
 
 
 

 

 

 
 

PERTURBATION OF RENEWAL PROCESSES 

Osman Caglar Akin, B.Sc.,M.Sc. 

 
 
 
 
 
 
 
 

Dissertation Prepared for the Degree of 

DOCTOR OF PHILOSOPHY 

 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITY OF NORTH TEXAS 
 

May 2008 

 
 

APPROVED: 
 
Paolo Grigolini, Major Professor 
William D. Deering, Committee Member 
Arkadii Krokhin, Committee Member 
James Roberts, Committee Member 
Chris L. Littler, Chair of the Department 

of Physics 
Sandra L. Terrell, Dean of the Robert B. 

Toulouse School of Graduate 
Studies 



Akin, Osman Caglar. Perturbation of renewal processes. Doctor of Philosophy 

(Physics), May 2008, 140 pp., 43 illustrations, references, 109 titles. 

          Renewal theory began development in the early 1940s, as the need for it in the 

industrial engineering sub-discipline operations research had risen. In time, the theory found 

applications in many stochastic processes. In this thesis I investigated the effect of seasonal 

effects on Poisson and non-Poisson renewal processes in the form of perturbations. It was 

determined that the statistical analysis methods developed at UNT Center for Nonlinear 

Science can be used to detect the effects of seasonality on the data obtained from 

Poisson/non-Poisson renewal systems. It is proved that a perturbed Poisson process can 

serve as a paradigmatic model for a case where seasonality is correlated to the noise and 

that diffusion entropy method can be utilized in revealing this relation. A renewal model 

making a connection with the stochastic resonance phenomena is used to analyze a 

previous neurological experiment, and it was shown that under the effect of a nonlinear 

perturbation, a non-Poisson system statistics may make a transition and end up in the of 

Poisson basin of statistics. I determine that nonlinear perturbation of the power index for a 

complex system will lead to a change in the complexity characteristics of the system, i.e.,  

the system will reach a new form of complexity. 
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CHAPTER 1

INTRODUCTION

The research work whose results are illustrated in this thesis has been originally mo-

tivated by the statistical analysis of data produced by complex processes, with clear sign

of time periodicity. A paradigmatic case is given by the data, recently analyzed by the

researchers of the UNT and TWU Centers for Nonlinear Science, on the number of

babies born per day to teenager mothers in Texas. These data exhibit a clear annual

periodicity, and the UNT and TWU researchers have been trying to assess which is the

real complexity of this sociological system. The annual periodicity may generate the

false impression that the system is complex. Complexity, in fact, is supposed to be a

consequence of the spontaneous sociological self-organization, which is expected to be

independent of the annual periodicity. Annual periodicity, on the other hand, is a form of

deterministic process that may in
uence the evaluation of the delicate balance between

order and disorder, which is the main purpose of the research work of the researchers of

the UNT and TWU Centers for Nonlinear Science.

For this reason the �rst part of this thesis discusses the case of a Poisson system under

the in
uence of a periodic perturbation. To deal with this important issue we I establish

a close connection with the popular phenomenon of stochastic resonance (SR). I study

the condition under which the sequence of the time intervals between two consecutive

events exhibit evident signs of periodicity, and study these sequences with the di�usion

entropy method, originally proposed by the researchers of the UNT and TWU Centers

for Nonlinear Science, to analyze data of sociological interest. I consequently recognize

a way to establish whether the unperturbed process is complex or not.

An important discovery made in the �rst part of this thesis is the exponential cascade

e�ect, corresponding to the experimental observation made via the experiments of Siegel

and Moss and co-workers more than a decade ago. These authors applied a strong
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harmonic perturbation to a neuron system and found that the histogram of the time

distances between two consecutive �ring events is a sequel of equally spaced peaks,

whose intensity decays exponentially in time, thereby justifying the adoption of the term

exponential cascade to denote the e�ect.

The second part of this thesis illustrates the research work done to establish if the

exponential cascade is a compelling evidence of the Poisson nature of the unperturbed

system. For this reason, in the second part of this thesis, I address the problem, more

di�cult from both theoretical and numerical point of view, of the harmonic perturbation

of a non-Poisson renewal system.

The second part of the thesis contains several important results. The �rst, of interest

for the original problem, is that the di�usion entropy method allows us in this case to

establish the complexity of the unperturbed system, without operating any de-trending

process.

In addition to this important result I notice that the exponential cascade phenomenon

is not a compelling signature of the Poisson nature of the unperturbed system. The

adoption of strong perturbation may have the e�ect of producing the exponential cascade

phenomenon, even in the non-Poisson case. However, the exponential cascade in some

cases is the signature of a genuine transition from non-Poisson statistics, whereas in other

cases the adoption of the di�usion entropy method reveals that the system maintains its

original non-Poisson character.

I recognize a third case, where the joint action of harmonic perturbation and non-

Poisson unperturbed statistics produces a new form of complexity that is totally unex-

pected. This phenomenon is a clear indication that the complexity evaluation must be

operated without using any de-trending procedure. The action of a harmonic pertur-

bation on a complex system does not generate the trivial superposition of two distinct

contributions, but a new form of complexity that may be the indication that a complex

system, under the in
uence of a harmonic perturbation, evolves towards a di�erent form

of complexity.

2



CHAPTER 2

SCALING AND SELF SIMILARITY IN PHYSICS

2.1. Introduction

In this chapter, I discuss the basic concepts of self similarity and scaling in physics

since it applies to our tools of time series analysis in the science of Complexity. I �rst

discuss the observed power laws in nature, since such distributions are based on some

peculiarities, and manifests a basic di�erence form the famous exponential distribution

of the Poisson processes observed in radioactive decay processes where each constituent

acts independently from the other so as to form a constant rate Poisson process with a

exponential decay of the waiting times. The power laws are important as physical laws

since they lack a characteristic scale. At this point we can make the connection with the

concept of scaling where the solution of a di�erential equation may be scaling as functions

of the time variable or space variable or some other derived parameters. Scaling concepts

are important from the point of view of time series analysis since a distribution function,

which might as well be the probability distribution function of some variables like space

and time, p(x; t), may possess a functional form, so as to satisfy a scaling relationship.

I cover the basic scaling concepts in physics making the connection to the following

statement: if a function satis�es the scaling condition, having known its distribution at

some point in time, one may infer the expected form of the distribution function at a

di�erent time. I later discuss how to determine whether the scaling condition is satis�ed

by a certain time series and if it is satis�ed what should be the particular constants of

scaling to form the di�usion process under consideration in later chapters.

2.2. Power Laws in Nature

There are very well established arguments that say that systems in thermodynamic

equilibrium have correlations which decay exponentially over space and time. The decay
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rates are given as the reciprocals of the correlation length and the correlation time, and

they are a measure of how big a typical 
uctuation should be. [1]. But systems that are

non-equilibrium systems like the turbulent 
ow regime,or systems like those on the verge

of a phase transition i.e., critical systems, have 
uctuations which decay as power laws.

For that matter, systems in phase transition and those far from equilibrium are considered

complex systems. So, where ever we see power laws, there is a common consensus that

something interesting and complex must be in play.

Exponential distribution tell us about a natural scale of the physical phenomenon to

occur but power laws do not, because in Power laws there are no natural scale parameters.

This property of the power laws have obvious connections with fractals observed in nature

since they also lack a natural scale parameter over a wide scale range of size distributions

and possess the property of self similarity , or some sort of self similarity with some

modi�cations (self a�nity). And on the other hand, there are lots and lots of power laws

observed in nature in statistical data, from earthquakes to blinking quantum dots, and

even to some econo-physics phenomena or some social processes, and for that reason

they are also referred to as Pareto distributions after the sociologist Vilfredo Pareto.

Vilfredo Pareto was among the �rst researchers to notice the universality of power

laws in economics. While giving a talk in the �rst years of the 20th century in Geneva [2],

Pareto was attacked by the German sociologist Gustav von Schmoller during a conference.

During Pareto`s presentation Schmoller attacked Pareto`s ideas about the existence of

mathematical laws in Economics. Next day, posing as a beggar, Pareto approaches

Schmoller asking \Sir, is there a restaurant around here where I can eat for nothing?".

As Schmoller responds "My dear man, there are no such restaurants, but there is a place

around the corner where you can have good meal pretty cheaply",\Aha" said Pareto,\So

there are laws in economics".

And indeed there are mathematical laws in economics . Price movement distributions

for stocks in New York and NASDAQ stock exchanges when plotted on a log-log plot

reveals a very nice power law distribution, where the price movement for each stock is

normalized by dividing the standard deviation in price movement for that stock. It has
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been shown that calm time intervals, de�ned as the time interval between two successive

price changes above a �xed threshold obeys a power law decay. It has also been shown

that the power law exponent monotonically decreases with respect to the threshold [3].

Historically, the very �rst power law observed (in 1897) by Vilfredo Pareto was for the

distribution of income in UK, and subsequently in Prussia, Saxony, Paris and some Italian

cities [4].

Pareto was not the only person to notice power laws in nature. What is known as

Zipf's law refers to the size of an occurrence of an event relative to its rank. As a

Linguistic Professor at University of Harvard, George Kingsley Zipf was investigating the

ranking of words in languages according to their usage. He was concerned with how

many times a certain word was being used in the languages and wanted to rank these

words. What he noticed was a power law relation between the frequency of usage of the

word and its ranking as y � r b where y stands for the frequency, r for ranking of the

word and b is the exponent close to but usually slightly larger than 1 in this particular

case [5].

The power law distribution of various variables is abundant in nature. To note some

of them [6], the distribution of city populations, moon craters, size distributions of earth-

quakes, the size distribution of moon craters and solar 
ares, computer �les, wars, the

distribution of number of papers scientists publish per capita, the number of citations

received by papers, the number of hits on web pages, the number of species in biological

taxa, distribution of peoples annual incomes, the size distribution of frequency changes

of the neutron star pulses which are attributable to the quakes at neutron stars (which

are also referred to as star-quakes) [7], all show power law distributions.. As will be

discussed on the part concerning the renewal processes, what is expected is if there is

no organization between the constituents of a physical system, and that the rate of the

stochastic process is a constant and hence anytime is as good as any other time for an

event to occur, such systems result in an exponential probability distribution. So the

mere fact that we have power laws for the probability distribution functions instead of

exponentials makes us alert about the fact that we are faced with a system in which the
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interactions and cooperations between the constituents of a system play a crucial role,

and/or the system is in a phase transition state being far from the conditions of statistical

equilibrium. One such system is that of turbulence, in which a large number of molecules

cooperate in such a way as to form curls and then turbulence where as there seems to

be no such reason for the individual molecules making up the system to collaborate. And

there is also the fact that, the time distribution of intermittent behavior in a 
uid 
ow

also possesses power law distributed behavior, which has no correlations in time in and

amongst themselves whatsoever, and therefore seems to reveal renewal properties.

It appears that the number copies of books sold over a few decades in the U.S.

also displays a power law distribution [6],[8]. The cumulative distribution of the number

of calls arriving at each phone number in the U.S. displays a power law distribution

[6],[9] as well. Note that this is not the number of calls arriving at the central, since

for reasons explained in the part concerning the Poisson renewal Processes, the waiting

time distribution between successive calls arriving at the central displays an exponential

distribution, because each and every subscriber does not interact with another and the

call may come at any time, if we ignore the obvious time dependencies like day and night

etc. The power law distribution is also the case for the number of e-mails received and

sent by individuals [6],[10]. In social life, apparently power laws �nd their place easily, as

it goes, the number of actors that has links to k others decay following a power law, if

we consider the link as between the actors acting in the same movie, just like the number

of connections of an airport to other airports, the histogram will display a power law.

There is yet another case where we de�ne the Erdos number based on the links to

reach the papers published by the famous mathematician Paul Erdos in the Mathemati-

cians community, a common publication with him referring to an Erdos number of 1, a

publication with someone who has co-authored with Erdos having and Erdos number of

2 etc. If we plot the histogram for the number of mathematicians versus their Erdos

number it calls for a power law as well.

Power laws, just like scaling relationships are scale invariant,they display invariance

under scale change. In a relationship of the form f (x) = �x�, if we set, x 0� ! ��x� and
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f (x 0) ! ��f (x), the functional relationship is preserved as f (x 0) = �(x 0)�. A change

in the scale of the independent variable preserves the functional form of the original

equation. This implies that such relationships are not associated with a particular scale,

so they are scale free and true on all scales, possess the same statistical properties on any

scale. Near phase transition systems, or the onset of magnetization when temperature

is changed or the transition between dynamical regimes via bifurcations in deterministic

systems that are essentially deterministic, become critical and adequate quantities to

describe their dynamics such as the magnitude of 
uctuations of the correlation lengths

become power laws. A system can reach this critical condition via changes of an external

parameter such as temperature, or that it may reach this state through a change in the

internal dynamics of the system, where we name the state of the system as self organized

criticality. Theoretical and empirical investigations suggest that biological and ecological

systems seem to operate near a critical state, which results in the abundance of power

laws in their dynamics [11].

One should keep in mind that criticality is not necessarily the only means of generating

power laws in systems. There are well established theories of Renewal, Modulation and

Superstatistics that lead to power laws[12]. And also Tsallis statistics, which is a recipe

for rearranging and modifying normal statistical mechanics by means of a parameter q

so that it produces power law distributions [13]. In our work we investigate renewal (or

in other cases modulation) systems as generating power law distributions of the kind

(2.1)  (�) = (�0 � 1)
T �0�1

0

(� + T0)�0

which is observed many times in nature in the sojourn times for the occurrence of inter-

mittent eddies in 
uid 
ow and 
uorescence intermittency in blinking quantum dots and

single molecule spectroscopy.

2.3. Scaling Concepts in Physics

There are very well established Scaling or in other words Power Law relations in

Physics, a few examples are as follows [14]
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� The scaling law for the breathing rate % of the animals %(M) = AMn. where M

is the body mass of the animal and A and n are constants.

� The scaling law for the velocity distribution �(d) near a wall in a turbulent shear


ow. �(d) = Adn, where again A and n are constants.

� The scaling law for the radius of the shock wave after a nuclear explosion

Rf (t) = (Et�a )
1
5 , where Rf denotes the radius of the wavefront, E for energy, t

for the time after the explosion and �a is the density of the air.

Scaling laws reproduce themselves in all scales as a consequence of their built in self-

similarity, in a sense they reproduce themselves in space and in time. One of the �rst

scaling laws ever to enter into the discussion of mathematical physics was that derived

by J.B.J. Fourier in 1822, for the phenomenon of heat conduction. Solving the partial

di�erential equation for heat conduction [18]

(2.2) @t� = @2
xx�

Fourier arrived at the equation

(2.3) �(x; t) =
Ap
t
e� x2

4t =
Ap
t
f (

xp
t

)

where A is a constant, � is time and space dependent variable temperature, x and

t denote the variables for space and time respectively. The function f here could have

assumed other forms, yet the important thing is that the solution to the partial di�erential

equation can be written in terms of a variable which could be re-scaled, namely f (x; t) =

f ( xp
t ). In self-similar coordinates, (�

p
t, xpt ), once the dependence of the variable � is

solved for a particular time t, it could simply be inferred from the self similar form of the

solution for a later, or an earlier t 0. So obtaining self-similar solutions in the form of the

above scaling form is very important for it comes up with a lot of practical advantages

in science. In general we will refer to solutions of the form

(2.4) T (x; t) =
A
t�
f (
x
t�

)
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as satisfying scaling relations, where the values for � 6= 0:5 will be referred to as satisfying

anomalous scaling conditions. Such scaling relations with anomalous scaling coe�cients

have been derived as early as 1942 by Guderley [15][14] where he studied a very intense

implosion wavefront being in the form of a converging spherical or cylindrical shock

wave, and also by Weizsacker (1954) [14][16] and Zeldovich (1956) in the problem of

an impulsive loading, the plane analogue of the implosion wavefront problem. In these

problems the self similar solution came in the form of a scaling relation with some certain

values of the scaling coe�cient � not only di�erent from 0:5 but also in the form of some

transcendental numbers.

In a di�erent sense one also notices that di�usion processes also satisfy a self similar

solution but sometimes with an anomalous scaling as well, in which case if � < 0:5

we will refer to the anomalous di�usion process as sub-di�usion, and for � > 0:5 as

super-di�usion.

2.4. Fractals and Self-Similarity in Nature

In colloquial usage, a fractal is \a rough or fragmented geometric shape which can be

subdivided into smaller parts where each of these smaller parts is at least approximately

a reduced size or copy of the whole". Mathematically a fractal is a set of points whose

fractal dimension (the meaning of which is to be discussed below), exceeds its topological

dimension [19].The term is de�ned by Benoit Mandelbrot in 1975 and was derived from

the Latin word fractus meaning broken or fractured [20] . This root in Latin is a fecund

one in physics cause the term refraction of the refraction index also comes from a similar

word in Latin, frangare which means to break [21]. Where a function \breaks," it is not

di�erentiable, and �rst ever fractal was discovered on this key issue by Karl Weierstrass

investigating the everywhere continuous but nowhere di�erentiable function in the year

1861. [22].

Benoit Mandelbrot realized that in nature the ideal shapes like perfect spheres, in�nite

lines and circles are rare, what is more common however, is the shapes like that of trees,

coasts mountains, often irregular looking and certainly very di�cult to express in terms
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of Euclidean geometry. If you look closer to a circle it looks like a line and if you look

closer to a line it appears straight as a line again. Likewise, if you look closer with a

birdseye view to a coast, it looks crinkly and if you look closer again it looks similar,

as you come closer you will see similar structures with identical degree of crinkliness.

Fractals are those shapes that have such structures, that have essentially similar features

at smaller scales with identical (self-similar) or similar (self-a�ne) degrees of crinkliness.

In fact nature hardly resembles Plato`s world of ideal shapes. He was Mandelbrot to

�rst make this concept popular in science. Mandelbrot was born to a Lithuanian-Jewish

family in Poland in 1924. When he was 12 his family had to leave Poland for Paris

because of the rise of Nazism in Germany. His family was smart to foresee the possible

consequences of a Nazi invasion in Warshaw, which by then had a Jewish population of

about half a million. He had to leave Paris during the war for Tulle, and when the war

was over he started at Ecole Polytechnique, where he was working as a student of Paul

Levy and Gaston Julia. It turned out that having had to migrate to France and then

to U.S. for Mandelbrot has been very fruitful for the advancement of science of fractals

after all, since he learnt about the mathematical background in France From Levy and

Julia, and had a chance to use the IBM computers for the experimental investigation in

the U.S.

2.5. Generic examples of self similarity

2.6. Sierpinski Gasket

Nature presents us with some structures which possess self similar structures. This

is so even when the way to construct the structures appears arbitrary, somewhat chaotic

so to speak. Let us play "the chaos game" [23] [24] [25] proposed by Dr. Michael F.

Barnsley at this point. Here are the rules for any triangle chosen as the playground:

� Step 1. Take a starting point anywhere on the triangle, randomly

� Step 2. Randomly choose a number from 1,2 and 3 where each point of the

triangle is denoted with one of these numbers.
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� Step 3. Move halfway from the starting point towards the corner denoted by

the number in Rule 2. This new point will act as the new starting point for the

next step.

� Step 4. Go to Step 2 and repeat the iteration.

As this procedure involves randomness at the beginning, choosing an arbitrary point on

the triangle, and randomness at each iteration, choosing the corner to approach randomly,

one might be compelled to think that the resulting pattern formed by the set of points

emerging from the iteration will smear inside the triangle arbitrarily. On the contrary,

Barnsley points out to the fact that, even if the iterations contain a good degree of

randomness the resulting system forms an A�ne transformation which even when we

start with arbitrary initial conditions will lead us to some sort of a Strange Attractor

for these rules, which , is shown in the �gure for an isosceles triangle, and is named A

Sierpinski Gasket, denoted usually by S. Sierpinski gasket has interesting properties, like

if you take a smaller triangle inside the main triangle and magnify it you will see exactly

the same picture, henceforth the structure is a self-similar one.

