in the case of the.pressulle..cell.El,..h.~wever,..they were somewhat 
larger, ranging from Q.&Q6 to O,&Cg..., -- ---.- .-r - I..._ -- 

The use of rp = 1 is not intended to imply that the correlation 
between signal and noise is higher-for. pre.ssure:se.l_l than-for strain-gage 
data. The value was chosen for the strictly pragmatic reason that it 
minimizes the discrepancies between the two sets of data, particularly 
at high angles of attack, and applies the larger corrections to the 
pressure-cell data, which are considered the less reliable. 

. 
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TABLE I.- LIST OFPROFILES TESTEDGROUPEDACCORDINGTO PURPOSE 

47 

Variation of geometric parameters 

Thiclmess 

-NACA 65-004 
NACA 65-006 
NACA 65-008 
TJACA 65-010 
NACA 65-012 

NACA 2-004 
NACA 2-006 
NACA 2-008 

Camber 

~NACA 65-012 
NACA 65-21~2 
NACA 65-412 
NACA 65-612 

'NACA 65-004 
NACA 65-204 
NACA 65-404 

Position of Leading- 
minimum preseure edge radius 

NACA 63-010 NACA OOlO-0;27-40/1.051 
NACA 64-010 

=NACA 65-01~1 
NACA OolO-0.70-40/1.051 
NACA OOlO-1.10~40/1.051 

NACA 66-010 NACA OOlO-1.50-40/1.051 

lo-percent- 0 
thick circular 0.27 
ELI-C 0.70 

Comparison with flight Reynolds number 

NACA 23018 INACA 23013 6- and l2-inch chord 
,NACA 65-213, a = 0.5 lNACA 

65-110 
65-~3, a = 0.5, 6- end 

MACA X&inch chord 

Statistical aspects of the 
data, instrumentation 

NACA 0006-64 
NACA 65-110 
NACA 23013 
NACA 65-213, a = 0.5 

IDuplicate listing 
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(a) Stationary random funcfion of time 
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Figure 1.0 Determination of the first probability density from~a station- 
my random function of time. 



@ Strain gage pickup @ Ceiling pressure cell 
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b Pressure cells @ Floor pressure cell g 

@ Model (6 inch chord) @ Direction of airflow A-19113 E! 

Flgure 2.- Arrangement of 6-inch-chord model and pickup am-ices in test section of Ames l- by % 

3-l/2-foot wind tunnel. x 
8 

, I 
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(a) Curvilfnear cell installation. 

- - , - - - -  : .  -.._ : - - .  - - . . .  .  1 .  .  ,_ 

(b) Straight-line cell installation. 
A-19058.1 

Figure 3.- Photograph of the pressure-cell installationa in side wall 
'of I- by 3-l/2-foot wind tunnel. 
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Spindle 

Figure 4.- Cross-sectional view of a pressure cell. 
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f=loo bi& 

5ovdts ’ 

K,sinerft 

caPCm K&tMenft carrier 
M&w amplifier 

K&tlsinmft 7 K,e,(t) 

filter 

e,(t) m K, f Ap(t,x)dx 
0 

Figure 5.- Block a1agh-m of the pressure-cell equipment. 
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Moth number, M 
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I 
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Figure 6.- Contour8 of proportion of static normal-force coefficient 
measured by the curtilinear pressure-cell tistallation, NACA 65-010 
airfoil section. 



Figure 7.- Block diagram of the a 
-J=!s!z equipment l 
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Figure 8.- Comparison with theory of the amplitude of the experimental tiequency response function 
of the resonance compensating amplifier. 
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o Uncompensated 
o Analytically compensated 
0 Electronically compensated 

t 

I I I I I I 
Km 200 400 500 600 

Frequency, f, cps 

Figure 9.- Typical spectral densities of section unsteady normal-force 
coefficient, uncompeneated, analytically compensated, end measured 
with the resonance compensate amplifier; NACA 23013 airfoil Bet- 
tion, M = 0.655, c2 = 0.73, a = loo. 



Mach nmber,M 

Figure lo.- Variation of Reynolds number tith Mach number for 6-inch-chord. models in the Ames 
l- by. 3-l/2-foot high-speed wina tunnel. 
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Section angle of ottock, a., deg 
(0) Variation of section lift coefffcient with section angle of attack for varime Mach numbers. 

f I 
Mach number, M 

0506 v 701 F .808 
0555 D 731 h 831 
OS05 a.759 7856 
a554 ~784 aB82 

cr.8 
E 

1.2 

LO 
cf 

E - .8 
2 

$ .6 

-.2- 
-4 0 4 8 I2 

Section lift coeffcient, c, 
(b)MdCMlofSt!CfionLnsteQdynamd-forcecoefficient 

withsectbnliftcc&iitlrmrbusMach~. 

