AIRCRAFT CIRCULARS
 NATIONAL ADVISORY COMMITTEE FOR ARRONAUTIOS

No. 10

A KEW DE HAYTLLAMD COVGEROIAL AIRPLANE The D.H. 66 with Three Bristol "Jupiter" Engines

FILECOPY
 Ta bo roturned to the fies of the National
 Advisory Committee
 for Aeronautics
 Wa: ington, D. C.

TATIONAL ADVISORY COMNITTEE FOR AERONAUTICS.

AIRORAFT CIROULAR NO. 10.

A NEW DE EAVIILAND COMERCLIL AIRPLANE.*
The D. F. 66 with Thee Bristol "Jupiter" Engines.

The new De Eavilland airplane, type D. $\mathbf{H} .66$, which is now in course of construetion at the Stag Lane works of the De Havilland Aircraft Company, marks a considerable departure in several respects from nomal De Havilland practice. Thus in place of the all-wood plywood-covered fuselage, which has charecterized practically all De Havilland airplanes for a great numbor of years, the new three-encined airplane being built for Imporial Airvays, Itd., has e fuselage of all-steel construction as regards its main stmuture (Fig. I). The wings, on the other hand, orc of nomal De Havilland construction with box spars of wood and spruco ribs (Fig. 3).

The Fuselage

Although the De Havilland Aircraft Company has by this time ha.considereble experience in metal construction, it his not nitherto been possible to illustrate these forms of construction, as the airplanes so built have not becn commercial airplenes, and so have not been available for deteil illustration. That beine so, it is thought to bo of interest to illustrate in consiceroble detail the particular form of tubular construction employed *Fron "Flight," Jume 10, 1926.
in the D.F. 66, and consequently several of the sketches show various joints between struts, longerons, landing gear stmuts and winc roots as used in this oonstruction (rig. 4). The fuselage main structure is of the rectangular section type, ard the longerons do not run risit through from nose to stern, but are dirided at various points along their length, in places where a number of mombers meet. A seature of the construction is that the stcol struts and longorons are in most places providec ith duralumin ends sharod to suit local requirements and generally oither in the arm of rorked or plain ence for pin joints. Tre crossbracing is by oireular scotion tie-rods, and in certain panels where the strecses are exceptionally heavy these tie-rods are duplicatcd. The attachment of vertical and horizontal struts to the longerons is nomally by clips bent around the longerons and pinnca to them. The longerons are formed by sections of straight fubes, so that the contour of the fuselage is not formod by curves but by a series of straight lines at varying anglos. This, of course, is usual with tubular construction, es it ovoids the trouble and expense of pending the tubes, and the efect upon the head resistance of the fuselage is probably nogligible.

At the stern the fuselage does not terminate in a vertical stern post as is usually the case, but ends in a fairly wide flat panol. This form of construction is due to the fact that the D.H. 66 is providod with a biplane tail which, in order to
allow for trimming the stabilizer is built up as an independent unit, hinged to the top longerons at the corners of the last bay. The stabilizer trimming gear is enclosed in a casing which serves to streamline the rear portion of the fuselage, but which is.not a part of the main structure.

In front the fuselage tapers fairly abruptly to a very small engine plate for the central "Jupiter" engine. The engine plate itself is made of duralumim and appears to be extremely light. It is attached to the steel tube longerons by four large bolts, and the engine is thus readily removable. The front panel of the main fuselage is triangulated by steel tubes, and in the case of two of these tubes, tie rods run parallel with the tubes, although the latter are working in tension. The engine mounting is shown in Fig. 2, and some of its details are illustrated by sketches (Fig. 4), which should make the arrangement quite clear. The mounting is very clean, and leaves ample space for getting at the components mounted on the back of the engine.

One of the disadvantages of the steel tubular fuselage of the type of the D.H.66, is that the cabin has to be built up in the form of a three-ply "box" slipped into the fuselage from the top when the latter has been erected. The floor of the cabin has fairly stout cross members underneath, but these stop short inside the bottom longerons, and the cabin "box" is supported at the corners only, so as to avoid placing bending stresses on the
N.A.C.A. Aircraft Circular No. 10
lower longerons due to the weight of the cabin and its contents. The actual supports under the corners of the cabin are in the form of wood blocks, shaped to fit over the top of the cross tubes in the bottom panel of the fuselage, so that all the stresses are concentrated very close to the joints and the bending moments imposed are a minimum.