Figure 2.1. Sierpinski gasket (a) and Sierpinski carpet (b).

Figures possessing fractal properties are centuries old. In 1525, the German artist Al-

brecht Duerer published The Painters Manual containing a section named \tile patterns

formed by pentagons" [22]. Dueres pentagons largely resembles the Sierpinski carpet

Figure.(2.1.b) formed with squares, replacing squares with pentagons. The �rst mathe-

matical fractal was discovered in 1861 by Karl Weierstrass. He was obsessed with rigor,
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and his quest led to the nowhere di�erentiable continuous function, a curve consisting

of corners and corners only. Its rate of change at any particular point was impossible to

de�ne, and there was no smoothness anywhere. At the time, scientists were inclined to

think that Weierstarss function was an aberration of the mind and nothing more than a

pathology and it is not to be found in nature. But they could not have been more far

from reality.

One can talk about a typical size of an object like a pen. However, it is not always

possible to talk about a typical cloud, since it consists of parts similar to itself in a broad

scale. Is there really a typical dimension for clouds? Is a lump here have dimensions of

30m, or could it be 300m or may be it is 3km or why not 30km? Since a part of a cloud

is still a cloud, and they look quite similar on a very large range of scales, it does not

really make sense to speak about typical dimensions of a cloud. For that matter clouds

will form a good example of self similarity in nature. Any object we put in between two

parallel mirrors will form self similar patters, smaller and smaller re
ections,which goes

ad in�nitum. When we use the concept in the context of fractals, self similarity means

that \ a part of the whole looks like the whole itself," and this concept is ubiquitous in

nature too. A part of a cloud often has very similar features as the whole. Apart of a

border looks like its smaller parts. And a terrain forms similar features as the mountains.

An arc of a circle itself is not a circle. If we take a side of a triangle it is not triangular.

Yet in nature self similarity is abundant. Trees, clouds and mountains all resemble smaller

parts of themselves. Most Euclidian shapes do not have this property of self similarity.

But then again, in nature what we see is often not Euclidian shapes, perfect lines or

circles. What we see instead are self similar structures like the coast patterns on an

extended range. If we take a look at smaller pieces of borders or coast lines, which are

not perfect lines themselves, we see that at a smaller scale the structure looks similar.

Those shapes are incredibly complicated if we try to describe them with Euclidian terms.

Still they share an a�nity with the so-called pathological shapes of modern mathematics,

displaying an in�nite series of motifs repeating itself on �ner and �ner scales.

12



2.6.1. Koch Island

One such example is a construct initially used to model a snow
ake by Helge von Koch

(1870-1924) in 1904 [26]. The shape utilized has an in�nite length but being contained

in a �nite area. It has no tangent or smoothness anywhere. Taking a snapshot of smaller

and smaller areas of the Koch curve, one will notice that a structure repeats itself so

we may call it a self similar structure. The so called Koch curve or Koch snow
ake

has in�nite circumference but a �nite area, for this reason some curves having similar

properties are referred to as \monster curves."

The generation of Koch curve is illustrated in Figure.(2.6.1) as follows. Let`s com-

mence with a line segment of length 1 shown in Figure.(2.6.1) by n = 0. The next step

will be taking of the middle one third of the line segment out and replace it with two

other parts each one of the same length instead, each in a position to form the sides

of an isosceles triangle as shown in Figure.(2.6.1) by n = 1. So at this point it has a

total length of 4
3 . The same procedure can be applied again to each one of the pieces

and then the total length length will still be increased by a factor of 4
3 yet again, which

is illustrated in Figure.(2.6.1) by n = 2. In each and every iteration the total length will

be multiplied by the same factor of 4
3 , ad in�nitum, and in the limit as n !1 the Koch

curve emerges. The circumference of the Koch island is thus

(2.5) lim
n!1L = 3(

4
3

)n !1

So, measuring the Koch curve in terms of length is not quite possible. So let us

consider Koch curve from a point of view of its space �lling properties. This kind of

reasoning is developed by Felix Hausdor� (1869-1942). In this regard, let's take a look

at Figure.(2.6.1) which I drew using Micrographix Designer 4.1 program, and consider

the area covered by the boundary. Let us start by covering the perimeter with N0 = 3

circles of radii r0 = 1
2 as shown in Figure.(2.6.1). There are N1 = 12 circles of radii

r1 = 1
6 for the second approximation. For the third approximation the number of circles
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is N3 = 48 while the radii of the circles is r2 = 1
18 . It is evident that if one proceeds with

the same method always using circles of smaller radii which follows

(2.6) rn =
1

2 � (3n)

and increasing in number as

(2.7) Nn = 3 � (4n)

the area covered by the circles at the nth iteration as n tends to in�nity reads

(2.8) lim
n!1An = lim

n!1
3
4
�(

4
9

)n ! 0

So considered in terms of area, the boundary has zero area, but when considered in terms

of its length the circumference of the Koch island, namely the length of the boundary is

in�nite! It simply means that the size of the boundary can neither be measured in terms

of length nor in terms of area. Hence this might imply that the perimeter of the Koch

island, has a dimension somewhere in between one and two dimensional objects.

So let's evaluate the number of circles necessary to �ll the area on the circumference

Nn in terms of the radius rn using Eq.(2.6) and Eq.(2.7)

(2.9) N(rn) = 3 � (4n) = 3 � (4�
log(2rn)
log(3) ) = 3(2r

� log(4)
log(3)

n ) � r�Dn
where D = log(4)

log(3) � 1:26. Now let's notice that for a line N(rn) � 1
rn and for an area

N(rn) � 1
r2
n

.Suppose N(rn) is the minimum number of balls of radius rn required for

covering a set, and N(rn) � r�Dn where D is not an integer. In this case we call the set a

fractal with a fractal dimension of D. Now we can come back to the de�nition of what

a fractal is and we can quote Sornette at this point to illuminate a little bit more the

de�nition, \The de�nition based solely on dimension is too narrow, and it is better to

view a fractal set as possessing a �ne structure, too much irregularity to be discussed in

traditional geometric language, both locally and globally, some form of self similarity, a
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fractal dimension somehow de�ned, which is greater than its topological dimension, and

a simple usually recursive de�nition" [19]

Figure 2.2. Generation of the Koch curve starting from a line segment

of length I.

Figure 2.3. Circumference of the Koch island in the �rst, second and

third approximations.

Figure 2.4. Area of the Koch island in the �rst second and third approximations.

2.7. Coasts and Borders as Self-Similar Structures

The statistics of war has been studied by L.F. Richardson [27] and in it has been

detected that the number of wars initiated globally in any given interval of time follows
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a Poisson distribution [28]. It has also been realized that the number of wars waged in

a certain period when plotted in chronological order is akin to a rate modulated Poisson

process [29]. This suggests that the onset of war is essentially a random process [30].

Richardson`s data, when analyzed based on two warring countries, of 94 wars between

2 countries only 12 were not neighboring countries, suggesting that sharing a common

border is one of the main reasons to go to war, implying that war is basically a neighbor

a�air [30].

But the question how one determines the border between two countries is a basic

question to ask [28]. Yet, if one has ever been to the Aegean coast, it is almost inevitable

to ask the question, "How long this entire coast should be?" because the coast is one

of the most crinkly coasts of all in the entire world. It is interesting to note that the

same kind of question is also asked by Penck in 1894. He noticed that the scale of

measurement a�ects the result of the total measurement, in other words, the length of

the coastlines or the length of borders between countries depends on the length of the

yardstick one uses [28].

L.F.Richardson also pointed out that reported borderlines by the neighboring countries

are di�erent, like Spanish-Portuguese border was reported to be 987 km by the Spanish

and 1214km by the Portuguese. He reported that the di�erences might be due to the

length of the measurement stick length used. Paul Addison [31] gives a prescription for

the relationship between the length of a coastline or borderline and the measurement

scale as follows.

� set the yardstick length to �

� Plot the total length L in a log(L) versus log(�) graph, where L = N�, N is

the coast length in units of �.

� The resulting graph displays a log(L) = H � log(�) form.

Such plots are called Richardson plots. If in Richardson plot, for a certain range of �

one can de�ne a slope H1 on the plot, and another slope H2 for another range of �, we

refer to such structures as multi-fractals since di�erent fractal structures are intertwined
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in the overall structure. Of course the slope H will be a tool to de�ne for us the fractal

dimension, much like the Koch island structure de�nes for us a certain fractal dimension.

For all that matters, fractals will obey power law forms, or put in a more neat way, fractals

are one of the structures that obey power law relations. Not all power law relations imply

a fractal structure the way we de�ne it here, however, all fractals will obey some kind of

power law with regard to its dimension and measurement scale. [29].
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CHAPTER 3

RENEWAL THEORY, POISSON AND NON-POISSON RENEWAL PROCESSES

3.1. Introduction

In this chapter I give a very brief account of what the concept of probability as it applies

for a physicist from the point of view of computer experiments is. I make a short review

of the renewal theory and renewal Poisson processes, then starting with the basic idea of

a binomial process I make a connection with a di�usion model based on asymmetric walk,

and then establish the connection between Binomial processes and Poisson processes. I

then discuss the results of ordinary statistical mechanics that collision time distribution in

a gas is of the exponential form. Finally I discuss renewal processes where the distribution

function of the collision times prove to be a power law function instead of an exponential

form. This model is used in the perturbation of renewal processes models in this thesis as

explained in the forthcoming chapters which is the basic core subject of this dissertation.

3.2. Concept of Probability from an Experimental Framework

History of probability concepts dates back to ancient times. Indeed, archeologists

found Dice made of particular hoof bones of the sheep called astragolai dating back to

6 millenia ago to the Neolithic period, as old as the �rst farming societies [32]. The

Etruscan played with twelve faced dice 3 millenia ago. It is also well known that Roman

Emperor Augustus who made many reforms in his reign used to play dice very often, as

well as one of his successors, Emperor Claudius. In fact Claudius was so consumed with

the game that he even wrote a book about it.

Roman goddess Fortuna was one of the most popular among the Romans and people

built temples in her name, who was no one other than the Greek goddess Tyche, the

goddess of chance. Although the concept of uncertainty has been appealing for the
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people of all civilizations, it was not until Galileo Galilei, Blaise Pascal, Pierre de Fermat,

and Abraham de Moivre, the mathematics of probability had started to develop.

Concept of probability is our attempt to ascertain the rules of uncertain situations.

It is a measure of the likelihood of an event. The case of uncertainty where we know

that we have to think in terms of probabilities may arise from the lacking knowledge on

the system under consideration, or it might as well be an intrinsic built in probability that

arises as the result of a measurement process as in the case of Quantum Mechanics.

Regardless of the source of the uncertainty, the legitimate way to de�ne the probabilities

for a given situation is through observation. From the point of view of an observer,

probability is nothing more than the frequency of occurrence of events in the very long

time limit which emerges as this time of observation tends to in�nity. This aspect de�nes

its empirical side from the perspective of our experiments.

On the other hand, some of the properties of probabilities can be de�ned a priori,

without regard to a certain experiment using the set theory. One of these laws is the

law of unions, where we want to de�ne the probability of occurrence of one of the two

events A and B. If the probabilities of event A and B are PA and PB, respectively, the

probability P (A [ B) of either event A or B takes place is denoted as

(3.1) P (A [ B) = P (A) + P (B)� P (A \ B)

that is the sum of the probabilities of both events minus the probability that both events

occur.

It also is obvious if we draw a dice and the result is 6, the next may or may not be

6, so the process is memoryless. If we take two dice and draw and get 6 from one of

them, it does not e�ect the result of the other one, it could as well be 6 or not, what

the �rst one reveals does not a�ect the second one at all, so we name such events with

independent probabilities. For the occurrence of independent events the joint probability

calculation is easy, it is simply a multiplication of the two probabilities. For dependent

events however, the joint probability of the two events is given as the multiplication of
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the probability of the �rst event and the conditional probability that the second event

occurs provided the �rst one has occurred .

In this context we will discuss Bayes` theorem which is also known as Bayes` rule or

Bayes` law. Bayes` Theorem connects conditional and marginal probability distributions

of random variables. The probability of an event E occurring conditional to an event

H is usually di�erent from the probability that the event H occurring conditional to the

event E occurring, but one can establish a connection. Bayes` theorem is the statement

of these conditional probabilities.

Bayes` theorem expresses the connection between the conditional and marginal prob-

abilities of stochastic events E and H as follows

(3.2) prob(EjH) =
prob(HjE)prob(E)

prob(H)

where prob(EjH) denotes the conditional probability that event E occurs on the

condition that event H occurs, and sometimes referred to as posterior probability. The

expressions prob(E) and prob(H) are sometimes referred to as prior probabilities or

marginal probabilities of events E and H respectively implying that the probability does

not take into account any information of the other.

By de�nition of the conditional probability that event E given event H is

(3.3) prob(EjH) =
prob(E \H)
prob(H)

where prob(H) 6= 0 and similarly, the conditional probability of event H given event

E is

(3.4) prob(HjE) =
prob(E \H)
prob(E)

where prob(E) 6= 0, which then implies the following lemma sometimes called the

product rule for probabilities
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(3.5) prob(EjH)prob(H) = prob(E \H) = prob(HjE)prob(E)

which when divided by prob(B) implies the Bayessian theorem that states

(3.6) prob(EjH) =
prob(HjE)prob(E)

prob(H)

In a sense by its very de�nition, conditional probability concept implies the Bayessian

theorem, and the de�nition of conditional probabilities and Bayessian theorem are the

same thing.

In what follows we will make use of these very basic probability rules.

3.3. Renewal Theory

Development of Renewal Theory started as the need for it in Industrial Engineering

sub-discipline Operations Research rose. Its basic tenet was related to probability prob-

lems connected to the failure and replacement of components, such as electric light bulbs

although it could have been valves or any other standard component. The variable of

interest will be the life time of the component which we will sometimes refer to as the

waiting time or the sojourn time, and the failure of the component stands for the event

that we are concerned with. The generalized form of renewal theory uses the same terms

yet it might be related to some other physical system and/or event, what is important

in this picture is that in a time line there are events stemming from point processes,

and the time it takes between consecutive events will comprise the waiting times. If one

makes a histogram of the waiting times, in a system with non-changing physical rules

one could expect a well de�ned probability distribution function (p.d.f.) for the sequence

of waiting times, independent of time interval we are concerned with, if the statistical

system is assumed stationary. Since time can not be negative, the variable of interest �

will always be positive and the probability associated for it at any particular time will be

positive de�nite. The waiting time distribution under these conditions is de�ned as [33]
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(3.7)  (�) = lim
��!0

prob(� < t < � + �t)
�t

and that it has to be normalized as

(3.8)
∫ 1

0
 (�)d� = 1

in a more general sense one could de�ne the moments of the waiting time distribution

as follows

(3.9) < �n >=
∫ 1

0
 (�)�nd�

where the zeroth moment (n = 0) being equal to 1 is imposed by the normalization

condition of probability, and the �rst moment (or the average, with n = 1) and higher

order moments, like n = 2 being the variance etc. can take on any value depending on

the details of the distribution, or the physical system generating this kind of statistics.

We can also de�ne a cumulative function F as

(3.10) F (t 0) = prob(� < t 0) =
∫ t 0

0
 (�)d�

Which is basically the probability that the component has failed by the particular time

t 0. Based on this premise, one could as well de�ne the survival probability function, 	(t 0)

which points to the probability that the component will not fail by the particular time t 0

as

(3.11) 	(t 0) = prob(� > t0) = 1� F (t 0) =
∫ 1

t 0
 (�)d�

Note here at this point that 	(0) = 1 and 	(1) = 0. Also, from the above de�nition

it should be obvious that
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(3.12)  (�) = �d	(�)
dt

= � _	(�)

One must also de�ne the failure rate, which from now on we will simply refer to as

the rate, of events, which could as well be time dependent, which then we choose to

denote as r(�), and de�ne within an interval �t, where in the limit this time interval

tends to zero. Let us de�ne it as the conditional probability that up to time � , having

satis�ed the condition that the probability for the component does not fail is realized, i.e.

the component has survived till time � , upon which, it fails in a time interval between

[�; � + �t]. Using the notation of conditional probability this is written as

(3.13) r(�) = lim
�t!0

prob(� < t � � + �tjt < �)
�t

Explicitly said, the conditional probability of immediate failure after time t = � within

an incremental time interval of �t, the event we denote by E, under the condition

that the system survived till to the time t = � with no collision, the event which we

denote by H.Based on the Bayesian theorem, the expression for the conditional probability

prob(EjH), that event E occurs proviso the Hypothesis H occurs is given as [19]

(3.14) prob(EjH) =
prob(E \H)
prob(H)

where prob(H) 6= 0. Remember that the event E occurs with a probability of  (�)�t

which is also the intersection of the two events E and H, where event H is denoted by

the probability 	(�). This implies

(3.15) r(�) = lim
�t!0+

prob(� < t � � + �t)
�t

1
prob(t < �)

=
 (�)
	(�)

Basically the rate of the process at time � is simply the fraction of the probability

distribution function  (a probability density function) to the survival probability 	 eval-

uated at the particular time � . Of course we may take into account that this fraction
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might as well be independent of particular time value � , i.e., might have a constant value,

as it is in the Poisson processes. Using Eq.(3.12)this means that the rate can be written

in terms of survival probability and its derivative

(3.16) r(�) =
 (�)
	(�)

= � _	(�)
	(�)

= � d
d�

ln 	(�)

(3.17)
∫ �

0
r(t 0)dt 0 = � ln

	(�)
	(0)

remembering that at time t = 0 the survival probability is zero, we can write the

survival probability in terms of the rate of failures as

(3.18) 	(�) = e�
∫ �

0 r(t
0)dt 0

and Eq.(3.12) implies

(3.19)  (�) = r(�)e�
∫ �

0 r(t
0)dt 0

in which sense we can see that the failure rate r(t) is the only variable that determines

the survival probability function 	(�) and hence the sojourn time distribution, or (p.d.f.)

the probability distribution function,  (�). Let us note here that if the failure rate is a

constant, r(t) = r0, then the survival probability function of Eq.(3.18) reads

(3.20) 	(�) = e�r0�

and Eq.(3.19) implies

(3.21)  (�) = r0e�r0�
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Let us note at this point that this requirement is a two way street, namely that,

if we assume a waiting time distribution of the form of Eq.(3.21), using the de�nition

on survival probability at Eq.(3.11) and Eq.(3.16) that if we assume a waiting time

distribution of the form given by Eq.(3.21) we have to end up with a constant rate of

r(t) = r0. We can state this important fact simply that an exponential waiting time

distribution  (�) implies that the immediate failure rate of the component does not

depend on the particular time we are concerned with, the rate r(t) = r0 of failure is

always constant regardless of the speci�c age of the system.

3.4. Poisson Processes and Poisson Distributions

Let us consider a point process where the arrivals in time of the particles which we

might as well call the events have the following enlisted parameters:[38]

(i) The condition of linearity. The probability pf that an event occurs in a time

interval is proportional to the time interval itself, pf = ��t.

(ii) The condition of no memory. The existence of an event, or of the lack of it for

that matter, has no in
uence whatsoever on the arrival of the next event , or

non arrival of it. Namely the rate of the process � is constant.

(iii) The instantaneous event condition. Two distinct events can not occur at the

same time. The occurrence of a single event happens at a single point in time,

hence the name Point Process. The event is assumed to happen instantly in a


ash of time.