.6 .7 .8 .9 II) 
Mach number, M 

Figure Il.- Lift coefficient and unsteady normal-force chmacterfstics 
of the NACA 65-004 profile. 
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I I I I I I.1 I I I I I I I t I . I I.11 

Section angle of attack, q, deg 
6) Variation of section liff mefftdenf wlth secfbn angle of attack for varbus Much numbers. 

.06 

-1 ’ I I I=’ %? 0 .2 .4 .6 .8 10 12 
Section lift coefficient, c, 

(b) &rtatiin cd section udeady rormd-force coeffident 
tith section Eff cdfii fcr wbus t&h i-unbers. 

Mach nunber, M 

I II 
s 

IA - 

Mach number, M 

Figure 12.- Lift coefffc+nt and unsteady normal-force chexacterfstfcs 
of the NACA 65-006 profile. 
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E -.8 
.L 0 

0 Y Y x Y 
T T 1 

-0 I I I I I I -.c ~ 4 0 4 8 12 
SectLn angle of attack, u., deg 

6) Variation of secticn Gft coefficient with section angle of attack for various Moth Wars. 

Section lift coefficient, c, 
(6) kriafion d s&ion tmtedy ncmd-hce coefficient 

with section liff amWent for variers Mch numbers. 

Moth number, M 
0505 v.705 p -807 
=5= D -732 b 833 
0602 a-E757 -854 
a!352 A 781 48% 

0 0 

-25 6 7 B .9 Lo -25 6 7 B .9 Lo 
Mach number, M Mach number, M 

(c)s&im~namd-sacemeffldentcanfous. (c)s&im~namd-sacemeffldentcanfous. 

Figure 13.- Lfft coefficient and unsteady normal-force characteristics 
of the NACA 65-008 profile. 
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Section angle of attack, s, deg 
(a) Variaflon of section lift coefficlenf with ~ecfbn angle of attack for various Mach numbers. 

Section lift coefftienf, c, 
(b)Woficnofse&nwdecdyncfrd-fwx!@dfti 

with section Zft coeffiiient for v&us Mxh rndet’s. 

I 7 

Mach number, M 
0505 7 ,707 v 813 
0557 c -733 b 828 
o!sQ4 ~758 ~860 
As55 A -783 a 890 

I I 

12, , ( , , , , , , , , 

Ix3 

‘.8 

.6 

Mach number, M 

Figure lb.- Lift coefficient and unsteady normal-force characteristics 
of the NACA 65-ClC.profile. 
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ct 
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t i i i i 1 r I 8 1 
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I I I I I I I I I I I I I I I I I I II III 
0 4 8 12 

Section angle of attack, 4, deg 
(a) Variation of sectii fift coefficient wffh section angle of attack for various Mxh numbers. 

Mach number, M 
0506 v-704 v .807 
0554 D -729 h 835 
0306 4 .757 v 369 
a.654 A -779 a 394 

Section lift coeffcienf, c, 
(b)VXbtiondSEdtXlvdteady~-force- 

wifhsecfiwift-RrvcricusMxh~. 

Figure 15.- Lift coefficient and unsteady normal-force characterfstics 
of the NACA 65-012 profile. 
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Section angle of attack, 4, dsg 
ha) Variafion of section lift coefficient with secfton angle of attack for various Mach numbers. 

Sedtion lift coefftcienf, c, 
(b) variation of sectian tnstedy nomd-focce cdicient 

with section Cff coefficient fx voricus Mach numbers. 

Mach number, M 

0.505 p .707 v HO 
0 556 p .732 h 334 
0 607 4.758 -360 
a!356 ~782 0896 

r.8 
- 

%5 

- .4 s 
c 

Mach number, M 

Figure 16.- Lift coefficient and unsteady normal-force characteristics 
of' the NACA 2-004 profile. 
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- .8 E .= J!!! ! 11 ! ! I 

0 4 8 12 
Section angle of attack, a., deg 

@) Variation of sectii lift coefficient with section angle of attack for various Moth numbers. 
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’ 4 0 2 .4 .6 -8 LO I2 
Section lift coeffcienf, c, 

(b) Wution of se&n unsteady riumol-fci?z coeffis&t 
wilhs&ionliftcceffiiientfwwiocsMachnuTlbers. 