As the De Havilland type 66 is intended for use on the Cairo-Baghdad Ine which it is hoped to open next spring, the whole of the cabin space will probably not be devoted to passenger accommodation, and at the moment we understand it is intended to provide seats for seven passengers only, the rest of the space available (465 cu.ft.) being intended for goods and mails. Should it later be desired to use the airplane entirely for pas-senger-carrying, a number of extra seats would, of course, be fitted.

Aft of the cabin is another "box" of plywood which forms the luggage compartment. Vertical strips of wood of semicircular section are tacked to the cabin in order to protect and stiffen the plywood against accidental damage by heavy luggage. The compartment is a large one (155 cu.ft.) and should be ample for the amount of personal luggage likely to be required for seven passengers. It is provided with a separate door.

In the general arrangement drawings (Fig. 5) will be seen a peculiar funnel projecting from the roof of the fuselage. This is a ventilator which, owing to the speed of the airplane,
will force cir into a diffuscr box from which in turn, fresh air nill ailtor into the obin rithout caviry a drought. Datains f the ventilatine arrangenent cennot bo given at the prosent timo.

The winge

As ciready nentioned, the wings of the D. $\mathrm{D}, 6 \mathrm{G}$ are of pefectly normal construction, with box spars havine plywood vails and sprucc flanges (Fis. B). At the points wore ocur the attachmonts for the interplene stmuts, internel packing picces aro introcucod and the form of theso is illustrated, from which it will be scon that these distance picocs are built un fam multi-ply spruce. The ribs are of spruco and aro of the en, type as hos boen used by the Do Favilland Aircraft Conpry in a great number of their types during rocont years. Tho wirs sootion used is R.A.F.15. The wing covering is fabrio, dopod and varnished in the usual menner. Leading and trailing odges are in the fom of duralumin tubes, but with tho excoption of these and the internel drog bracing, the vings are of all-rood construction. Owing to the fact that two wing ongincs are mounted on the lower wing, the construction has been sonewhet altered at the points where these two ongincs are rounted. From onc cf our sketchos (Fig. 3) which illustrates the framework carivinc. one of the wing exines, it will be seen that the lomer wing: corporates ot this point a syster of triangulation formod by the front spar and two stout box ribs, the apex of the trianglo
falling on the rear spar. A result of this triangulated engine support is that the end rib of this section of the wing hes a fairly pronnunced rake. (The outcr portion of the wing is, ff course, rakod at its inner end to tho same anglo.) Tro onginc olc.te itself is bolted to this triangular structure and the Eront aper.

The Tail

One of the unusual features in the dosign of the D.H. 66 is the tail unit. This conprises a biplane tail with a single elevator hinged to the lower stabilizer only, and of threc vertical fins and threc rudders. The tail unit is built in two symmetrical halves in order to reduce the number of spares necessary. Thus a spare fin can be used either in the contral portion or in one of the two outer positions, and the same applies to the rudders. Equally, the two halves of each of the stabilizers are identical, so that a spare for either can be used at will on the port or starboard side.

Another unusual feature of the tail design is the nethod adopted for trimming the tail. Owing to the rigidly-braced oiplane structure, the usual tail trimming gears could not well. be employed, and in place of this the designers of the D. H .66 have adopted a system which is similar in principle to, although quite different in detail from, the trimming gear patented by the Westland Aircraft Morks. The lower stabilizer is hinged to the main fuselage at the rear ends of the top longerons, and is
bracec by an inverted pyramid of steel tubes meeting at a point in line with the lower surface of the fuselage. A worm seer is interposed between the fixed portion of the fusclage and tho apex of this inverted pyramid, so that when the worm gear is rotated the top of the pyramid is brought closer to or farther away from the fixed fuselage stmoture, acoording to the cirection of rotation. The tail-trimming gear, eteel-tuoo pyramia, otc., arc cncloscd in a light casing, which serves to fair off the rear portion of the fuselage, and means are providod for covcring up the gap between the fixod and moving parts whon the tail is trimed to its smallcst angle of incidence.