The number of expected counts in a time t is simply nf = �t, implying that the average

time < � >, between two successive events is < � >= t
nf

= 1
� . In a time interval of �t,

the probability of an event, a jump forward, or a count if you like is pf = ��t, so the

probability of staying in the same position, failure or no count in the same time interval

is 1 � ��t. If we consider a certain time t, divided by n as time time interval �t = t
n ,

since we also have the condition of no memory the probability of no event in time t is

the multiplication of those in successive incremental time intervals which leads us to the

survival probability till time t
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(3.22) 	(t) =
(

1� �t
n

)n

= e��t

Let us now consider the case where the system \survived" with no event for a time �

and then in the next time interval of d� , the probability of an event pf = �d� is realized.

Again using no memory condition this spells nothing but the probability that the waiting

time will lie between [�; � + d� ]

(3.23) ps(�) =  (�)d� = �e���d�

where  (�) is the probability distribution function of the waiting times. But what one

usually observes and measures is not always the waiting time distribution in laboratory

conditions. In the laboratory, people usually count the number of particles detected within

a prescribed time interval, which is not necessarily coincident with the natural time step

�t of the process. Since the time interval between the arrival of the particles might be

very small, may be beyond the time resolution limit of the experimental apparatus, it

would be more appropriate to measure the cumulative e�ects of the detected particles

within a macroscopic time interval chosen as the bin size for time, rather than the exact

times when they arrive. Then one may obtain the histogram of di�erent number of

occurrences per this time interval chosen and obtain a distribution of the number of

arrivals. This is exactly what the experimental physics pioneers Rutherford Geiger and

Bateman did in 1910 [37] [38]. when they observed the number of alpha particle emissions

from a radioactive source. They have counted and recorded the number of alpha particles

counted within every successive 7:5 seconds and plotted the histogram of the number of

arrivals versus the number of particles within 7:5 seconds intervals,where the data they

acquired displays results very close to a Poisson distribution [37],[38].

I will investigate the connection of this data which yields a Poisson distribution, to

Poisson sequences in the section 3.8 and section 3.7.
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3.5. Timid Walker : Asymmetric Random Walk

I include here a heuristic model to study the random emissions of particles from

radioactive nuclei [36]. For this �rst I start with a model of a timid walker, who at each

successive time interval takes a step forward with a unit length with a probability pf , or

stays at the current position of his with a probability ps = 1 � pf . After n trials, the

average distance from the initial position would be < x >= npf . The expected square of

the path length reads

(3.24) < x2 >=
n∑

i=1

x2
i +

∑

i 6=j
xixj

The �rst sum reads npf since the jump is of unit length. The second sum reads n(n�1)p2
f

since both di�erent jumps of index i and j must be forward with independent probabilities.

The variance reads

(3.25) �2 =< x2 > � < x >2= npf (1� pf )

So for the Binomial case of an Asymmetric timid walker, the average distance traveled

after n trials (time intervals) is < x >= npf and the standard deviation about this

expected value of the distance is � =
√
npf (1� pf ). Let us picture this as n events

taking place in time steps of �t, yielding a total time of t = n�t. Let us make the

connection with radioactive decay and say that the emitting of a radioactive particle or

else it`s arrival at the detector as the event where the timid walker takes a step forward.

The time in this case is continuous, the probability of success increases as the time

interval chosen as pf = ��t as time interval �t goes to zero the probability pf also

tends to zero. And the probability of the random walker staying at its current position

ps tends to 1. In this case the standard deviation of the arrival of particles will be,

� =
p
npf . Since npf = �n�t = �t, this implies that the standard deviation of the

number of detected particles scales as � =
p
�t, which is nothing but the square root of

the number of expected number of particles. Hence the 
uctuations scales as the square

root of the expected number of particles to be detected.
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3.6. Fair Binomial Coin leading to a Gaussian distribution

Let us consider a process where there are two probabilities for each draw, we may

name the events success and failure, or else collision and miss for the sake of clarity.

Or to be even more speci�c, let us say this is a coin tossing process and the outcome

may be heads or tails, and let us suppose that the coin is a fair coin and hence the

probability of heads and tails is the same: 50%. Here we denote head as success and

let us say it is denoted by the probability ph, and tails as failure and let us denote it by

pt . We are interested in the probability that after n draws, we will have r heads. So

we will have r events with probability ph and also the remaining n � r events have to

come up with tails each of which will be realized with a probability pt . If the events are

independent and sequential we have to multiply the probabilities to obtain prhp
n�r
t , but

also take into account that out of n trials we may choose r successful draws in C(n; r)

ways, combinations of r of n. Hence the probability that we will have r successes among

n events is

(3.26) p(n; r) =
n!

(n � r)!r !
prhp

n�r
t

notice that this distribution takes into account that the coin may have been unfair in

which case ph and pt would be di�erent. Let us also note that the expected value of r ,

< r >= npr , and also the standard deviation of r , � =
p
nprpt may be calculated from

the Binomial distribution. Let us now consider a fair coin which is drawn 2m times, which

we will let tend to in�nity afterwards, and we are interested in the probability of the event

that there will be m + r successes, obviously here r is a measure of how diverted we are

from the obvious most expected case where m events are expected to lead to heads and

the remaining m events read tails. The Binomial distribution for this case where we are

concerned with a fair coin implies

(3.27) p(2m;m + r) =
(2m)!

(m + r)!(m � r)!
1

22m
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the use of Stirling`s approximation n! =
p

2�nn+ 1
2 e�n, where m is a very large num-

ber, where upon inserting the Stirling`s approximated forms for all the factorials and

considering that m � r reads [34]

(3.28) p(2m;m + r) =
1p
�m

e� r2
m

this distribution is akin to the Gaussian distribution and for large means that the proba-

bility of �nding cases away from the equality case decreases as the inverse exponential of

the deviation r . Taking into account the standard deviation expression for the Binomial

distribution above, for 2m draws we have, � =
√
m=2 which then implies

(3.29) p(2m;m + r) =
1p

2��2
e
�r2
2�2

Which is nothing but the normal distribution. So, a Binomial approximation with a fair

coin tends to the Gaussian distribution in the limit of in�nitely many draws.

3.7. Unfair Binomial coin as a Poisson Process

It is merely logical to ask for the probability distribution of success, collision or heads

if you like when the case under consideration is subject to the condition that the coin is

extremely unfair. For the sake of simplicity, let us take this case as ph = �
n as n tends

to in�nity, this probability becomes incremental if � is a constant. We are looking for

the probability distribution of the number of successes in n trials where the probability of

success in each trial is �=n.

(3.30) lim
n!1 p(n; r) = lim

n!1C(n; r)prh(1� ph)n�r = lim
n!1

n!
(n � r)!r !

(
�
n

)r(1� �
n

)n�r

(3.31) lim
n!1 p(n; r) = (

n
n

)(
n � 1
n

)(
n � 2
n

) : : : (
n � r + 1

n
)(
�r

r !
)(1��

n
)n(1��

n
)r =

�re��
r !

Hence the probability distribution of r successes in a Binomial process where the prob-

ability of success for each trial tends to zero and the number of trials tends to in�nity

approaches the Poisson distribution in the limit. I will discuss the Poisson processes in
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more detail in the next chapter because of two reasons, �rstly it is observed in many

occasions in Nature, and that the perturbation of the rate of Poisson processes forms

the basis of part of the research results of this thesis.

3.8. Mean Collision Time in a gas as a Poisson Process

Let us discuss the concept of mean free time or the mean collision time in a gas of

same molecules, cause we want to discuss the di�usion of particles in gases in a physical

context. Let us suppose a molecule moving with velocity v. Let us assign a probability

for this molecule to survive without collision till time t, and assign this probability of

survival from collision as 	s . The particle can not collide immediately at time t = 0 as

the motion starts and must su�er a collision in very long time limit as t !1, therefore

we can immediately set the boundary conditions on this probability of survival from any

collision as 	s(t = 0) = 1 and 	s(t ! 1) ! 0. So now we know that it should not

be a surprise if 	s is a decreasing function of time. Let us also assign a probability of

collision at time t in a time interval of [t; t+dt], and denote it with rdt. This probability

is proportional to the time interval dt we consider, and let us assume r to be constant,

which is a reasonable assumption since any time could be taken as t = 0, the initial time,

and there is no reason why we should think that any time is di�erent than any other

time, so some kind of uniformity assumed for the collision rate is a reasonable one.By

this token, let us attempt at obtaining the form of the survival probability from collisions

as a function of time. The survival probability form collisions at time t + dt is nothing

but the survival probability at time t and that a collision will not take place in the time

interval [t; t + dt].

(3.32) 	s(t + dt) = 	s(t) (1� rdt)

(3.33)
1

	s(t)
d	s(t)
dt

= �r

using the initial conditions
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(3.34) 	s(t) = e�r t

Now we can de�ne the probability  cdt that after surviving for time t the particle makes

a collision during the time [t; t + dt].

(3.35)  cdt = 	s(t)rdt = re�r tdt

the average time of collision �c would be

(3.36) �c =< t >=
∫ 1

0
t c(t)dt =

1
r

Then the time dependent probability of collision is [35]

(3.37)  cdt =
e
�t
�c

�c
dt

and the probability distribution function for the collision times will read

(3.38)  c =
1
�c
e
�t
�c = r0e�r0t

where r0 = 1
�c is the rate of the stochastic collision events. Notice that this is an

exponential distribution of the waiting times between collision events.

3.9. Numerical Brute Force Generation of Poisson Renewal Sequences of Events

Here we describe an algorithm we use to generate a renewal Poisson sequence. Run-

ning this algorithm is relatively slow in compared to a more enhanced version we will

introduce later, but has the advantage of being valid for all amplitudes of a harmonic

perturbation. So we may name it the brute force algorithm of Poisson event sequences.

Let us consider the interval I = [0; 1]. Let us imagine that at any time step, i =

1; 2; :::, we randomly draw a number of this interval with uniform probability. Let us
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assume that at any time step the interval is divided into two intervals, I(i)
1 and I(i)

2 . The

interval I(i)
1 ranges from 0 to p(i) and the interval I(i)

2 from pi to 1. Let us de�ne

(3.39) qi = 1� pi :

Let us assume that qi << 1.

It is evident that pi and qi are the probabilities of drawing at time i a number in the

interval I(i)
1 and I(i)

2 , respectively. It is also evident that at any time i we will �nd with

large probability a number of the interval I(i)
1 , as a consequence of the fact that pi >> qi .

The probability of remaining in the interval I(i)
1 , up to n drawing is given by

(3.40) 	(n) =
n∏

i=1

pi :

Using the properties of logarithm and the condition qi << 1, we get

(3.41) ln	(n) = �
n∑

i=1

qi :

Let us explain now how to obtain the time series f�ig. This time series is generated

as follows. We make sure that qi << 1. This condition implies that there is an extended

persistence. It means that for a very large number of times we draw numbers from the

interval I1. Let us do the experiment, and let us call collision the drawing of a number

from I2. The time distance from a collision and the next is usually a very large integer

time, denoted with the symbol �i , namely, �1 is the time duration prior to the the �rst

collision, �2 is the time distance between the �rst collision and so on.

(3.42)  (n) = �d	(n)
dn

=
denqi

dn
= qieqin

here n plays the role of discrete time and qi apparently the role of rate of the Poisson

process. Evidently the system is a renewal system with an exponential sojourn time

distribution function. As one runs the system if the rate is dependent on the real time,

this formula will tell us about how we can perturb the rate of Poisson process. However

since this method is rather slow as much as it is simple, we have developed another
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numerical method more complicated but much faster which will be explained in detail in

the Appendix A to investigate the perturbation of Poisson renewal processes.

If the rate is being modulated real time, the projected values in discrete time can

be plugged in this model. Basically what we are doing then is that for a sinusoidal

perturbation of the rate, the time dependent rate can assume

(3.43) q(n) = q0(1 + � cos(!t))

The relevance of this form of a perturbation to a stochastic resonance model will be

discussed in Chapter 6.

3.10. Neuron Firing as a Renewal Non-Poisson Process

In this section we will use a paradigmatic model of a stochastic process generating

renewal non-Poisson distribution as discussed in [39]. We make the assumption that

the archetypal neurons under consideration acts on events based on such a stochastic

system, which, we will later prove that is consistent with already carried out experiments.

In this model, the neuron �ring process is described by a sequence of times, at which

neuron �rings (or spikes) occur: ftig, i = 0; 1; 2; :::. The time instant t0 = 0 is the time

of the �rst neuron �ring occurrence. Denoting by �i+1 = ti+1 � ti , i = 0; 1; 2; :::, the

inter-spike time distances, the neuron �ring process is de�ned to be renewal if the times

�i are mutually independent random variables [33]. With this assumption, the spikes

generated by neuron �rings are critical events whose occurrence is associated with a

mechanism erasing memory of the past. A renewal process is uniquely de�ned by the PDF

of inter-spike times �i :  (�i), which does not change with the index i , or, equivalently,

by the statistical distribution of the number of spikes in a given time interval. The non-

exponential pdf of Eq. (8.2) corresponds to a Non-Poisson distribution of the spikes.

Another way of de�ning a renewal process is the local rate of event (spike) production

r(t). Roughly speaking, the local rate r(t) is the expected number of spikes per time unit

in a neighborhood of the time t. More rigorously, following Cox [33] and assuming that

the last spike occurred at ti , the local rate r(t) is the (conditional) probability density that

a spike occurs in an in�nitesimal time interval [t; t + dt], given that no spikes occurred
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in the time interval [ti ; t]:

(3.44) r(t) = lim
dt!0

1
dt

Pr ft < ti+1 � t + dt j ti+1 > tg

Limiting ourselves to the time interval between the �rst two spikes: [0; t1], it is easy to

prove that the rate r(t) is given by [33]:

(3.45) r(t) =
 (t)
	(t)

= � 1
	(t)

d	(t)
dt

; 0 < t < t1

being:

(3.46) 	(t) =
∫ 1

t
 (s)ds = 1�

∫ t

0
 (s)ds

the Survival Probability, i.e., the probability that the spike occurrence time is larger than

t. Clearly, it results:  (t) = �d	(t)=dt. Once the rate function r(t) is known, the

Survival Probability is simply derived by solving Eq. (3.45) with respect to 	(t) and

imposing the initial condition 	(0) = 1:

(3.47) 	(t) = exp
(
�

∫ t

0
r(t 0)dt 0

)
:

The pdd of inter-spike times in a Poisson process is an exponential decay and the

associated spike rate is constant in time: r(t) = r0 [33].

Consequently, a natural way to realize a Non-Poisson process, and the relative non-

exponential distribution of inter-spike time distances, is based on the assumption that

the rate r(t) of spike production changes in time. This is the case of Pareto-Nutting

law, Eq. (8.2). In fact, in this case the Survival Probability is given by:

(3.48) 	(t) =
(

T0

t + T0

)�0�1

; 0 � t < t1

and, substituting in Eq. (3.45) and limiting ourselves to the time interval [0; t1], we

obtain the following expression:

(3.49) r(t) =
r0

1 + r1t
; 0 � t < t1

where

(3.50) �0 = 1 +
r0
r1

; T0 =
1
r1
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and

(3.51) r0 =
�0 � 1
T0

; r1 =
1
T0
:

The parameter r0 has the physical meaning of the rate value immediately after the

occurrence of a neuron �ring, whereas T0 = 1=r1 determines the decay time of the

rate function.

An alternative and much simpler way of deriving these relations would be to start with

the basic general de�nition of waiting time distribution  (t) = � _	(t), and applying the

Pareto-Nutting form of power law distribution, one can obtain the Survival probability

distribution. From that point on, if we again use the general form of rate r(t) in term

of  (t) and 	(t), we can reach at the Eq.(3.49). Of course as soon as an event takes

place the system will be switched to initial conditions and time will start ticking again

to ensure that this is a renewal process. Hence the formulation is self consistent and in

accordance with general principles of renewal theory.

Note that the prescription of Eq. (3.49)applies only to the �rst time interval between

the �rst �ring at time t0 = 0 and the next one at time t = t1 = �1. To extend the rate

function to the entire time axis, let us �rst introduce the following auxiliary function:

(3.52) f (t) =
r0

1 + r1t
:

This corresponds to the rate function when no spike occurs up to the absolute time t.

Due to the renewal assumption, the occurrence of a neuron �ring erases the system's

memory and the rate function jumps from the value r(t1) = f (t1) to the \initial" value

r0. An example of behavior of the rate r(t) is displayed in Fig. 1b, showing that the rate

restarts from the value r0 after each neuron �ring, occurring at times t1, t2, t3, etc...

Consequently, in the time interval [t1; t2] the rate function is written in the following way:

(3.53) r(t) =
r0

1 + r1(t � t1)
= f (t � t1); t1 � t < t2:
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Figure 3.1. An example of the time evolution of (a) the renewal time

function �tr , Eq. (3.55), and (b) the rate function r(t), Eq. (3.56).

r0 = 0:01, r1 = 0:015.

For a given sequence of spike occurrence times ftig, this expression is easily generalized

by applying suitable time shifts to the basic rate function f (t):

(3.54) r(t) = f (t � ti) =
r0

1 + r1(t � ti) ; ti � t < ti+1:

Rigorously, the rate function has a formal dependence on the sequence ftig: r(t; ftig).

However, at variance with the absolute time t, the dependence on the sequence ftig is

a kind of stochastic dependence, as the sequence of times is not known a priori, but

it is a particular stochastic realization of the process, which is rigorously de�ned by the

basic rate function f (t) given in Eq. (3.52). In the following we will use the simple

notation r(t), as its mathematical and physical meaning is unambiguous. Further, in

order to lighten the notation when considering the external perturbation, it is suitable to

introduce the following renewal time function:

(3.55) �tr(t; ftig) = t � ti ; ti � t < ti+1:
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The renewal time �tr is a kind of random time, which is set to zero when a spike occurs

and it increases linearly in the absolute time t from 0 to the values �i+1 = ti+1� ti , which

are the random inter-spike time distances generated by the neuron set (see Fig. 1a).

Using the renewal time function, the rate function of Eq. (3.54) is rewritten in the

following way:

(3.56) r(t) =
r0

1 + r1�tr
;

where the dependence of �tr on t and ftig is left unindicated. From the computational

point of view, �tr is simply the time measured from the last neuron �ring.

Note that the renewal time function �tr is related to the internal dynamics of the

system and its functional dependence on the time t is not the sign of an external forcing.

This function describes the renewal character of the dynamics. On the contrary, the time

dependence of one or both the parameters r0 and r1 in Eq. (3.56) would be the sign of

an external perturbation.

3.11. Connection with Daly-Porporato Model

It is easy to show that our proposal to generate a non-Poisson �ring process is exactly

equivalent to the model recently proposed by Daly and Porporato [40]. These authors

proposed the following equation of motion

(3.57)
dx
dt

= k � I(x; t);

where x(t) is the state variable, k is a constant and I(x; t) is a state-dependent Poisson

process with rate

(3.58) r(x) =
A

(1 + x)
:

Let us imagine that at time t = 0 a �ring event sets for the state variable the initial

condition x = 0. The time evolution of the state variable up to the next �ring event is

given by

(3.59) x(t) = kt;
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which has the e�ect of making r(x) time dependent. By plugging Eq. (3.59) into Eq.

(3.58), we obtain

(3.60) r(t) =
A

1 + kt
;

which is made exactly equivalent to Eq. (3.56) by setting A = r0 and k = r1.

As far as the perturbation of T0 is concerned, in Section 8.4 we shall use an apparently

di�erent model, referred to as dynamical model [100].