Mach number, MI 

0 I , 

-% .6 a .8 .9 ID 
Mach number, M 

Figure lT.- Lift coefficient and unsteady normal-force chaxacteristics 
of the NACA 2-006 profile. 
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0 4 8 I2 
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Section angle of ottock, a,, deg 
(a) Variation of section lift coefficient with section angle of attack for various Mach numbers. 

.4 .6 .8 10 12 
Section lift coefficient, c, 

(b) Lbiatii of section ustedy IWTK%~CII’CE ~ffkient 
with section lift coeffcient for wriws Mx.h numbers. 

Moth number, M 

0.5u2 v.708 vB20 
a554 b 735 h 830 

0610 d.765 
a662 a.790 

9 854 1 
Aso0 

Mach rum&r, M 

ic) Sectkm ydecdy rrrmd-force CoeffCierd contws. 

Figure 18.- Lift coefficient and unsteady nom-force CharaCteriBtiCB 

of the NACA 2-008 profile. 
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Section angle of attack, u.,deg 

(a) Voriotion of secfion lift coefficient with sectbn angle of attack for various Mach numbers 
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Section lift cuefftient, c, 
(b) Mxiolion of sdx u-&dy ncmd-face coeffident 
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Mach number, M 
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A .650 A 775 a875 

0 

’ ’ lb 
Mach number, M 

(c) !s&kJn Lrlsfe@ l.txiTd-face coefkm czalbws. 

Figure 19.- Lift coefficient and unsteady normal-force chara&eri$tics 
of the NACA e-012 profile. 
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Figu 
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Section angle of attack, a., deg 
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(a) Voriati of section lift coefficient wlfh section angle of attack for various Ma& numbers. 

Moth number, M 
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I I I I t I I t 

0 2 .4 .6 .8 I.0 I.2 
Section lift coefficient, c, 

(b) Voriafim of section msteody nor&-force a&in&t 
wifh section lift meff~icienf fa various M&I numbers. 

Mach number, M 

.re 20.- Lift coefficient and unsteady normal-force characterietl 
of the NACA 65-212 profile. 
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(a) Variation af s&h lift coefficient with sf&f~ ang[e of atto& far v&s Ma& &ers. 

Section lift coefficient, c, 
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n 556 D -735 L -840 
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(c)secflon~normd-fcYce-confars. 

Figure 2l.- Lift coefficfent and unsteady normal-force characteristfce 
of the NACA 65-412 profile. 
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(a) Variation Of SectfOn lift coefficient with section angle of attack for various Mach numbers. 
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Figure 22.- Lift cokfficient and unsteady norplal-force characteristfce 
of the NACA 65-612 profile. 
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Q) Variation of section lift coeffkzient with section angle of attack for various Mach numbers. 
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Figure 23.- Lift coefficient and unsteady normal-force characteristics 
of the NACA s-204 profile. 
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Section angle of attack, u., deg 
&ZI) Variation of section fift coeffickznt with section angle of attack for various Mach numbers. 

Section lift coeffcient, c, 
(b) Witian of sctim mteody normal-~ aC!ffCient 
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.gure 24.- Lift coefficient and unsteady normal-force characterietics 
of the NACA 65-404 profile. 
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Section angle of attock, 4, deg 
Q) Variation of section lift coeftifent with sectic~~ angle of attack for varloue Mach rwnbere. 

Section lift coefficient, q 
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Figure 25.- &ift coefficients and unsteady norm&l-force characteristics 
of the NAC!A 63-010 profile. 
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b) Voriaticn of sectlon lift coefficient with s&h angle of attack for various Mach numbers. 
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Ire 26.- Lift coefficient and unsteady normal-force characterist 
of the NACA G-010 profile. 
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Figure 27.- Lift coefficient and unsteady normal-force characteristics 
of the- NACA 66-010 profile. 
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Figure 28.- Lift coefficient and unsteady normal-force characteristics 
of the NACA OOlO-0.27~&O/l.051 profile. 
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Figure 29.- Lift coefficient and unsteady norm&l-force characteristics 
of the NACA 0010-0.70&0/1.051 profile. 
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Figure 30.- Lift caefficient and unstedy normal-forqe characteristics 
of the NACA OOlO-1.10~40/1.051 profile. 
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Figure 31.- Lift coefficient and unsteady normal-force characteristics 
of the NACA OOlO-1.50~40/X.051 profile. 
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Figure 32.- Lift coefficient and unsteady normal-force characteristics 
of the lo-percent circular-arc profile with zero leading-edge radius. 
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Figure 33.- Lfft coefficient and unsteady normal-force characteristics 
of the lo-percent circular-arc profile tith 0.m leadfng-edge radius. 
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Figure 34.- Lift coefficient and unsteady normal-force characteristics 
of the lo-percent ci?&ular-asc profile with 0.70 leading-edge radius. 
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(a) NACA 65-series symmetrical profiles. 