Tho Landing Gear

Tho landing gear is of conventional type, with bont axles and V supporting struts, of which the front ones are tolescopic and contain the usual rubber blocks working in compression. Goncrally spaking, the landing gear is similar to that of the D. H. 54.

Tho Power Plant

Reforence has already been made to the mounting of the threc Bristol "Jupiter" cngines, and to the illustrations howing tho ongine plate for the contral ongine and the ving structure supporting the engino plates of the wing engines. A reference to the front elevation of the airplane will show that by so arranging the design, that the central ongine is considerably
above the level of the wing engines, it has been possible to avoid overlepping of the propeller discs without placing the Wing ongincs excossively far out from the fusclage. Experionco with threc-cnginca airolancs socms to show that fluttor ane vibration aro apt to ocour when the propellor discs overlep, ond in the E. F. 66 there should be no trouble on this score, as the slipstreams should clear one anothor by a considerablo marin.

The wain gasoline tanks are placed in the conter section of tho top wing so as to give eirect gravity feed to the ongines, with consequent simplification of the gesoline syetcm. As the aimplane is requirod to hovo a rather large cruising radius, tho fur cepacity is hiph, i.e., 300 gallons, and in contomplating the airplano from tho point of view of poying loac carried, this fact should be kept in mind, as tho gesoline and oil to be cerried account for no 1 ess than 2500 Ib . of the disposable lond.

Cortoin other features of tho D. 6.66 oro worthy of a closor study, but it is preferred to deror a retorence to theso wotil o. later dato. No performenco figures ero availeble at prosist, but the following figures of weight, ctc., may be of intcrest. The weight of the airplane empty is 9060 lb . The weight of fuel and oil is 2500 1b., and of pilot and navigator 360 1b., lecving a paying load of 2260 Ib . As the total loadec. weight of the airplane is estimated at $14,70010$. , there is an item of 520 Ib . not accounted for. This weight is believed to be revrescated
N. A. C.A. Aircraft Circular No. 10
by instruments, cabin equipment, etc., which are not inclurcd in the figure for enpty weight. As the wing area is 1553 sc.ft., the wing loading is 3.57 1b./sq.ft.

THE D.H. 66 : Three-quarter front view of the fuselage in skeleton. The main structure is of steel tube, and cabin, luggage compartment, etc., are in the form of "boxes" of three-ply, slipped into the main structure.

THE D.H. 66: The mounting for the central engine is extremely neat and simple. The ensine plate is made of Duralumin and is very light. Details of this mounting are illustrated by sketches.

Fig. 2

THE D.H. 66 : Sketch showing the triangulated structure in the lower plane, which carries one of the wing engines. The undercarriage struts are attached to the two fittings at front and rear ends of the longitudinal tube.

Fig. 3
$17 G 2 R . S$.

Fig. 4 Some constructional details. 1, shows the fuselage joint at the point where are attached the front spar or the lower wing and the inner end of the wheel axie. 2 is another fuselage joint slightly farther aft. This sketch was made from a fuselage side lying on trestles, and the sloping strut is actually vertical, while the wiring plates visible below the longeron belong to the cross-bracing of the floor panel of the bay. The joints in the rear portion of the fuselage are of the type illustrated in 3. All the steel tube struts and longerons have Duralumin ends, forked or plain, according to local requirements. Some details of the mounting of the nose engine are shown in 4. The engine plate itself is of Duralumin and is very light. It should be pointed out that the sketch is a rear view, and shows the back of the engine plate.

Fig. 6 some spar details. On the left, the distance-pieces separating the spar flanges in the inner bay. and on the right, the same, but in a slightly different form, in the end sections of the wing. The spars are of spruce, spindled out as indicated, and the distance-pieces are of laminated spruce, while the spar walls are of three-ply.

1763 A.S.

Fig. 5 The D.H. 66 Commercial airplane