Actually, it has been shown [95, 96] that the response of the dynamical model to weak

perturbations is equivalent to the adoption of the model of a more elegant formulation

given in Chapter 8.2, with the condition �1(t) = �2(t) [39].
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CHAPTER 4

DIFFUSION AND INTERMITTENCY

4.1. Di�usion as a Drunkards Walk

Having reached the distribution for the time dependent probability of collision times,

now let us make some digression in attempting to analyze the di�usion problem as a

drunkards walk, where we have the case as the successive displacements between the

collisions are statistically independent. Let us consider only one of the 3 dimensions say

x component, in an environment where e�ects of the external forces are negligibly small

or better yet, do not exist at all. Let us denote the i th component of the displacement in

the x direction with �i , to denote that this displacement is arbitrary. The x component

of the molecular position after n collisions would be

(4.1) xn =
n∑
1

�i

The direction of motion being totally random we have < x > since < �i >= 0. For the

dispersion though

(4.2) < x2
n >=

n∑
0

< �2
i > +

n∑

i

n∑

j

< �i�j >

︸ ︷︷ ︸
i 6=j

The rightmost term vanishes since based on statistical independence of successive dis-

placements < �i�j >=< �i >< �j >= 0

(4.3) < x2
n >= n < �2 >

between the collisions the velocity vx is constant so

(4.4) � = vxt
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(4.5) < �2 >=< v 2
x >< t2 >

let us note v 2
x = 1

3v
2 and let use the time dependent probability of collision, Equation.3.37

to obtain the dispersion of time [35]

(4.6) < t2 >=
∫ 1

0
t2 c(t)dt =

∫ 1

0

e
�t
�c

�c
t2dt = 2�2

c

and where t = n�c ,

(4.7) < x2(t) >=
(

2
3
< v 2�c >

)
t

so we can conclude that < x2(t) >� t.

4.2. Di�usion Equation

Fick`s �rst equation was derived by Adolf Fick in 1855, assuming steady 
ow, namely

that the concentration of the di�using particle dies not change with time, the 
ow is

constant and is a result of some density gradient. Where p denotes density, x denotes

the space coordinate in one dimension and J stands for the 
ux of the 
ow

(4.8) J = �Ddp
dx

where D stands for the constant quantity called di�usion coe�cient. Fick`s Law, just

like F = ma de�nes a quantity , di�usion constant D, just like mass m, and hance it is

a statement of a relation ship between some quantities. D � 0because a 
ow is always

from a high concentration to a lower concentration gradient, to balance the gradient and

to destroy the gradient. Taking a control volume in an 
uid 
ow, where the 
uid may be

compressible or incompressible, whatever goes in must either change the concentration

in the control volume or must go out, we can write the continuity equation

(4.9)
@p
@t

+
@J
@x

= 0
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if we inset Fick`s 1st law into the equation of continuity, we obtain Fick`s second law

(4.10)
@p(x; t)
@t

= D
@p(x; t)
@x2

which is the classical di�usion equation. The solution to this equation is

(4.11) p(x; t) =
1p

4�Dt
e��x

2
4Dt

Now let us notice that this solution to the di�usion equation satis�es the scaling form

(4.12) T (x; t) =
A
t�
f

( x
t�

)
� 1p

4�D
1
t0:5 exp

(�1
4D

x
t0:5

)

4.3. Intermittency in Nature

Osborne Reynolds discovered the basic physics concerning the investigation of basic


uid mechanics and a very important concept called dynamic similarity. Dynamic simi-

larity states that, no matter what the size of or the velocity or size or the viscosity of the


uid in which the material is moving, the analysis of the 
ow depends rather strongly on

one parameter called the Reynolds number. Reynolds number is just the ratio of inertial

forces on the object to the viscous forces, and even though the individual parameters like

the velocity and size of the object may be di�erent, if the Reynolds numbers of the same

shape objects are similar, the 
ow characteristics are predicted to be similar as well. This

sets the fundamentals for the Aeronautical engineer to use models of an aircraft in an air

tunnel and also the ship engineers to make experiments on their models of the original

ships in a smaller scale in environments of similar Reynolds numbers.

The 1883 paper [41],[42] by Osborne Reynolds points out to the importance of what

we now know as the Reynolds number and also he points out to another important

observation of his, the 
ow regime of the water, he clearly de�nes two distinctive 
ow

types, laminar and turbulent, though he used the terms direct and sinuous originally at

that time. In laminar 
ow di�erent streamlines do not mix, whereas in turbulent motion

they do. It appeared that the transition between laminar and turbulent 
ow appeared to
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depend on the dimensionless quantity which is named as the Reynolds number to honor

Osborne Reynolds

(4.13) Rn =
�vr
�

where � is the density, v is the velocity, r radius of the tube and � is the viscosity

of the 
uid. In his experiments, he observed the phenomena what we now refer to as

intermittence. So actually in short there are three 
ow regimes, for low Reynolds numbers

the 
ow tends to laminar 
ow in which the 
ow streams could be followed, in very high

R values, the 
ow is all mixing and hence turbulent, but there is a range of R values

where one would have long times of laminar 
ow and shorter times and turbulent 
ow,

following each other successively and in a manner that there is no correlation between

when one or the other appears.

Figure 4.1. The change of 
uid 
ow regime from laminar to intermittent

to turbulent 
ow regimes as Reynolds number Rn increases.

Reynolds run another experiment in which he let two 
uids of di�erent color to


ow in opposite directions in layers. What he observed was that as the velocity of

the 
ows increases the interface becomes wavy, and then peaks formed and �nally there

appears transitions from laminar to turbulent 
ows. As a result he concludes that the

transition from laminar to turbulent 
ow need not be a sudden transition. Even after

so many years and although there has been great progress in explaining the nature of

turbulence, the transition to turbulent 
ow is still far from being entirely understood as
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of today. The intermittent behavior in 
uid 
ow is observed in other con�gurations too.

Having been convinced that the 
ow characteristics depend on a single parameter, namely

Reynolds number Rn, Osborne Reynolds continued his experiments for investigation of

the transitions between laminar and turbulent 
ow, using di�erent tubes at di�erent

temperatures. He concluded the following after his experiments [42]

� The dependence of the transition to Reynolds number goes inversely proportional

to the amplitude of the disturbance.

� There is a regime which we might call \laminar" with a Reynolds number Rn <

1100 below which any disturbance will die out.

� There is a range of Rn values for which the eddies will appear suddenly,without

a region of gradual transition.(This regime is named \the intermittent 
ow

regime" by now).

� The disturbance would suddenly come through a certain length of the tube,

whose appearance is rather like 
ashes

� We can also add the following observation today, there is no cross-correlation

or auto-correlation between and amongst the time durations of the eddies and

laminar 
ow in the intermittent regime [43]

With the air tunnel experiments performed on spherical objects in low and high

Reynolds numbers [44], it is shown that the air drag on a ball reduces drastically when

the system is in a turbulent regime, and that this regime comes with relatively low Rn

values if the surface of the ball is even slightly scratched. This observation has led to the

investigation of how a most e�cient ball could be designed where the turbulence behind

the ball can be triggered relatively easily reducing the air drag, which found its application

in the production of baseball balls [45]. The appearance of turbulence and intermittency

in 
uid mechanics and magnetohydrodynamics is by no means limited to this generic

example. Another case where transition to chaos via intermittency plays a major role

in 
uid dynamics in nature is Benard instabilities. This is a case where a thin sheet of


uid is heated from underneath and the heat transfer mechanism turns from conduction
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where viscous forces are dominant over convection where dynamical forces are dominant

due to the expansion of the 
uid underneath based on the temperature di�erence. The


ow characteristics of the 
uid convection changes as the temperature and/or the overall

shape and/or size of the 
uid changes. When the temperature di�erence is relatively low

and hence Rn is also low, the 
uid viscosity wins and the 
uid is transported through

heat conduction. As Rn increases beyond a certain critical value Rna a state of stationary

convection cells are formed.If Rn is increased through heat beyond yet another threshold

Rnb then a transition to chaos occurs. The experimental results tell us that the Fourier

spectrum of the velocity shows peaks in the region where Rna < Rn < Rnb and a rather

continuous power spectrum when Rn > Rnb .

This kind of a chaotic behavior is important also because the interiors of the Earth is

still a hot furnace due to ongoing nuclear reactions inside the Earth unlike other planets

in our solar system, a fact which makes the plate tectonics of the Earth an active layer

driven by the convection of the magma and the mantle. [46].

4.4. Manneville Map

P. Manneville came up with a map that models the behavior of the intermittent


uid 
ow properties mentioned above [47]. Although it actually came up to model

the intermittency in 
uid 
ow between laminar and turbulent 
ow, it is established as

one of the three roots to chaos [43]. In this section we will discuss the properties of

the Manneville map and its connection to our model of intermittency which basically

is equivalent to the Manneville map. We will show why both models are equivalent,

leading to the same results in terms of statistics and why it is used to model renewal

processes. We will also discuss why revised Manneville map we use in our simulations

and in connection to renewal processes will lead to power law distributions which are

abundant in nature out of the realm of ordinary statistical mechanics which leads to

exponential waiting time distributions. We will see where the perturbation of rate may

have physical signi�cance in Nature and how this perturbation may a�ect the related

statistical properties of the physical system.
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Figure 4.2. Manneville map sketch for z = 2:43, (a power index of

� = 1:7)in a power law distribution for the waiting time distributions in

the laminar region. The vertical line divides the laminar region on the left

from the chaotic region on the right.

The Manneville map is given by [47] see Figure (4.4)

(4.14) xn+1 = �(xn) = x + x z(mod1)

where d(z) de�nes the dividing line between the laminar and the chaotic regions of the

phase space as

(4.15) d + d z = 1

or more rigorously

(4.16) xn+1 = xn + x zn ; (x < d)

(4.17) xn+1 = xn + x zn � 1; (x > d)

where the laminar region is [0,d) and the chaotic region is (d,1]. The motion of the

trajectory based on this map behaves in an intermittent manner, some steps will be

taken in the laminar region, then eventually as xn+1 becomes larger than 1, the particle

is injected in the chaotic region of the phase space, and then again it will be re-injected

back into the laminar region in a deterministic yet unpredictable way, so that if we shrink
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Figure 4.3. Manneville map sketch for z = 1, leading to an exponential

decay for the waiting time distributions on both sides. The map in this

particular form is equivalent to Bernouilli Shift map.

the time spent in the Chaotic region to zero and consider only the time spent in the

laminar region, which from now on we will refer to as the waiting time or the sojourn

time, the lengths of the consecutive sojourn times are totaly uncorrelated. Yet this does

not mean that we can not analyze the statistics of the Manneville Map. Here is an

attempt to analyze the properties of the map.

As the particle leaves the laminar region for chaotic region, it spends a few steps

in the chaotic region and then it will be re-injected back into the laminar region. The

injection back process is uniform, independent of the particular value of the parameter z .

In fact, if we record only position the particle under the directives of the Manneville map

enters the Laminar region, we see that the distribution is uniform. Using this property

we will work on a continuous time model of the Manneville map. But �rst with a little

reasoning let us see what kind of a waiting time distribution the Manneville map will lead

us to.

Let us start with the simplest case where z = 1 is used in the Manneville map. It is

easy to see that, when z = 1, the model describes as that in Figure (4.4), is equivalent

to Bernouilli Shift map used by Zaslavsky [48]

(4.18) xn+1 = �(xn) = 2xn; (mod1)
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to prove the fundamental result that the Poincare return times are distributed as

(4.19) PR(t) � e�hKSt

or basically, the distribution of the Poincare recurrence times which in our case is nothing

but the waiting time distribution follow an exponential distribution. In this expression

hKS denotes the Kolmogorov-Sinai(KS) entropy.

An argumentation is �rst started by Giesel and Thomae [49] and also discussed in Ref

([50]) to derive an analytical expression for the waiting time distribution in the laminar

region. I extend this discussion and show its relevance for emphasizing the connection of

Manneville map with our own Dynamical model for intermittency and their equivalence.

For the Manneville map, let us consider the case of a walker that has as his initial

point of walk very close to the point x0 = 0. If this is the case, the consecutive points

will be very close especially as z becomes larger than 1, we can make the continuous

time approximation that

(4.20) xn+1 = xn + x zn ! dx
dt

= x z

if we integrate to �gure out the time t it takes for the particle to reach the position

x(t) starting from x0,

(4.21)
∫ x(t)

x0

x�zdx =
∫ t

0
dt

(4.22) t =
x(t)1�z � x1�z

0

1� z
the waiting �(x0) to reach the point x(t) is simply

(4.23) �(x0; x(t)) �
(

1
x z�1

0
� 1
x(t)z�1

)
1

1� z
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if we want to know the time it takes to reach the border point where the particle exits

from from the Laminar region all we have to do is to set x(t) = d .

(4.24) �(x0; d) �
(

1
x z�1

0
� 1
d z�1

)
1

1� z
i f x0 � d , we legitimately make the following approximation

(4.25) �(x0) �
(

1
x z�1

0

)
1

1� z
At this point if we de�ne the injection probability distribution p(x0) and the waiting time

distribution  (t), their relation reads

(4.26)  (t)dt = p(x0)dx0

but the back injection probability is known to be uniform, and based on this equiprobability

of beck-injection probability, the back-injection happens through a window of size d(z)

implies

(4.27) p(x0)dx0 =
1

d(z)

∣∣∣∣
dx0

d�

∣∣∣∣ d�

(4.28)  (t) =
1

d(z)

∣∣∣∣
dx0

dt

∣∣∣∣

using Equation.(4.24)

(4.29)  (t) = d z�1 [
1 + d z�1(z � 1)t

]� z
z�1

at this point let us set for the power of the expression in the paranthesis the following

(4.30) �0 =
z

z � 1

implying
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(4.31) z =
�0

�0 � 1

and

(4.32) z � 1 =
1

�0 � 1

in this form the distribution of the waiting times can be written as

(4.33)  (�) = d
1

�0�1

[
1 +

d
1

�0�1

�0 � 1
�

]��0

(4.34)  (�) =
d

1
�0�1

[
1 + d

1
�0�1

�0�1 �
]�0 =

(�0�1)d
1

�0�1

�0�1[
1 + d

1
�0�1

�0�1 �
]�0

(4.35)  (�) = (�0 � 1)
d

1
�0�1

�0�1(
d

1
�0�1

�0�1

)�0
[
� +

(
�0�1

d
1

�0�1

)]�0

at this point if we set

(4.36) T0 =
�0 � 1

d
1

�0�1

The waiting time distribution hence reads

(4.37)  (�) = (�0 � 1)
T �0�1

0

(T0 + �)�0

which will give us a power law distribution for the probability distribution of the waiting

times in the form of 1
��0 as � > T0. For this reason we may refer to �0 as the power

index and T0 as the time it takes to make the transition to power law. Let us set in

Equation.(4.36) the following

(4.38) �0 = d
1

�0�1
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which turns Equation.(4.36) into

(4.39) T0 =
�0 � 1
�0

At this point, a legitimate question to ask is, how the system might be behaving if we set

z = 1, for which case from the work of Zaslavsky Ref.([48]), that the Poincare return

times which basically is nothing but the waiting time distribution behaves as an exponen-

tial distribution. Let us see if our result here will be consistent with what Zaslavsky has

predicted for such systems with z = 1, or in other words, using Equation.(4.30) which

corresponds to the waiting time distribution as �0 !1

(4.40) lim
�0!1 (�) = lim

�0!1
�0 � 1
T0

(
T0

T0 + �

)�0

(4.41) lim
�0!1;z!1

 (�) = lim
�0!1;z!1

�0 � 1
T0

(
1� �

T0 + �

)�0

inserting Equation.(4.39)

(4.42) lim
�0!1;z!1

 (�) = (�0 � 1)(
�0

�0 � 1
)
(

1� ��0

�0 � 1 + �0�

)�0

since

(4.43) lim
n!1

[
1� x

n

]n ! e�x

(4.44) lim
�0!1;z!1

 (�) = �0e��0�

namely an exponential distribution in accordance with the prediction of Zaslavsky`s anal-

ysis of the Poincare recurrence times. So Manneville map provides us with an adjustable

tool to provide us a power law waiting time distribution of power index �0 or an exponen-

tial waiting time distribution of rate �0 on demand, through the gauge of �0. For obvious

reasons from now on we will refer to power law waiting time distributions as non-Poisson

distributions, and exponential waiting time distributions as Poisson distributions.
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Let us see the integration of the probability distribution over all possible values of the

waiting times � for the Poisson case.

(4.45)
∫ 1

0
 (�)d� = �0

∫ 1

0
e��0�d� = 1

Hence it is already normalized. If we do the same for the zeroth moment of � for the

non-Poisson waiting time distribution

(4.46) (�0 � 1)T �0�1
0

∫ 1

0

d�
(T0 + �)�0

= (�0 � 1)T �0�1
0

∫ 1

T0

du
(u)�0

= 1

So, both the non-Poisson and Poisson distributions have their zeroth moment equal to

one, namely, they are already normalized in their present form.

In the Poisson case

(4.47) < � >Poisson=
∫ 1

0
� (�)d� = �0

∫ 1

0
�e��0�d� =

1
�0

the �rst moment of the waiting time distribution the non-Poisson case reads, setting

u = T0 + �

(4.48) < � >non�Poisson= (�0 � 1)T �0�1
0

∫ 1

T0

u � T0

u�0
du

(4.49) < � >non�Poisson= (�0 � 1)(T �0�1
0 )

([
u2��0

2� �0

]1

T0

� T0

[
u1��0

1� �0

]1

T0

)

this quantity is �nite only if �0 > 2, remember that for the normalization condition to

be satis�ed, we already needed �0 > 1.

(4.50) < � >non�Poisson=
T0

�0 � 2

So as a result for the �rst moment, average of the waiting times, we have < � >= 1
�0

for the Poison case, and for the non-Poisson case < � >= T0
�0�1 for 2 < �0, and when

1 < �0 < 2, < � >!1, basically as we proceed larger and larger values of � will show

up in this case that an average value is not de�ned for 1 < �0 < 2.
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For the Poisson case, let us calculate the second moment < �2 >Poisson

(4.51) < �2 >Poisson=
∫ 1

0
�2 (�)d� = �0

∫ 1

0
�2e��0�d�

integrating by parts

(4.52) < �2 >Poisson=
2
�0

∫ 1

0
�e��0�d�

︸ ︷︷ ︸
1
�0

=
2
�2

0

having reached the result for the second moment < �2 >Poisson= 2
�0

and the average

< � >Poisson= 1
�0

, the variance and the standard deviation the for the Poisson case reads

(4.53) �2
�;Poisson =< �2 >Poisson � < � >2

Poisson=
1
�2

0

and

(4.54) ��;Poisson =
1
�0

respectively.

Let us also investigate the second moment for the non-Poisson case.

(4.55) < �2 >non�Poisson= (�0 � 1)T �0�1
0

∫ 1

0

�2

(T0 + �)�0
d�

setting again u = T0 + � as the new integration variable

(4.56)

< �2 >non�Poisson= (�0 � 1)T �0�1
0

(
[
u3��0

3� �0
]1T0
� 2T0[

u2��0

2� �0
]1T0

+ T 2
0 [
u1��0

1� �0
]1T0

)

obviously, this quantity will be �nite only when �0 > 3. Having satis�ed the �niteness

condition it leads to

(4.57) < �2 >non�Poisson=
2T 2

0

(2� �0)(3� �0)
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and the variance reads

(4.58)

��;non�Poisson =< �2 >non�Poisson � < � >2
non�Poisson=

2T 2
0

(2� �0)(3� �0)
� T 2

0

(�0 � 2)2

(4.59) ��;non�Poisson =
T 2

0 (�0 � 1)
(2� �0)(�0 � 2)(3� �0)

So the standard deviation of the non-Poisson distribution is de�ned and �nite only for

�0 > 3.

4.5. Dynamical Model for Poisson Renewal Processes using Modi�ed Manneville Map

At this point we will introduce a dynamical model developed by our Non-Linear Science

center at University of North Texas. The dynamic model in use in this section is inspired

by the Manneville map [47], more recently modi�ed [?] to reduce the time spent in the

chaotic regime to only one time step, i.e., if we consider only the laminar sequence of

times, this model will produce for us the renewal event sequences of the Manneville map.