Figure 35.- Variation of unstedy no&Xl-force coefficient with maxbun thickness-chord ratio. 
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(b) NACA g-series symmetrical profiles. 

Figure 35.- Concluded. 
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(a) NACA 65”series, l2-percent-thick profilee. 

figure 36.- variation of unsteady normal-force coefffcient tith aesigm lfft coeiffcient. 
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(b) NACA 65-series, 4-percent-thick profiles. 

Figure 36.- Concluded. 
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Figure 37.- Variation of uustedy normal-force coefficient with positIon of mInimUm preesure; 
NACA 6-series, lo-percent-thick symmetrIcal proffles. 
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Flgure 38.- Variation of unsteady normal-force coefficient with leading-edge radius. 
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Figure 38.- Concluded. 
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Figure 39.- Effect of maxirum thiclmess on the variation of section unsteady normal-force coeffi- 
cient tith section lift coefficient; NACA 65-series profiles. 
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. Figure 42.- Comparison of the lift and unsteady normal-force character- 
istics of 6-inch- and l2-igch-chord NACA 65-213, a = 0.5 profile. 
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Fqure 43.- Comparison of absolute and normalized epectral densities 
of the 6-inch- and 12-inch-chord NACA 65-213, a = 0.5 profile. 
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Figure bb.- c0pqmkm of spectial densltiei3 measurea tier iaentid test condlfions and 
different timee; K&CA 23013 profile, M = O&5, ~2 = 0.73. 
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Figure 45.- Histogram of an unsteady normeJ.-force coefficient, and comparison with a fitted 
normal probability density; NACA 65-213, a = 0.5 profile, M = 0.555, cl = 0.93. 
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Figure b-6.- Histogram of the ratio of the mean of the absolute value of 
unsteady normal-force coefficient to the root mean square for 887' 
simultaneous comparisons from nine profiles. 



i 

(a) NACA 65-110 profile. 

Figure 47.- Spectral densities of the uneteedy normal-force coefficient. 
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(b) NACA 23013 profile. 

FlguTe 47.- Continuea. 
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Figure 48.- Comparison of unsteady normal-force cheracteristks measured 
with the pressure cells and with the strati gage; NACA OW6-64 profile. 
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Figure 49.- Comparison of unsteady normal-force ch&cteristics measured 
with the pressure cells and with the strain gage; NACA 65-110 profile. 
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Figure 50.- Comparison of unsteady normal-force characteristics measured 
with the pressure cells and with the strain gage; NACA 23Ol? profile. 
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gure 51.- Comparison of unsteady normal-force characteristics measured 
with the pressure cells and with the strain gage; NACA 65-213, a = 0.5 
profile. 
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Figure 52.- Compezison of unsteady normal-force coefficients measured 
with the straight-line and with the curvilinear pressure-cell 
installations; NACA 65-010 profile. 



Figure 53.- Esldmated effect of the spanwise scale of correlation upon the uneteedy normal-force 
measurement0 of the strain gage. 
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(a) NACA 0006-64 profile, M = 0.556, cz = 0.74. 
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Figure 54.- Spectral densities of uxlsteady normal-force coefficient measured tith the preesure 
cells and with the strain gage. 
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(b) RICA 6+UO profile, M = 0.655, cl = 0.88. 

Figure 54.- CoutinueB. 
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(c) MACA 23013 profile, M - 0.655, cl = 0.73. 

Figure 5k.- Concluded. 



P 
B 
s Fraqueney, f, cps 

0 

P Figure 55.- Spectral density of the presrure coefficient measured with floor and ceiling pressure 
? g 

cells; NACA 0006-64. profile, M = 0.556, c1 = 0.74. 

H 

* . I . r I 