Having established its advantages to model renewal systems, we will work on the

e�ects internal or external parameters on this intermittency model, and �nally with the

aid of time series analysis methods based on entropic considerations we will establish

connections with neuron systems.

Here we consider a particle moving in the positive direction in the interval , based on

the non-linear equation

This model is based on a particle moving in the positive direction of the x-axis, within

the interval I � [0; 1], of size 1, de�ned by x 2 [0; 1], with the following deterministic

equation of motion

(4.60) _x = �0x z

where 1 � z and 1 � �0. When the particle reaches the border point of x = 1, the

particle is inserted back in the prescribed interval in a random way, to any point in the

interval I with equal uniform probability as shown in the Figure.(4.5)
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0 1

Figure 4.4. Dynamical model for the particle driven by the Modi�ed

Manneville Map non-linear equation. The particle is inserted back into the

interval randomly with uniform probability.

We will denote the time it takes to reach the border x = 1 from the initial point

x0 = �, by � , where we use the symbol � to signify a random number in the interval

I � [0; 1]. Let us �rst investigate the case where we have z = 1. Then the equation

reads

(4.61) _x = �0x !
∫ x(t)

x0

dx
x

=
∫ t

0
�0dt

(4.62) ln
x(t)
x0

= �0t

(4.63) x(t) = x0e�0t

let us remember that the initial position is a random number � and at the border the

particle reaches x(t) = 1 within a sojourn time of � [80]

(4.64) � = e��0�

(4.65) � =
�1
�0

ln (�)

This indeed is the simples way to drive Poisson sequence of waiting times in chronological

order using a series of White Noise �i .

For the waiting time distribution

(4.66)  (�)d� = p(�)d�
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one has to remember that the back injection probability is constant and uniform implying

p(�) = 1, hence

(4.67)  (�) =
∣∣∣∣
d�
d�

∣∣∣∣ = �0e(��0�)

Basically, the waiting time distribution for the dynamical model under investigation

for the parameter z = 1 is a Poisson distribution. Remember that all the initial values

x0 are drawn from a set of random numbers with an equal probability in the interval

I � [0; 1], hence the name white noise. Therefore the random numbers �i and �i+1 are

totally uncorrelated ensuring the renewal nature of the process under investigation. So,

by this token, now we know that for z = 1, this system will produce waiting time distri-

butions of renewal nature as Poisson renewal system should do, namely, an exponential

distribution of the histogram of the renewal waiting times with no time auto-correlation

in the chronological order. Note that this is the technique we use to create the un-

perturbed time series ftig, with the following criterion: t1 = �1; t2 = �1 + �2, and so

on. The numerical means of perturbing the Poisson sequences will be based on similar

argumentation.

4.6. Dynamical Model for Non-Poisson Renewal Processes using the Modi�ed Manneville

Map

Let us now consider the case where we have z 6= 1.

(4.68)
dx
dt

= �0x z

(4.69)
∫ x(t)

x0

dx
dt

=
∫ t

0
�0dt

(4.70)
x�z+1

�z + 1
jxx0

= �0t
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(4.71)
x1�z
1� z �

x1�z
0

1� z = �0t

when x = 1, the time t = � , and remembering that the initial value of the position

x0 = � is drawn from a sample white noise randomly from the interval I = [0; 1]

(4.72) � =
1

�0(1� z)
(1� �1�z)

This is the simplest means of obtaining the unperturbed renewal non-Poisson waiting

times from a sequence of White Noise.

Again playing the same arguments as above that the back injection is uniform

(4.73)  (�)d� = p(�)︸︷︷︸
1

d�

with

(4.74) � = (1� ��0(1� z))
1

1�z

and

(4.75)  (�) =
∣∣∣∣
d�
d�

∣∣∣∣ =
�0

(1 + ��0(z � 1))
z

1�z

set �0 = z
z�1 implying that z � 1 = 1

�0�1

(4.76)  (�) =
�0

(�0(z � 1))�0

[
1

�0(z�1)+�

]�0

and if we set

(4.77) T0 =
1

�0(z � 1)
=
�0 � 1
�0

this reads

(4.78)  (�) = (�0 � 1)
T �0�1

0

(T0 + �)�0

A normalized power law distribution exactly in the same form as the Manneville map

discussed earlier provides for us. We may name this model modi�ed Manneville map,

because it has all the bene�ts of the original Manneville map, but also the additional
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advantage that in the modi�ed case, the parameters T0 and �0 might be adjusted inde-

pendent of each other, which also means that, one can perturb one independent of the

other. So modi�ed form of the Manneville map gives us tools to play with the system

parameters to adjust the transition time to power law T0, which also serves as a time

scale parameter of the system, or the power index �0 independently, which is possible to

do in a physical system depending on what parameters are time dependent.
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CHAPTER 5

FUNDAMENTAL CONCEPTS IN TIME SERIES ANALYSIS

5.1. Scaling Detection Methods in Time Series

A time series comprises of a series of data equally spaced in time as �1; �2; �3; : : : ; �n.

One can establish a connection between a particular time series and a di�usion process.

The Brownian particle we consider is assumed to undergo collisions and hence change its

velocity with equal intervals that correspond to the time unit interval of time series �t.

In such a motion of the Brownian particle, the time series �i might be assigned for the

velocity components. For the sake of rigor, between the time interval t = 0 to t = 1,

where we have assigned the time interval between the consecutive elements of the time

series as the unit time interval �t = 1, we have the velocity component as �1 leading

to a displacement of x1 = �1�t = �1. Between the time interval t = 1 and t = 2,

the velocity component assigned is �2 leading to a displacement during this time interval

of x2 = �2. If the particle starts motion at x0 = 0 under the command of the velocity

components given as the elements of the particular time series under consideration,at

time t the particle will be at the position x(t) =
∑t

i=1 �i , where t is a positive integer.

Overall the above equation describes the position of the Brownian particle starting its

motion at t = 0 at x0 = 0. But one can not have spring with just a single blossom

of a 
ower, for a statistical approach to a di�usion process we need an ensemble of

identical particles starting with the same initial condition at t = 0 and x0 = 0. However,

a time series yields only a single realization whereas we need many realizations of Gibbs

ensembles with identical initial conditions. To overcome this problem the technique of

overlapping windows is introduced and de�ned as follows.

If we have a single realization as the time series of N discrete elements, �1; �2; �3; : : : ; : : : ; �N,

di�erent di�usion trajectories may be de�ned by taking consecutive elements in a window
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Figure 5.1. Brownian White noise driving a di�usion process.
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Figure 5.2. Trajectories obtained from non-overlapping windows.

of size tw . So for window of size tw = 3, we will have 3 successive elements in every

case as follows

x1(3) = �1 + �2 + �3;

x2(3) = �2 + �3 + �4;

x3(3) = �3 + �4 + �5;

: : : : : : : : :

xN+1�tw (3) = �N�2 + �N�1 + �N;

or in general

(5.1) x�(t = tw) =
�+tw∑

i=�

�i
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where � = 1; 2; 3; : : : ; N+1�tw . So, now we have N+1�tw , trajectories representing

di�using particles all stating their motion at t = 0, x0 = 0, and ending up at the points

in space xi(tw), i = 1; 2; 3; : : : ; N + 1� tw . The distribution of points xi(tw) will de�ne

a distribution of Gibbs ensemble of particles at time t = tw , so, we have a distribution

of N + 1 � tw particles and clearly as N ! 1, it will de�ne a well �t distribution. By

means of this method of overlapping windows, even if we have a single realization of

a time series , we can de�ne a set of Gibbs ensemble of particles to follow in which

manner the distribution of the particles evolve in time as a function of the window

size tw . The method of overlapping windows for a time series of 900 elements and a

windows size of 30 will yield 30 trajectories. A Brownian Noise of such properties with

900 elements is shown in �gure (5.1) and the resulting trajectories with non-overlapping

windows method is shown in �gure (5.1). If we used overlapping windows method we

would have N + 1 � tw = 871 windows available, but with non-overlapping windows

method we only have 30 trajectories. The superiority of the quality of the resulting

statistics using overlapping windows method is obvious.

5.2. Standard Deviation Analysis for Scaling Inspection

The method is based on the presumption that a di�usion process does not need to

scale as � = 0:5, for sub-di�usion or for super-di�usion processes this scaling coe�cient

could well be di�erent ranging from � = 0 to � = 1 in the ballistic case. The di�usion

equation may read

(5.2) p(x; t) =
1
t�
exp(�x2=4Dt�)

namely it could still be a Gaussian distribution but the dependence of the variance on

time may scale may be di�erent from a normal di�usion process. For normal di�usion

process we have already shown that < x2(t) >� t2H where H = 1=2. For < x(t) >= 0

the variance coincides with the mean square displacement and �(t) � t2H simply reduces

to < x2(t) >� t2H. The correlation function of the time series that results in normal a

Brownian motion is zero because the kind of noise that generates normal Brownian motion
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is a white noise with no correlations. If 0 < H < 0:5, the noise results in a fractional

Brownian motion resulting in a sub-di�usion trajectory with anti-persistent properties

meaning a negative correlation, whereas for 0:5 < H < 1 the resulting trajectory shown

persistent behavior therefore leading to a positive correlation and a di�usion with super-

di�usion properties and the di�usion simply becomes a ballistic di�usion for the special

case of H = 1.

Since with the use of the method of overlapping windows described in the former

section, we can generate di�erent trajectories for an ensemble of Gibbs particles derived

from the time series under study, we can obtain the �nal positions of these particles for

a window size of tw with the notation used above as xi(tw), there i stands for the i th

particle. so now we have a distribution of N+ 1� tw particles each of which is considered

to start the motion at the initial position x0 = 0. In this regard one could as well think

of the motion and the trajectories of these particles described here as the projection of a

3-dimensional di�usion process on one of the dimensions, say that of ink in water, where

ink is injected in the water with a syringe and the point of injection is taken as the point

of origin for the di�usion process. Now if want to consider the population variance of

these di�using particle trajectories by de�nition

(5.3) �2 =
N∑

i=1

(xi � �x)2P r(xi)

for N particles with an average position of �x where P (xi) stands for the probability of x thi

trajectory to occur. Here we do not have to consider the probabilities since we have the

exact knowledge of the distribution for a time window of size tw , the variance will read

(5.4) �2(tw) =
1

N + 1� tw
N+1�tw∑

i=1

(xi(tw)� �x(tw))2

where the ensemble average value for the �nal positions for a time window of length tw

is de�ned as

(5.5) �x(tw) =
x1(tw) + x2(tw) + x3(tw) + : : :+ xN+1�tw (tw)

N + 1� tw
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Let us note however that we are not really obliged to use overlapping windows method,

we could as well have used a non-overlapping windows method as well, for which the

number of trajectories available to de�ne di�using particles with di�erent indices will

decrease signi�cantly. With a time series data of size N, the non overlapping window

method yields ( Ntw ) distinct windows as trajectories where we have N+ 1� tw trajectories

available using the overlapping windows method, and obviously, for N � tw , the number

of trajectories is signi�cantly larger in the case of overlapping windows method. Since

the statistics in the case of non-overlapping windows approach leads to weaker statistics,

we prefer the overlapping windows method.

For the case where �(tw) � t�w , we will have ln(�(tw)) � � ln(tw). So on a log-log

scale of the above mentioned variance versus time window size plot, the slope will de�ne

the scaling coe�cient if it exits (provided of course that the standard deviation of the

sequence is �nite for the distribution under question.).

Here we can consider a simple case where we draw the elements of the time series

from a power law distribution  (�) de�ned as

(5.6)  (�) = (�0 � 1)
T �0�1

0

(T0 + �)�0

with 1 < �0 < 3. Remember that the second moment for the case is not �nite

for this case. So if the time time series �1(tw); �2(tw); �3(tw): : : : ; �N+1�tw (tw) are

drawn from a distribution satisfying the above mentioned power law distribution as,

�1; �2; �3; : : : ; �N+1�tw , we see that the second moment of the trajectories based on this

time series as the discrete velocities will yield a second moment which is not �nite. But

there might as well be cases, in fact many power law cases in nature satisfy the condition

mentioned above with �0 < 3 will yield a variance which basically is not �nite. Hence

for such a time series, even the distribution may be satisfying the scaling condition with

some form of the scaling function F and a scaling coe�cient �, but the second moment

will be tending to in�nity as the window size tw ! 1. Obviously, variance analysis will

not work for the detection of a scaling coe�cient even if the scaling condition might have

been satis�ed for the case of a power law distribution with �0 < 3, where the process
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will be named Levy walk or Levy 
ight depending on the particular value of �0 and the

walking rule applied. We will work this case in more detail based on the Di�usion Entropy

Analysis Method we introduce in the next section.

5.3. Di�usion Entropy Analysis

DE technique of analysis was born with the papers of Refs. [73, 74]. The connection

between the DE method and the concept of algorithmic complexity is discussed in Ref.

[51]. This technique rests on converting the time series f�ig into a di�usion process.. In

principle, having available a Gibbs ensemble of time series, we should consider

(5.7) x(l) =
l∑

i=1

�i :

Each system of the Gibbs ensemble can be considered as being a random walker that

at time l occupies the position x(l). Due to the fact that in the cases of practical

interest we have available only one time series, we make the ergodic assumption and we

generate a set of many random walkers walking for a time t by the method of mobile

window [73, 74]. We consider a window of size l and shifting it along the sequence of


uctuations we get for the t � th random walker the position

(5.8) x(l ; t) =
t+l∑

i=t

�i :

Note that the slope of the straight line obtained with log-log plot of S(l) versus l

must be

(5.9) � =
1
2
:

In the Gaussian case of the probability distribution function F the time dependence of

S(l) is the same as that of log(< x2(l)� < x(l) >2)
1
2 . Therefore, in principle, we

might also apply the method of analysis based on variance [67]. However, in the recent

literature there are indications [76, 77] that the DE analysis always detects the correct

scaling, which might be di�erent from the scaling determined by means of the variance

method. Thus, we use the DE method, even if the use of the variance method might lead

to essentially identical results in the particular case of the probability distribution function
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for the di�usion process F is a Gaussian, yet this function need not be Gaussian, it could

as well be a Levy Function where the second moment of the distribution is not �nite for

instance. Therefore, DEA has the obvious advantage of detecting the correct scaling

even when Second Moment Analysis fails.

Obviously for Levy walk and Levy Flight where we may have a power law index of

1 < �0 < 3, the Variance Analysis Method proves to be incapable of providing the correct

scaling coe�cient � if the condition for scaling is satis�ed by the time series under study.

However the Di�usion Entropy Analysis Method provides for us a means of detecting

the correct scaling for the probability distribution function p(x; t) of a di�usion process

with fractal scaling derived from a time series data. Since we know that we can detect

the scaling coe�cient � for di�usion process generated by Fractional Brownian Motion

by Variance Analysis and also from Di�usion Entropy analysis, as they must be identical

for the case under study. However, for other cases the Variance analysis and Di�usion

Entropy Analysis need not lead to the same result, so the Hurst Exponent H and scaling

coe�cient � might lead to di�erent results and we will discuss the particular cases shortly

after the introduction of the method itself.

Let us start with the basic condition of scaling and assume for beginners that this

condition is to be satis�ed by the probability distribution function of the di�usion process

generated by the time series under study, the condition is

(5.10) p(x; t) =
1
t�
F

( x
t�

)

where � denotes the scaling coe�cient and the function F is not necessarily a Gaussian

function.

Let us make the connection with the time series which we may denote as �1; �2; �3; : : : ; �N,

to denote that this time series could as well be derived from some kind of Brownian White

Noise, or from a Fractional Brownian Noise. However, let us keep in mind that this series

could be derived from a renewal process with a power law distribution or with an expo-

nential distribution, in which case the time series �1; �2; �3; : : : ; �N might as well denote

the sojourn times between the critical rare events of a renewal process. In any case,
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from a single realization of a time series we can infer a di�usion process based on the

overlapping windows method expressed in section (5.1). Based on the time series we

have de�ned the trajectories of the ensemble of individual particles which will then yield

us to the distribution of the particles for a window size of tw .

As soon as we have the �nal points of the individual trajectories of the particles for a

�xed time window size of size tw , we have to develop a numerical method to evaluate the

probability distribution function and the numerical method calls for a division of the x-axis

with a given equal size �x which might as well depend on the time window size tw itself.

And the cell size �x must be determined such that the �nal distribution p(x; tw) will be a

well de�ned distribution, not to result in a poor statistics or a fractured structure. Once

we set the size of cells (�x(tw))i , we will count the number of trajectories that end up in

this i th cell, where i denotes the particular cell position, and we may say this number is

P (xi ; tw). Notice that the number of trajectories that end up at the same cell increases

with the cell size, so what really matters is the number density of the particles ending up

in a particular cell, which has the advantage that even when with the time window size

tw we may need to use a di�erent cell size, the number density of the di�using particles

in these cells is optimally independent of the cell size. The number density for the i th

cell ni(tw ; x) is given as

(5.11) ni(tw ; x) =
P (xi ; tw)
(�x(tw))i

So since this distribution must be normalized and the total number of trajectories is

N�tw +1, the distribution function will be obtained by dividing the number of trajectories

that end up in a particular cell by the total number of trajectories for a window size of

tw ,

(5.12) p(xi ; tw) =
ni(tw ; x)
N � tw + 1

When we do the partitioning of the x-axis and then label the cells in order the count

the number of particles in the cell, by de�ning a cell size of �i(x; tw), we may shift
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to counting the number of particles in each cell and by means of dividing by the total

number of particles N � tw + 1, this method will give us a fair distribution function when

the length of the time series N ! 1, since by then we will have a large number of

particles that will be di�using.Since we have a �nite number of particles and for a time

window tw tending to 1 we still have a �nite number of particles to consider, average

position �x and the variance �2 of our di�using particles will be a well de�ned number.

To determine the bin size which is the cell size for a window size of tw , we can use a

fraction of the standard deviation of the positions of these di�using particles. I found

it more adequate to use the cell size as one tenth of standard deviation. Using these

prescriptions one can de�ne a well de�ned number density of the particles in these cells

and hence a well de�ned probability distribution function p(x; tw), which from now on will

de�ne as p(x; t) can well be de�ned. Once we have the time evolution of the probability

distribution function we can discuss how one can determine if the time evolution of this

probability distribution function obeys a scaling relation or not. Let us start with the

assumption that this scaling relation is satis�ed per se, in which case if we end up in an

inconsistency by means of reductio ad absurdum the scaling condition is not satis�ed.

But if we can reach a condition which is only satis�ed if this scaling relation is satis�ed,

by the use of the condition as the test of existence we can check if the scaling condition

is satis�ed by the probability distribution function or not. So for beginners let us assume

(5.13) p(x; t) =
1
t�
F

( x
t�

)

is satis�ed, where, F is not necessarily a Gaussian function of x ,and � is the scaling

constant.

At this point, having obtained the probability distribution p(x; tw) of the di�using

particles, we can obtain the Shannon Entropy of this distribution, by de�nition

(5.14) Ssh(t) = �
∫ 1

�1
p(x; t) ln(p(x; t))dx
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since the time is discrete

(5.15) Ssh(tw) = �∑

i=1

p(xi ; tw) ln(p(xi ; tw))

summation over the indices of all the partitioning cells.Let us assume that the scaling

condition is already satis�ed by the probability distribution function, and that for large

times t the simplifying condition that the continuous assumption is valid. So, substituting

for the probability distribution function the scaling condition directly

(5.16) Ssh(t) = �
∫ 1

�1
dx

1
t�
F

( x
t�

)
ln

(
1
t�
F

( x
t�

))

by changing the integration variable to u = x=t� it reads

(5.17) Ssh(t) = � ln (t)
(∫ 1

�1
duF (u)

)
�

∫ 1

1
duF (u) ln (F (u))

Since normalization of p(x; t) implies the normalization of the function F , Shannon

entropy of the pdf under the condition that it satis�es the scaling condition reads

(5.18) Ssh(t) = � ln (t) + A

� Lemma : Notice that if we use the de�nition of Equation.(2.4), provided that

the distribution is normalized (which it should by de�nition, it would yield the

same scaling constant � if it exists, regardless of the particular value of A.)

so if we plot the Shannon entropy versus time graph in semi-log scale where the time

axis t is plotted in logarithmic scale, provided the pdf satis�es the scaling condition, we

will have a well de�ned slope which is equivalent to the scaling coe�cient �.In a di�usion

process with a �nite number of particles it will take some time for the process to reveal

its scaling properties depending on the particular form of the function F , so the transition

region in the Di�usion Entropy Analysis till a well de�ned scaling coe�cient appears as

the slope may also tell us something about the di�usion process itself as well.
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It is important to notice that in the short time region, namely, in the region of windows

with small length l , the continuous-time approximation of Eq. (33) is invalidated. Thus,

A is not the values of S(l) for l = 1. It is rather the intercept of the tangent to S(l) in

the large l region with the ordinate axis. However, for simplicity, we shall refer to A as the

value of S(l) at l = 1, which is, in fact, the time origin in the logarithmic representation.

Note that the entropy S(l) is positive de�nite. However, in practice, its actual value

depends on the size of the cells that we adopt to transform the continuous PDF into a set

of probabilities pi , with pi � p(xi ; l)�, with � being the cell size. To properly determine

the scaling �, which is an asymptotic property, it is convenient to use cells of large size,

and this might have the e�ect of making the entropy negative in the short-time region.

That is why I usually use S(t)� S(1) in DE versus time plots, as is customary since the

�rst papers on DE appeared, and the scaling properties of the system emerges in the

long time-asymptotics.

5.4. DEA with di�erent walking rules

In this Section we follow the authors of Ref. [90] who adopted the method of Di�usion

Entropy (DE) [73, 74, 97] to analyze the data produced by the Hodgkin-Huxley (HH)

neuron model. The DE method rests on converting a time series into a di�usion process

x(t), and in evaluating the entropy of the resulting Probability Density Function (PDF)

p(x; t). When the di�usion process act as continuous in time and space in the long

time limit, if the scaling condition is satis�ed the time dependent entropy of the resulting

di�usion process would read

(5.19) S(t) = A+ � ln(t);

where

(5.20) A = �
∫ 1

�1
dz F (z) ln (F (z)) :

According to Ref. [73] the e�ciency of this method of analysis depends on the walking

rule adopted to generate the di�usion process x(t). In the following, the sequence of
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inter-spike times is converted into a di�usion process with the Asymmetric Jump Model

(AJM) rule [73]. According to the authors of Ref. [73], the AJM walking rule is the

most accurate one, and it leads to a fast convergence to the scaling condition. We have

also noticed that AJM is a better indicator of real time e�ects of the perturbation than

LJM (Long Jumps Model)

With AJM rule each inter-spike time � is represented by a sequence of zeros, and

then by a jump of constant length, say 1, in a �xed (positive) direction. The coordinate

of the random walker x(t) is then de�ned as the sum of jumps occurred until time t.

Let us consider the case of a sequence of inter-spike times whose probability density

satis�es the asymptotic behavior:  (�) � 1=��0, namely, the asymptotic behavior of the

prescription of Eq. (8.2). In this case, the relation between the (unperturbed) scaling �0

of the AJM rule and the power index �0 is given by [73]:

(5.21) �0 =





1
�0�1 ; 2 < �0 < 3

0:5; �0 � 3

Considering the unperturbed system, the transition from �0 < 3 to �0 > 3 corresponds

to a transition where the scaling �0 is anomalous (�0 > 0:5) to the scaling �0 = 0:5

of ordinary di�usion. The Poisson condition corresponds to �0 = 1. However, for the

Poisson scaling �0 = 0:5 to show up it is enough to cross the border �0 = 3. For

simplicity, we de�ne �0 < 3 as the non-Poisson basin and �0 > 3 as the Poisson basin.

Thus, the adoption of the DE analysis allows us to establish whether the system is located

in the Poisson or non-Poisson basin through the measurement of �0. Eq. (5.21) applies

also in the perturbed case.
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CHAPTER 6

STOCHASTIC RESONANCE

6.1. Stochastic Resonance Concept and Phenomena in Nature

Stochastic resonance was introduced for the �rst time in 1981 [52] to explain the

periodic recurrence of ice ages which repeat with a periodicity of 105 years [53], upon the

occurrence of which the global temperature has fallen by about �T = 10C. Researchers

�rst attempted to explain this phenomena by the weak periodic external signal due to

the slow modulation of the Earths eccentricity that also has a period of 105 years. This

change in the eccentricity appears to be modulating the total amount of Solar in
ux

by only 0:1%, so how was it going to account for the considerable change in the global

temperature change? But a climate model theory where a cooperative e�ect between the

weak periodic signal and the intrinsic stochastic dynamics of the Solar energy in
ux also

due to the changes in the Earth atmospheres turbulent dynamics makes the explanation

plausible. Indeed a double well potential model which will be discussed below explains this

e�ect resulting in the expected values of the parameters matching the data. This was

the �rst physical phenomenon that the Stochastic Resonance found its �rst application

indeed also it's name.

Since then the same principle has been applied in a wide variety of systems. Nowadays

stochastic resonance is commonly invoked when noise and nonlinearity concur to deter-

mine an increase of order in the system response. SR-based techniques has been used to

create a novel class of medical devices (such as vibrating insoles) for enhancing sensory

and motor function in the elderly, patients with diabetic neuropathy, and patients with

stroke. The idea found its application in medicine immediately but rather on a discovery

basis �rst, for improving the mechanoreceptor functions of the sensory neurons by means

of external noise in the form of a noisy electrical current [55]. The input signal must

be stochastic (noisy) by nature, because otherwise it will give the nervous system an

70



opportunity to adapt just like it adapts to constant smell, noise, or the itching of new

clothes etc [54], after a while a perfectly periodic signal will be ignored, so the signal

to be transmitted must be intermixed with a stochastic component so that the neurons

can not adapt [54]. note that,in the chapters on the perturbation of Poisson (Chapter

7) or non-Poisson systems (Chapter 8) rate by a periodic signal where we model the

neurons with renewal systems, the stochastic character is already intrinsically involved in

the system dynamics.

6.2. Basic Models: Double-Well Potential as a Model for SR

Let us consider a particle in the classical double well potential illustrated in Fig.(6.2).

Let us assume the particle is under the e�ect of the forces due to the potential itself,

�dV (x)
dx , a friction force �
v , and a stochastic force, which I will denote by �(t), which

stands for the noise. The Langevin equation of motion for this system would be [56]

(6.1) m
d2x
dt2 = �
 dx

dt
� V (x)

dx
+ �(t)

when we consider the case of strong friction 
 � 1, Shmoluckovsky approximation

implies, (if we also re-scale time as t 0 = 
t)

(6.2)
dx
dt 0 = �dV (x)

dx
+ �(t 0=
)

note that rescaling the white noise time parameter is nothing but a white noise meaning

(6.3) < �(t) >= 0

(6.4) < �(t)�(t 0) = D�(t � t 0) >

where we obtain the noise due to the coupling of the system to a heat bath of

temperature T in which case the noise intensity D is given as

(6.5) D = kBT
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in other words the bath temperature T determines the noise amplitude and by intuition

also the transition rate of the particle between the wells too because if there were no

noise, there would be no transition at all. Any transition is based on the kick of the white

noise in this model since otherwise dissipative forces would win very fast for the particle

to end up at the bottom of one of the wells.

What we are interested in this problem is only the transition between the wells due

to the e�ect of this white noise, and not the intra-well motion of the particles.

Quoting Kramer's formula for the rate of the transition between the wells

(6.6) r0 =

√
d2V (0)
dx2

d2V (c)
dx2

2�
exp�Q

D

where an average residence time or rather an average waiting time can be de�ned as

(6.7) < � >=
1
r0

and now we can ask what if the potential is perturbed in such a way that when the

potential is slightly lower than it's unperturbed value on one well it will be slightly higher

than it's usual unperturbed value in the other well, and this asymmetric perturbation

will be sinusoidally time dependent. One can intuitively say that if the period of the

perturbation is such that when a particle completes its residence time in one of the wells,

the potential barrier to be overcome in this well becomes lower so as to make the transition

to the other well relatively easier, and when the transition is completed the same happens

with the next well, there we may expect some kind of resonance between the perturbing

signal and the resulting stochastic process. Namely if the period of perturbation is twice

as large as the expected waiting time of the particle in one well, we may then talk about

a resonance. Indeed such resonance exists where the signal becomes more consistent

with the resulting stochastic series, and it is named \Stochastic Resonance" or SR.

6.3. Subthreshold Signal under the E�ect of Noise as SR Model

One of the most essential models of stochastic resonance is a weak subthreshold

signal being summed up with a noise, for the case of simplicity we can consider this
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Figure 6.1. Stochastic resonance modeled as particle in a bi-stable dou-

ble well potential, transitions driven by an external stochastic noise and a

weak sinusoidal oscillation of the potential.

Figure 6.2. Stochastic resonance modeled as a weak subthreshold signal

plus a noise.

to be a white noise in this particular model, and when the total sum exceeds a de�nite

predetermined threshold, an event will be recorded, for an illustration of the model see

Fig.(6.3). So in this model it is obvious that if there is no noise at all there will be no

events recorded. If on the other extreme the noise amplitude is very large this time there

will be many events and the signal again will be lost. Intuitively one can see that for an

intermediate range of noise values the signal might �nd a way for itself to be transmitted

through the threshold, the crossings of the threshold by the weak signal will be enhanced

by the noise present. Actually, noise in this model is obviously helping the signal to cross

the barrier.

From Fig.(6.3) and the brute force method of obtaining the waiting times for Poisson

renewal systems under the perturbation of rate discussed in Section(3.9) one can easily

notice the connection between the two models. Actually the perturbation of rate acts like
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a weak perturbation and there is already the same white noise in the process. The events

are threshold crossings in both cases. It is more like the threshold is being modulated

itself in the perturbation of Poisson processes whereas in SR the weak signal is being

modulated, but one can be embedded in the other one. So the model similarity is almost

at a degree of identity for the two phenomena modeled in this manner.

6.4. Signal to Noise Ratio as a function of rate

We are now interested in a more general form of information transmission through

a random environment. For this we have to review some aspects of ordinary stochastic

resonance. Here in this concise review, I aim to illustrate the basic aspects of the

phenomena illustrated in Ref.[71].

Let us consider the ordinary master equation for a bi-stable system:

(6.8)
dp1

dt
= �r+

2
p1 +

r�
2
p2

where p1 and p2 are the probabilities of �nding the particle in the �rst well or the second

one respectively. The transmission rate from the �rst well to the second one is denoted

with r+ and the reverse as r�.

(6.9)
dp2

dt
= �r�

2
p2 +

r+
2
p1

Now let us imagine that the transition rates are perturbed simple harmonically

(6.10) r�(t) = r0(1� � cos(!t))

Let us set

(6.11) � = p1 � p2

where we have considered a two state system with the variable �1;2 = �1, and hence to

transmit a signal

(6.12) � =< � >= p1�1 + p2�2 = p1 � p2
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so � is in a way the mean value of the signal.The signal we are trying to transmit

through this stochastic system obviously is S = cos(!t). If < �(t) > oscillates as S, we

can transmit the signal. Making use of � = p1 � p2 and p1 + p2 = 1, we can substitute

for p1 = 1+�
2 and p2 = 1��

2 to get

(6.13)
d�
dt

= r0�� �r0 cos(!t)

(6.14) � = ��r0
∫ t

0
e�r0(t�t 0) cos(!t 0)dt 0

it is in the form of

(6.15) �(t) =< �(t) >= �
∫ t

0
��(t � t 0)E(t 0)dt 0

is the Green-Kubo theory concludes where

(6.16) ��(t � t 0) = r0e�r0(t�t 0)

(6.17) E(t) = cos(!t)

and � = �, so in conclusion, the traditional linear response theory holds true. Taking the

integral it reads

(6.18) �(t) = � �
2
r0e�r0t

[
e(r0+i!)t

r0 + i!
+
e(r0�i!)t

r0 � i!
]

as t !1 becomes

(6.19) �(t) = �
r 2

0 cos(!t) + !r 2
0 sin(!t)

r 2
0 + !2 = �� cos(!t � �)

where � = arctan( !r0 ) and cos(�) = r0p
r2

0 +!2
, thus we have

(6.20) � =
�r 2

0

r 2
0 + !2

1
cos(�)
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(6.21) � =
�r0√
r 2

0 + !2

The Signal to Noise ratio is

(6.22)
S
D

=
�
D

=
�r0√
r 2

0 + !2

1
D

In the ordinary case of stochastic resonance, Arrhenious property reads.

(6.23) r0 = Ae�Q
D

assuming for simplicity that A=1,Q=1,

(6.24) D =
1

ln( 1
r0

)

(6.25)
S
D

=
�r0√
r 2

0 + !2
ln(

1
r0

)

If we plot the Signal to Noise ratio S
D as a function of the rate r0 we see that depending

on the period of the perturbation T, there is a de�nite value of r0 that the Signal to

Noise ratio will yield a maximum value, which we refer to as resonance synchronization

that maximizes the Signal transmission.

Gammaitoni et. al. [71] has calculated the expected power spectral density for

the series of events obtained for the case of stochastic resonance and they found out

that a peak corresponding to a time of half of the period perturbation displays a major

maximum as shown in Figure(6.4). This frequency �0 corresponds to a value of time that

corresponds to the expected waiting time in the double well. The next peak comes at

3�0 and then at 5�0. So we can see a series of peaks for the fundamental harmonics and

the higher harmonics decreasing in amplitude very fast, but they are there. The details

of the power spectrum depends on the characteristics of the noise used, for simplicity
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Figure 6.3. The Signal to Noise ratio as a function of the rate r0 for

�=0.4 and various values of !.
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Figure 6.4. The Signal to Noise ratio as a function of the rate r0 for

�=0.4, T = 6284 & T = 628:4.

we have used here a white noise, but one could as well use brown noise or pink noise

or for that matter any colored noise and the particular details of the power spectrum

might as well be modi�ed by the details of the noise utilized in SR. What is important to
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Figure 6.5. Typical power spectrum calculated for an SR model displays

peaks at certain frequencies.

notice is that SR power spectrum displays peaks at de�nite values of the frequency axis.

This observation indeed also comes along when we check the FFT power spectrum for

the perturbation of Poisson as well as the non-Poisson renewal processes as pictured in

Chapter.7 and Chapter.8.

For the models of Poisson or non-Poisson renewal processes we can not change

the value of the noise. This is especially obvious for the Brute force model of the

Poisson perturbation model. Instead the parameters that can be modi�ed are the signal

amplitude and the period of perturbation. This makes sense because what really mattes

is the relative ratio of the signal amplitude to that of the noise amplitude. The interplay

between these two variables and the frequency of the perturbation completes our analogy

with the SR model. So here we can take a look at the results and implications of SR

model in neuroscience.

6.5. SR in Neuroscience

There is no general systematic known way for �nding the waiting time distributions for

threshold crossings for all cases of a double potential (where the system is asymmetric,

the potential minima are di�erent etc) [71]. However, Papoulis [58] had calculated the

distribution for symmetric bistable distribution of the form

(6.26)  (�) =
1
�c
e� �

�c
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basically a Poisson distribution.

One thing we don`t really know for sure. Do neurons obey Poisson statistics or do

they obey non-Poisson statistics. As mentioned in Chapter 8 there is support for both

claims. So then let us take a look at the early experiments.

Figure 6.6. Waiting time distributions obtained under the e�ect of stim-

ulant perturbation from neurons of makaque monkeys.

The predictions of this model can be compared to already carried out experiments

on makaque monkeys sensory neurons under the e�ect of periodic perturbation of the

amplitude of the stimulant. Figure 6.5 displays these results. The decay of the sojourn

time distribution peak is essential an exponential function for both cases. One can

compare these results to that of [104],who performed a more a more recent experiment.

The results all display an exponential decay of maxima and a bunching of the waiting

times following the period of perturbation.

The general predictions od SR are consistent with data under the perturbation of the

stimulant. But as we will show they are also consistent with the predictions of Perturbed

renewal processes as we we have already shown the similarity with the Poisson perturbed

cases, we will also prove in Chapter 8 that non-Poisson systems may also provide similar

experimental results under the e�ect of perturbation..
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CHAPTER 7

PERTURBATION OF POISSON PROCESSES

7.1. Introduction

In this Chapter I discuss the connection of Stochastic Resonance phenomena [66]

mentioned earlier in Chapter 6 with Poisson processes under periodic perturbation [80]. I

also refer to former results obtained at UNT CNS concerning seasonality and detrending

algorithms [62, 63] where the case of underlying seasonality is summed with external noise

which is not correlated to the seasonality itself. In this Chapter, I show how a Poisson

process under perturbation can act as a model where the 
uctuations are correlated to

noise itself.

In the literature of complexity there are many cases where the statistical features of

the time series under study are characterized by evident periodicity. One of the most

important cases is given by meteorological phenomena such as the temporal distribution

of rain fall events [59]. Such phenomena are indeed characterized by several processes,

each mainly a�ected by a given time scale of periodicity, such as the diurnal cycle or

the seasonality. An even more impressive case of climatological interest, is given by the

global surface warming [60]. In this particular case, the periodic component based on the

solar cycle, whereas the systematic temperature increase might be human made. In this,

and other cases of the same kind, a question of great interest is related to whether the

statistics of 
uctuations are related to the regular trend, either periodic or systematic.

A better understanding of this question should help the search of a proper model for this

important environmental issue.

There are other meteorologic issues, where the phenomenon of interest is the periodic

signal itself, as in the case of chirps produced by sprites [61]. Another interesting case is

given by seasonal e�ects on sociological processes [62, 63]. Based on the results of these

earlier works we know that the superposition of a seasonal component and uncorrelated
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noise can be detected by means of de-trending methods. In a given data the e�ect of

hidden seasonal e�ects can be detected by means of di�usion entropy analysis regardless

of the noise amplitude being small or large in compared to the signal, Direct Assessment

of DEA on the data reveals the e�ect of periodic component as shown in the Fig(7.1)

and Fig(7.1). The scaling is determined in a longer time span for relatively low noise,

but nevertheless it is correctly determined, and for even much stronger noise case the

seasonal e�ect is also determined by the DEA method on the arti�cial data as well as

the correct scaling.
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Figure 7.1. Seasonal component in the form of a sinusoidal function of

period P = 72 superposed with a white noise of amplitude 10 times larger

than the signal itself.

The data of babies born to teen age mothers in the state of Texas, show a slow mod-

ulation, due to seasonal e�ects, and a systematic increase, probably due to immigration.

In other cases, the periodicity might be characterized by 
uctuating frequencies, these


uctuations being the complex phenomenon to understand [64]. The work of Yang et

al. [90] discusses the 
uctuation versus periodicity issue with the Hodgkin-Huxley neuron

model, thereby suggesting a possible connection with the stochastic resonance of neurons

studied years ago by Longtin, Bulsara and Moss [66].

When the time series to analyze are characterized by periodicity, it is only natural to

make the assumption that the signal consists of a mere superposition of 
uctuations and

a sinusoidal trend [67, 68] and de-trending techniques of ever increasing e�ciency have

been proposed in the last few years [69, 70]. However, the possibility that a correlation

exists between the periodic trend and the 
uctuations cannot be ruled out. By correlation
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Figure 7.2. Direct assessment of DEA on the seasonal e�ect

plus uncorrelated white noise. (top) The noise amplitude is 10 times

larger.(bottom) The noise amplitude is 0:05 times that of the noise. For

both cases DEA detects the correct scaling of � = 0:5, as well as the e�ect

stemming from the existence of seasonality.

between trend and 
uctuations what is meant is the possibility that the response of a

physical system to an external forcing is not only given by a regular trend, but it involves

also the statistics of the 
uctuations about the average. The discussions in this chapter

focuses on the case where an external perturbation, assumed to be periodic, not only

creates a trend, but also establishes a correlation between 
uctuation about the trend

and periodicity. Our aim is to establish a detection technique that might reveal this

correlation if it exists, and to realize this goal we work on arti�cial sequences that are

theoretically proved to be characterized by a strong 
uctuation-periodicity correlation.

These arti�cial sequences are generated by a dynamic model, which is closely related to

the subject of stochastic resonance [71]. The main conclusion of this research is that

after removing the trend from the time series, it is convenient to analyze the modulus of

the de-trended 
uctuations rather than their real values, which can be either positive or

negative. The statistical analysis of the real values might give the misleading impression

that no 
uctuation-periodicity correlation exists.
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The outline of this paper is as follows. In Section 7.2 we illustrate the method that

we adopt to create 
uctuation-periodicity correlation. We devote a special attention to

establishing the condition ensuring a strong correlation between 
uctuation and period-

icity. In Section 7.3 we discuss how to reproduce the periodic clusters of the real data

[60, 62, 63], and in a special condition we solve this problem with an analytical treat-

ment. In Section 7.6 and 7.7, using the arti�cial sequences, created with the algorithm

of Section 7.2, we establish a procedure to make two methods of statistical analysis,

the Di�usion Entropy (DE) [73, 74] and Correlation Function (CF), sensitive to the


uctuation-periodicity correlation. In Section 7.8 we draw some �nal conclusions.

7.2. A Model Generating Correlation between Periodicity and Fluctuation

This section is devoted to illustrating the method I use to produce 
uctuation-

periodicity correlation. This method is inspired by the well known dynamical system

of a particle in a double-well potential, driven by white noise and an external periodic

forcing, which is nothing but the paradigmatic model of stochastic resonance [71]. How-

ever, the approach I follow here does not directly use the double-well potential to generate

the sojourn time probability distribution, and can be easily extended to the case when

the unperturbed system is not of Poisson nature [72], a case which I discuss in the next

Chapter. For simplicity's sake, in this Chapter I limit the discussion to the case of the

unperturbed system being an ordinary Poisson process. I use this method to create a time

series that is qualitatively similar to those examined in Refs.[62, 63, 73]. The authors of

those papers studied time series, whose data points represent the number of babies born

to teen-age mothers in the State of Texas. Thus the values of time series are positive

integer numbers, and the intensity of these numbers, although erratic, exhibit a clear pe-

riodic trend that, to a �rst approximation, can be assumed to be of a sinusoidal form[73].

These papers do not address the issue of a possible intrinsic correlation between 
uc-

tuation and an inherent periodic trend, and are based on the implicit assumption of a

mere superposition of a periodic trend and a complex signal. The model I propose in this
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section makes it possible to establish 
uctuation-trend correlation, and consequently, to

discuss to what extent complexity might emerge from this correlation.

7.3. Perturbation-Induced Memory

The system under consideration is of renewal nature since the initial condition � of

Eq.(4.64) is totally independent of the earlier initial conditions, so that the sojourn time

� is independent of the earlier sojourn times as well. Consequently, the time series f�ig
and ftig are memoryless, and the order of the times �i adopted to produce the time

series ftig is not important. This model spells a totaly memoryless stochastic system.

We now show that an external perturbation turns the sequence f�ig into a sequence

with memory. This means that, as we shall see, the sequence of times �i , plotted

according to the order they are produced, re
ects and preserves in its inherent nature the

time dependence of the external perturbation even when the e�ect of the perturbation

is not obvious. Let us assume that, as a consequence of an external perturbation, the

transition rate q, becomes time dependent with the form

(7.1) q(t) = q0(1 + � cos(!t)):

Note that this expression coincides with the Taylor expansion, for � ! 0, of the rate of

escape of a particle over a time dependent barrier, under the in
uence of a white noise

[79]:

(7.2) q(t) = Q0 e�k(1+� cos!t) = q0e�� cos!t

where q0 = Q0e�k and � = k�. We use this expression to derive the results of Fig.

(7.5), which, in turn, will serve the purpose of proving the equivalence of this model with

the stochastic resonance model of Refs. [66] and [79].

I proceed as in the earlier subsection: replace Eq. (4.60) with (where for the Poisson

case we set the power to z = 1)

(7.3) _y = q(t)y
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and subsequently Eq. (4.64) with

(7.4) � = e
�(

t0+�∫
t0
q(t 00)dt 00)

:

With the uniform back injection assumption, we get

(7.5)  (� jt 0) =
∣∣∣∣
d�
d�

∣∣∣∣ = q(t 0 + �)e
�(

t0+�∫
t0
q(t 00)dt 00)

:

and, as a consequence,

(7.6)  (� jt 0) = q0e�q0� (1 + � cos(!(t 0 + �))) e�( q0�
! )(sin(!(t 0+�))�sin(!t 0)):

The function  (� jt 0) is the conditional probability that the system sojourns within

the interval I for a time � , given the fact that the earlier period of sojourn ends exactly

at time t = t 0. We see that the probability for the system to sojourn in the interval I for

a time � is not independent of the earlier times. In fact, this probability depends on t 0,

which signals the end of an earlier sojourn time, depending, in turn, on the cumulative

of the earlier sojourn times.

It is convenient at this point to de�ne the key parameter

(7.7) R =
q0

!
:

Note that T! = 2�=! is the time period of the harmonic perturbation. In Eq. (7.1)

and that T0 = 1=q0 is the mean sojourn time in the absence of perturbation. Thus, we

express the parameter R in the following form

(7.8) R =
1

2�
T!
T0
:

Consequently the parameter R allows one to estimate the measure of the number of

sojourn times in one period of the perturbation, if 2 > 1, and, conversely, the number of

time periods in the mean sojourn time T0, if 2�R < 1.
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Consider the limiting case of:

(7.9) R >> 1

the time period T! of the perturbation is very large with respect to the mean sojourn time

T0 and the change of q(t 0) is negligible on the time scale T0 itself (slow perturbation). In

this case we derive an analytical expression for the moments of the conditional distribution

density  (� jt 0):

(7.10) < �n(t 0) >=
∫ 1

0
d� �n  (� jt 0)

The maximum contribution to this integral comes approximately from the interval be-

tween � = 0 and � = 1
q0

. In this interval, given the limiting condition (7.9), the inequality

!� << 1 applies. As a consequence, we are allowed to expand the sines and the cosines

with respect to !� , henceforth creating an expression via �rst-order contraction of the

form  (� jt 0), which can be used explicitly to compute the moments < �n(t 0) >. It is

straightforward to obtain the following results

(7.11) < �(t 0) >=
1

q(t 0) �
2�!q0 sin(!t 0)

q3(t 0) ;

(7.12) < �2(t 0) >=
2

q2(t 0) �
6�!q0 sin(!t 0)

q4(t 0)

and

(7.13) �2(t 0) �< �2(t 0) > � < �(t 0) >2=
1

q2(t 0) �
2�!q0 sin(!t 0)

q(t 0)4 � 4�2q2
0 sin2(!t 0)
q(t 0)6 :

notice that for R!1,

(7.14) < �(t 0) >=
1

q(t 0)

and

(7.15) �2(t 0) =
1

q2(t 0) :

Therefore, the distribution of sojourn times at time t 0 is an exponential distribution with

the local rate q(t 0). This is a case where the mean value < �(t 0) > and the 
uctuation
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intensity �(t 0) are strongly correlated. Notice here that the dynamic model we use forces

us to interpret the values �i as times. However, in this Chapter this model is essentially

used as a method to generate correlation between 
uctuation and periodicity, so as to

address the interesting issue of how to reveal this correlation with some techniques of

statistical analysis. For this reason, in Section 7.5 and Section 7.6 I analyze the time

series f�ig with the ordinary correlation function method and DEA, where this time series

is used as a paradigmatic case of correlation between 
uctuations and seasonality, where


uctuations not necessarily have the meaning of times. The interesting question of how

to use a dynamic model of the same kind with the values �i getting a sociological or

environmental meaning is beyond the purpose of my discussion at this point.

7.4. Histogram and Chronological Order of Sojourn Times

This section is devoted to comparing the conventional Sojourn Time Histogram

(STH), to the Time Series f�ig in Chronological Order (TSCO). The (STH) is the

histogram based on dividing the �-axis into bins of size d� = 1,and in counting how

many sojourn times �i are located in a given bin between � and � +d� . We use the STH

to de�ne the waiting time distribution density  exp(t), where the subscript exp denotes

that this waiting time distribution is obtained from a numerical experiment. The TSCO

reveals the clustering e�ects produced by the time dependent perturbation. These clus-

tering e�ect becomes larger with the increase of R. In fact, in this case, the clustering

e�ect is due to the time lengths being proportional to 1=q(t 0).

The STH can also produce clustering e�ects, in conditions that require a numerical

treatment. The clustering e�ect becomes ostensible when we depart from the use of

Eq.(7.1) where R >> 1. First of all let me discuss how to theoretically derive  exp(t)

under the condition R >> 1. I denote by  s(t) the analytical expression for  exp(t).

(7.16)  s(t) =
∫

�(q)qe�qtdq;
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Here �(q) is the distribution of the transition rates, given by:

(7.17) �(q) / j1
_q
j

By using Eq. (7.1) and the normalization condition, one can easily obtain:

(7.18) �(q) =
1

�
√

(�q0)2 � (q � q0)2

Note that �(q) is de�ned between qmin = q0(1 � �) and qmax = q0(1 + �). The

e�ective distribution of sojourn times is obtained by substituting this expression into Eq.

(7.16), thereby yielding:

(7.19)  s(t) = q0e�q0t(I0(q0�t)� �I1(q0�t));

where I0(t) and I1(t) denote the modi�ed Bessel functions of order zero and one, re-

spectively. Note that for Eq.(7.19) to hold true, the condition R >> 1 is not enough. It

is necessary to assign suitably small values to � as well. In fact, the expression given in

Eq. (7.16) is reasonable only if the perturbation is slow, i.e., it does not change on the

scale of the mean sojourn time T0. The time scale of change of the transition rate can

be estimated by means of the following quantity:

(7.20)
j _q(t)j
q(t)

=
�!jsin(!t)j

1 + �cos(!t)

In order to satisfy the slow perturbation approximation, this quantity must be always very

much smaller than q0. On the other hand, with � = 1, this quantity diverges periodically,

thereby breaking the assumption of slow perturbation.

In the set of Figs.(7.4), the STH is displayed in some di�erent conditions. In all

cases the unperturbed exponential waiting time distribution is reported for comparison.

We note �rst of all that these �gures illustrate the change of  exp(t) with increasing R,

while keeping �xed the perturbation intensity (� = 0:4). From panels (a) and (b) it is

evident that in the range of small R an oscillating pattern emerges as R decreases.The

panels (c) and (d) show that, although no sign of this pattern is left at large values of R,

as R increases, the decay of  exp(t) becomes slower than the decay  (t), the unperturbed

STH, and  exp(t) tends to coincide with the slow-perturbation theoretical prediction of
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Figure 7.3.  exp(t) for di�erent values of R with � = 0:4. (a) R=0.1

(b) R=1 (c) R=10 (d) R=1000. The continuous straight line is the un-

perturbed exponential waiting time distribution. The arrow of (c) and (d)

indicate the theoretical prediction of Eq.(7.19).

Eq.(7.19). According to the estimates of numerical simulation the agreement between

 exp(t) and  s(t), improves as � decreases and/or as R increases.

To establish a rigorous connection with the subject of stochastic resonance [66],[79],

I discuss the results illustrated in Fig.(7.4) and Fig.(7.5).

Fig.(7.4) illustrates  exp(t) with a very small R. This means a condition where

the oscillations around the unperturbed exponential waiting time distribution are even

more pronounced than in Fig.(7.4) a . In fact we consider R = 0:01 rather than R =

0:1. Note that we set the value ! = 0:001. Thus, according to T! = 2�!, we have

T! = 6284, which corresponds to the period of the oscillations of Fig.(7.4). Note

that these fast oscillations have an extremely small intensity and also that, in a coarse

grained representation, the time evolution of  exp(t) would be qualitatively similar to the

exponential waiting time distribution of Eq.(7.1). In Fig.(7.5), we consider the choice of

89



ψexp(t)

t
100000800006000040000200000

10−4

10−5

10−6

Figure 7.4.  exp(t) as a function of t.� = 1,q0 = 0:00001,T! =

6284,! = 0:001,R = 0:01.
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Figure 7.5.  exp(t) for q(t) of Eqn.(7.2) with k = 5, Q0 = 0:0005,

� = 0:99, T! = 6284,R = 0:02

Eq.(7.2) with R = 0:02. We see that with R of the same order of magnitude as that

of Fig.(4) an impressively large clustering e�ect appears. This is the physical condition

considered in Ref.[79]. In the following sections, which illustrate the main result of

this Chapter, we make the statistical analysis of the time series f�ig in the case where

R >> 1, with the choice of Eq. (7.1), in a condition that is far from the stochastic

resonance condition of Ref.[79].

Let us discuss now the TSCO, with the help of Fig.(7.4) and Fig(7.4). It appears

that the TSCO reveals a tendency contrary to the STH picture. Fig.(7.4) a illustrates

the TSCO of the Poisson process with no perturbation, and no cluster, and Fig.(7.4)
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b illustrate a case under perturbation. In fact, in Fig.(7.4)b, q0 = 0:1 and ! = 10�3

and consequently the time period in the time scale of this chronological order is Tq0 =

2�R � 628, which indeed corresponds to the time period of the quasi-periodic bunching

of the sojourn times in chronological order.
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Figure 7.6. Sojourn times in chronological order, according to the

choice of Eq.(7.1). (a). The parameter values are � = 0, No perturbation,

q0 = 0:001; (b)� = 0:4, q0 = 0:1, ! = 0:001

(b) R = 100, ε = 1, q0 = 0.1
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Figure 7.7. Sojourn times in chronological order, according to the

choice of Eq(7.1), � = 1 (a) q0 = 0:01, ! = 0:001, R = 10 (b) q0 = 0:1,

! = 0:0001, R = 100.

In this case the change of the transition rate q(t) is quite slow and the sojourn times

are mainly a�ected by the local value of q(t). Consequently, the regions with a smaller

rate q corresponds to those with longer sojourn times and vice versa. In general, given a

value of �, the clustering e�ect in the TSCO increases with increasing R. At small values

of R the clustering patterns in the TSCO tend to disappear. Conversely, for large values
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of R the e�ect of the external perturbation becomes signi�cant and almost perfectly

periodic clusters arise. The relative width of such clusters becomes smaller and smaller

for larger and larger values of R. In the set of Figs.(7.4) we show a clustering e�ect in

a condition far from the slow-perturbation condition (� = 1). Evidently, also in this case

the clustering e�ect increases with R, as in the earlier case. Notice that, in this case,

there is a further e�ect generated by the extremal value � = 1. In this case the transition

rate q(t) goes to zero periodically. As a consequence, if R is very large, the cluster size

reduces to a single waiting time, whose magnitude is very much larger than the typical

scale of the other sojourn times, which is given by T0 = 1=q0. Obviously, in the close

neighborhood of these spikes the slow perturbation assumption fails.

7.5. DEA on a Sequence of Data under the in
uence of an Oscillating Perturbation

Let us now consider the DE in action when the Poisson system is signi�cantly a�ected

by an external cyclic perturbation with time period T . Let us make now the assumption

that 
uctuation and periodicity are not correlated, as in the theoretical work of Ref.

[51]. Let us illustrate here a heuristic theory that has the merit of yielding a qualita-

tively satisfactory explanation of these earlier results. Let us imagine that there are no


uctuations about the periodic trend, in which case the entropy S(t) does not remain

constant. The DE method [73, 74, 51] rests on the use of a mobile window of length

l , moving along the trajectory of imaginary di�using particle. This window determines

a di�usion trajectory of length l , which makes the random walker move by the quantity

�(t; l) = x(l + t) � x(t). Due to the selection of di�erent values for t, the quantity

�(t; l) spreads around a mean value, thereby broadening the resulting distribution, and

making the entropy increase. In a sense, this entropy increase is determined by the un-

certainty on the initial conditions. The trend is a deterministic function, for instance,

a harmonic oscillation. However, changing t, corresponds to a phase change, and the

bunch of trajectory of di�usion created by moving the window of length l along the se-

quence, is equivalent to creating a di�usion process with a deterministic walker, whose

initial conditions are selected randomly.
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Thus, S(l) increases with the window size l . However, for windows of length l = nT ,

with n = 1; 2; :::, the length of the path traveled by the l th walker, vanishes, namely,

�(l ; nT ) = 0, regardless of the particular value of l . This means that S(l) = A, namely,

the entropy S(l) recovers the initial small value, after reaching its maximum value at

l = T (n + 1)=2, which is the middle point between two consecutive minima.

Let us now imagine that the signal is the sum of a periodic trend and an uncorrelated,

and stationary, 
uctuation , a white noise . As a consequence, S(l), is not forced to

recover the initial value A at l = nT . The values of S(l) in these points are determined

by the uncorrelated 
uctuations, and lie on the straight line B(L) = A+ 0:5L.
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ε = 0.4, R = 10

S(j)

j
105104103102101100

16

14

12

10

8

6

4

2

Figure 7.8. Di�usion entropy S(j) as a function of j , with j denoting

the chronological order.

As shown by Fig.(7.5), the Poisson sequences under perturbation produced with a

moderate value of � and a value of R large enough, are qualitatively similar to those

obtained in the earlier work [51]. Consequently, the DE behavior is expected to be

similar. How about the case when we perform the de-trending? This is a very interesting

question, given the big interest by many groups to look for the most e�cient de-trending

techniques [62, 63, 61, 67, 68]. On the basis of the theory developed in this Section,

after de-trending, the resulting 
uctuation will have a vanishing mean value, but the

variance will still have a periodic dependence on time, with time period T . On the basis
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of an earlier work on the DEA method [74], we argue that converting the resulting time

series, with both positive and negative 
uctuations, into a new time series whose values

are given by the moduli of the time series with vanishing mean values, might be bene�cial.

Let us note also that the authors of Ref.[74] proved that the adoption of an asymmetric

walking rule leads to a faster attainment of the scaling, a fact that also suggests a larger

sensitivity to the real nature of the process under discussion. Note that the time series

produced by the modulus prescription looks like the original perturbed Poisson process.

Under these conditions, one may expect that the analysis, after de-trending will yield the

same resonant-like e�ects as the DE method applied to the original time series. As a

matter of fact, in Section 7.7 I show that this prediction turns out to be correct.

7.6. Correlation Function

This section shows the Correlation Function (CF) method in action with regard to

Poisson process under the e�ect of perturbation. We work with the time series f�ig
derived with the method described in Section 7.2. In the statistical analysis of this

Chapter we consider two kinds of CF. The �rst is given by

(7.21) C(j) � (�i � �)(�i+j � �):

The meaning of the bar is that we are taking a time average. As in the case of DE

method, we consider a window of size j , we move this window along the sequence by

assigning to i all possible values. Due to the harmonic nature of the perturbation, the

process is stationary and consequently also the time mean value of �i , denoted by � is very

well de�ned. Thus, this �rst kind of correlation function is a legitimate prescription.We

also de�ne a second prescription, given by

(7.22) ~C(j) � (�n � �a(t 0i ))(�i+j � �a(t 0i+j));

where �a(t 0) =< �(t 0) > given by Eq.(7.11) and t 0i = �1 + ::: + �i , i.e., the sum of the

�rst n sojourn times. This second form of correlation function is based on the concept of

a local de-trending, and, to a �rst sight, might be judged to be more appropriate than the
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prescription of Eq.(7.21). Actually, we shall �nd that this latter form of CF is insensitive

to the 
uctuation-periodicity correlation, while the former form is not.

7.7. Discussion on the Numerical Experiments

Fig. 8 shows the results produced by the DE method applied to the arti�cial time

series f�ig for di�erent values of the parameter R. We see that the di�usion entropy

becomes more and more sensitive to the perturbation periodicity with the increase of the

time period 2�R. However, the relative minima of all three curves lie on the straight

line with the slope � = 0:5, a property, shared, according to the remarks of the earlier

subsection, also by the case where no periodicity-
uctuation correlation exists.
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ε = 0.4, R = 10C̃(j)
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Figure 7.9. Correlation function ~C(j) of Eq.(7.22) as a function of j .

At the same time, Fig.(7.7) shows that the CF of Eq.(7.22) is insensitive to the


uctuation-periodicity correlation as well.

This result may seem somewhat disappointing because it would imply that the perturbation-

induced memory is invisible to both the CF and the DE method. Let us now address

the problem of examining through the DE method the de-trended sequence. This means

that we have to replace �i with �i� < �(t 0i ) >, where t 0i = �1 + ::: + �i . Note that the

average here is not a time average but an ensemble average which is calculable through

means that are already expressed.
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Figure 7.10. The 
uctuations �j� < �(t 0) > in chronological order.

The value < �(t 0) > is given by Eq.(7.11),and the time t 0 is a function of

j , determined by the prescription t 0 = �1 + ::�j .

In Fig.(7.7) we plot the de-trended sequence. Let us apply the DE method to this

de-trended sequence. The result is illustrated by Fig.(7.7)a. We see that there is no sign

of the 
uctuation-periodicity correlation.
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Figure 7.11. Di�usion entropy of the de-trended sequence,as a func-

tion of j . We use the choice of Eq.(7.1) with � = 0:4. (a) We derive the dif-

fusion process from the sequence f�i� < �(t 0) >g; (b) We derive the dif-

fusion process from the sequence jf�i� < �(t 0)g > j. From the bottom to

the top the three curves refer to q0 = 0:1, T! = 6284,! = 0:001,R = 100

; q0 = 0:01,T! = 6284, ! = 0:001, R = 10 ;q0 = 0:001, T! = 6283185,

! = 0:000001, R = 1000.

We consider several values of R, so that the three curves there plotted,the one with

q0 = 0:1 and R = 100, refers to the same physical condition as that of Fig.(7.4)b,

with a strong perturbation-induced re-ordering e�ect. In spite of this signi�cant time
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re-ordering e�ect, this curve yields a straight line with � = 0:5, a property shared by the

other two curves.

We are in a position to check a conjecture earlier made,on the bene�ts stemming

from using random walker always jumping in the same direction. Let us consider the

sequence fj�i� < �(t 0i ) > jg, namely, the sequence of moduli of the de-trended time.

We apply the DE method to the resulting sequence, and we �nd the result plotted in

Fig.7.7b. The similarity between Fig.7.7b and Fig.7.5 is remarkable. This is because of

the reason that the adoption of the absolute values of the 
uctuation around the mean

waiting time produces a signal similar to the original sequence, as a consequence of the

fact that the variance �(t) has the same periodicity as the trend < �(t) > . As in the

case of Fig.(7.5), the sensitivity to periodicity becomes larger with the increase of R.

How about the Correlation Function (CF) method? Let us apply the prescription of Eq.

(7.22).

ε = 0.4, R = 1000, q0 = 0.001
ε = 0.4, R = 100, q0 = 0.1
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Figure 7.12. Correlation function of the waiting times in chronological

order, for (a)R = 1,q0 = 0:001 and R = 10, q0 = 0:01. (b) R = 100,q0 =

0:1 and R = 1000,q0 = 0:001.

In Fig.(7.7) we illustrate the results of this analysis. We show that this correlation

function acts as a reliable indicator of the perturbation-induced memory of the sequence.

In fact the oscillation period is of the order of 2�R, and, even more important, the decay

of the amplitude of these oscillations become slower and slower with the increase of R.

I want to also take a note about the Fourier Transform Power Spectrum of the

chronological order of the waiting times for the Poisson perturbation using Fast Fourier
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Transform algorithm of Origin 6.1 program. In the plot of Fig(7.7) it is obvious that

there is a peak in the fundamental frequency of f = 1=2�R. And then there are higher

harmonics too, which is one of the signatures of Stochastic Resonance. Recall that I

have demonstrated the similarity of the physical picture of this Chapter to physical picture

explained in the Chapter on Stochastic Resonance (Chapter 6).
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Figure 7.13. The FFT power spectrum of the perturbation of Poisson

renewal rate process with � = 0:4, T = 6284, R = 100.

We also ran FFT for a band pass �lter, of the chronological order. As a result in the

Figure(7.7) we see that when we detect a signal by means of a band pass �lter, what we

see is that although we perturb the rate with a perfectly periodic rate in the chronological

order, the chronological order on the other hand is not perfectly periodic for all time, the

period from a bunch to the next one increases or decreases from time to time as a result

of stochastic character of the renewal process under consideration.

7.8. Concluding Remarks

Our main motivation has been the implementation of an algorithm that generates

time series with a signi�cant correlation between 
uctuation and periodicity. We have

adopted a picture based on a Poisson process, with a rate perturbed by an external

harmonic disturbance.
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Figure 7.14. The Band-Pass �lter of the perturbation of Poisson re-

newal rate process with � = 0:4, T = 6284, R = 100 in chronological

order.

We have seen that an external perturbation has the e�ect of turning a memoryless

sequence into a sequence with memory. This is closely connected to the subject of

stochastic resonance [66, 79], and Fig.(7.4) and Fig.(7.5) are clear signatures of this

connection. With the help of these arti�cial sequences we have found that the adop-

tion of a de-trending process would not be enough to detect the 
uctuation-periodicity

correlation. In fact, the adoption of the CF method would fail to �nd evidence for the

residual variance periodicity after de-trending. This is so, because the CF method is

successful to detect memory only if it is applied in the form of Eq. (7.21)). After de-

trending, the di�erence between the prescription of Eq. (7.22) and of Eq. (7.21) is

annihilated, and the CF method is expected to perceive only the local Poisson condi-

tion.The main conclusion of this Chapter is, therefore, that the most convenient method

to �nd 
uctuation-periodicity correlation is that after de-trending, the resulting sequence

has to be properly processed. This means that the moduli of the de-trended 
uctuations

have to be considered. We establish the modulated-rate Poisson renewal process as a

paradigmatic model for a system where 
uctuations are directly related to the seasonality

of the system underneath itself.
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CHAPTER 8

PERTURBATION OF NON-POISSON RENEWAL PROCESSES

8.1. Introduction

In this Chapter I discuss the e�ects of linear and non-linear perturbations on a non-

Poisson system [39], which also acts as the extension of the case where the system is

merely a Poisson system [80]. I show using time series analysis techniques that under the

e�ect of a non-linear perturbation a non-Poisson system may as well respond in just the

same way as a Poisson system would, with an exponential cascade. Therefore, I show

that exponential cascade does not set a proof for a system being Poisson in nature.

The response of a statistical system of neuro-physiological interest to an external per-

turbation is a problem of fundamental importance in physics, insofar as the perturbation

is a probe, the response to which brings information on the physical nature of the system

under study. The remarkable work done by Moss and coworkers [78, 79] is a seminal

work that triggered much interest.These authors investigated the e�ect of an external

harmonic perturbation on the dynamics of a neuron �ring process, �nding as main e�ect

that of reordering the �rings (or spikes) generated by the neuron dynamics. As a conse-

quence, the histogram of inter-spike time distances becomes a sequel of equally spaced

peaks, whose intensity decays with an exponential envelope. The time period of the

peaks is equal to the period of the external harmonic perturbation. I refer to this prop-

erty as exponential cascade. The exponential cascade has been recently derived from the

perturbation of a Poisson process both linear and non-linear[80], which is mentioned in

Fig(7.5), thereby suggesting that the experimental results of Refs. [78] and [79] may be

an indication that neurons obey Poisson statistics. This is a quite intuitive result, as the

unperturbed Poisson process is characterized by an exponential decay in the Probability

Density Function (PDF) of the inter-spike time distances.
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At this point I want to refer to a data obtained from an experiment that was carried

out by R.M.Siegel [104] in 1990, where the data is used by both papers of [78, 79].

The experiment is performed as follows. Primary visual cortex of a cat is exposed to a

periodical excitation by an external light source with a period we denote by T! cyclically,

and the plot is obtained by normalizing the abscissa as �
T! . The vertical axis is the result of

the average of 26 di�erent values of T! (Vertical axis  ( �
T! ) is not normalized), and in all

occasions it appears that the peaks of the waiting time distribution lies on an exponential

decay curve. To be rigorous, Siegel �ts the maxima to the function y(x) = 2:2 � 0:51�x ,

in which case is easy to show that it is consistent with the choice of

(8.1) y(x) = �1e��0x :

which itself obeys an exponential cascade. The fact that the values of �1 and �0 are

di�erent will prove to be consistent with our assumption of archetypal neuron model

obeying a non-Poisson statistics in the unperturbed case, which under the e�ect of a

non-linear perturbation will respond in the form an exponential cascade. With Fig(7.5)

we have already shown that exponential cascade may be obtained from Poisson statistics

and here we show that non-Poisson neurons may as well result in the same type of

behavior under certain conditions.

The exponential cascade of Refs. [78, 79] has been produced by the numerical and

theoretical work of other authors. The work of Ref. [81] devotes a large attention to the

reset issue involved by the so called integrate-�re model [82]. The more recent work of

Ref. [83] contains remarkably interesting analytical expressions for the inter-spike time

distances in the presence of harmonic perturbation.

It is interesting to notice that results appreciably similar to those of the pioneering

work of Moss and co-workers [78, 79] have been found [84] using the model of Fitzhugh-

Nagumo [85]. The authors of Ref. [84] made a numerical calculation and found that

the envelope of the peaks in the inter-spike times histogram is indistinguishable from an

exponential function.

101



Another model widely used to model �ring neurons is the Hodgkin-Huxley neural

model [86], which has been the subject of some recent studies aiming at establishing

the response of this model to a harmonic perturbation [87, 88, 89, 90]. Although a

controversy exists on whether or not a stochastic gain is obtained, the papers of Refs.

[87, 88, 89] seem to recover the exponential cascade of Moss and coworkers [78, 79],

which in turn is shown to be compatible with the assumption of Poisson statistics. The

authors of Refs. [90], on the contrary, reveal the emergence of an anomalous scaling.

Finally, we want to mention the work of Reibold, Just, Becker and Benner [91] who

recovered the exponential cascade of the leading work of Moss and co-workers [78, 79]

from a theoretical picture adopting an intermittent map, which de�nitely departs from

the Poisson condition.

According to some neuro-physiologists neurons are renewal [92] and Non-Poisson pro-

cesses [93], i.e., the inter-spike time distances are mutually independent random variables

with non-exponential PDF and the statistical distribution of the number of events in a

given time interval is a Non-Poisson distribution.

How is it possible therefore that real experiments, and theoretical models as well, some

of which based on Non-Poisson dynamics, may systematically end up in the exponential

cascade of the pioneering work of Moss and coworkers? The answer to this question

should be related to the way the unperturbed Non-Poisson statistics interacts with the

external perturbation.

The main aim of this Chapter is to shed light into this intriguing issue by making

the assumption, supported by the results of Refs. [92, 93], that the statistics of inter-

spike time distances are satisfactorily described, in the unperturbed state, by a renewal

Non-Poisson random process [33]. We note that, if experimental data of unperturbed

neuron �rings are available, this assumption can be also checked by means of a statistical

analysis based on the aging properties of renewal processes [94].
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We make the assumption that the inter-spike time distances generated by the unper-

turbed neuron �ring process are distributed according to the following class of Pareto-

Nutting power-law PDFs:

(8.2)  (�) = (�0 � 1)
T �0�1

0

(� + T0)�0 ;

with

(8.3) 2 < �0 <1 ; T0 > 0:

In this range of parameters the mean time is �nite and given by:

(8.4) h�i =
T0

(�0 � 2)

In the next sections we will introduce two di�erent models generating sequences of inter-

spike time distances according to the PDF of Eq. (8.2). Both models also satisfy the

renewal condition for the sequences of inter-spike time distances.

The choice of Eq. (8.2) is done to yield in the asymptotic time limit the inverse

power law 1=��0, while making the inter-spike time distance distribution  (�) ful�ll the

normalization condition, without introducing any short-time truncation. The time scale

T0 has the important role of de�ning the extension of the region of transition from the

short-time condition, with no unphysical divergence, to the long-time limit, where the

inverse power law appears. The power index �0 signals the speci�city of the cooperative

properties that establish the complex nature of the process.

According to this picture, the parameters �0 and T0 a�ord complete information about

the unperturbed system dynamics, and it is a reasonable assumption that the e�ect of an

external perturbing �eld is that of turning either T0 or �0, or both, into time dependent

parameters T (t) and �(t). For simplicity's sake we shall not consider the case where

both parameters are perturbed simultaneously.

We are adopting the same theoretical perspective as that of the earlier works of

[94, 72, 95, 96]: it is possible to predict the e�ect of external perturbation on the

process under study only on the basis of the probability density  (�), under the key
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assumption that the process is renewal. In Refs. [72, 95, 96] the assumption was made

that the external perturbation a�ects T0, but the question of the form acquired by the

inter-spike time PDF was not addressed. In this Chapter, we shall study also the e�ect of

perturbing �0. We shall prove that in this second case a form of genuine transition from

Non-Poisson to Poisson statistics may be realized, while the perturbation of T0 generates

only a form of apparent transition to Poisson statistics, insofar as the system does not

lose its Non-Poisson nature. To make this conclusion more convincing, following the

authors of Refs. [90, 80], we use Di�usion Entropy (DE) analysis [73, 74, 97] to reveal

the anomalous scaling that is a signature of the hidden Non-Poisson nature of the system

under study.

We also �nd the surprising result that, for given T0, there exists an intermediate range

of the perturbation time scale T! where some kind of cooperation between perturbation

and system's dynamics emerges and generates an unexpected form of complexity. We

reach this conclusion using the DE analysis.

In conclusion, this Chapter is devoted to studying non-Poisson processes in non-

homogeneous conditions, being the time inhomogeneity a direct consequence of the

external perturbation [95, 96]. Consequently, this is a signi�cant extension of the earlier

work of Ref. [80], which was limited to studying Poisson processes being made non-

homogeneous by an external perturbation [98, 99].

The structure of this Chapter is as follows. In Section 3.10 we have already illustrated

the model we will use here for the perturbation of �0. That model is equivalent to the

model proposed by Daly and Porporato [40]. In Section 8.3 we discuss theoretically and

numerically the e�ects of an harmonic perturbation on �0. We devote Section 8.4 to

illustrate the model that we adopt to perturb the parameter T0, This model is based

on the theoretical procedure of Refs. [72, 95, 96] to obtain the unperturbed renewal

waiting times. We illustrate the e�ects of the perturbation of rate by means of numerical

simulations details of which are explained in the Appendix. In Section 8.5 we make a

concise review of DE method of analysis and we show this method in action to assess

if the transition from Non-Poisson to Poisson regime is a genuine property or some
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hidden non-Poisson properties are still present in the perturbed system. We also use

DE to illustrate the emergence of an unexpected form of complexity generated by the

cooperation of harmonic perturbation and unperturbed non-Poisson dynamics. In the

last Section we shall summarize the important results of this Chapter. Furthermore, we

devote the Appendix to illustrate the details of the algorithm used in Section 8.4.

8.2. Numerical Structure

One of the numerical algorithms used for generating power-law renewal distributed

waiting times is the one proposed in Chapter 3.

Consequently, the more general mathematical prescription for an external perturbation

can be written in the following general form:

(8.5) r(t) =
r0�0(t)

1 + r1�1(t)�tr
:

In this formulation, the renewal character of the rate function r(t) is again included

in �tr , which is a�ected by the occurrence of a neuron �ring (see Fig.8.3a). On the

contrary, the functions �0(t) and �1(t) describe the e�ect of external forcing, which are

not a�ected by the internal critical events (neuron �rings or spikes). In analogy with the

unperturbed parameters �0 and T0 in Eq. (3.50), it is possible to write similar expressions

for the perturbed power index �(t) and the perturbed time scale T (t):

(8.6) �(t) = 1 +
r0�0(t)
r1�1(t)

= 1 + (�0 � 1)
�0(t)
�1(t)

; T (t) =
1

r1�1(t)
=

T0

�1(t)
:

We see immediately that the condition �0(t) = �1(t) has the e�ect of leaving the power

index �0 unchanged, while a�ecting the time scale T0. Making �0(t) time dependent

while keeping �1(t) = 1, and thus time independent, has the e�ect of perturbing �0,

while leaving T0 unchanged.

A numerical algorithm, discrete in time, was used to generate the sequences of random

times ftig corresponding to the rate r(t) of Eq. (8.5). This algorithm is based on an

iterative procedure derived by the Cox de�nition of the rate of spike production. In

fact, considering the interval [ti ; ti+1] and Eq. (3.44), the quantity p(t) = r(t)dt is the

probability of a spike occurrence in the in�nitesimal interval [t; t + dt], given that no
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spikes occurred in the interval [ti ; t]. In the implementation of a numerical scheme, the

time step dt cannot be in�nitesimal, but it is necessarily a �nite quantity. In order to get

a good approximation of the continuous-time model described by the rate given in Eq.

(8.5), the time step dt must be chosen in such a way that (a) pn = r(n �dt+ ti) dt � 1

for whatever value of t = n � dt + ti larger than ti and (b) dt is much less than all the

relevant time scales.

The resulting stochastic process, discrete in time, can be interpreted as a two-state

random process and the quantity pn as the probability of getting a jump at the discrete

time n. The occurrence of a neuron �ring corresponds to a jump between the two states

and the residence time in each state de�nes the inter-spike time distance. Note that,

if pn is not very small, the two-state random process, discrete in time, is not a good

approximation of the original model given in Eq. (8.5), even if pn < 1 (e.g., pn � 0:5).

This is true also when condition (a) is satis�ed, but condition (b) is not. Considering the

unperturbed rate r(t) of Eq. (3.56) and choosing dt = 1, from the conditions (a) and

(b) follow:

(8.7) r0 � 1 ; r1 � 1;

implying that the internal times 1=r0 and T0 = 1=r1 are much larger than the time-step

dt. These are the only two conditions required in the unperturbed case (�0 � �1 � 1),

but they must be completed with other ones involving the time scales of the external

perturbation, included in the functions �0(t) and �1(t) of Eq. (8.5).

The practical implementation of the numerical algorithm is as follows. First of all,

condition (a) being satis�ed, the interval I = [0; 1] can be divided into two portions, one

ranging from 0 to pn, called interval Pn, and one from pn to 1, called interval Qn. Let us

assume that a spike occurred at time ti . Then, in order to �nd the next time ti+1, we

must follow the following iterative procedure:

� n = 0: draw a random number �0, uniformly distributed in I = [0; 1]. If it is in the

interval P0 (�0 � p0 = r(ti) dt), then a jump occurs and it results ti+1 = ti +dt
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or, equivalently, �i+1 = dt. If it is in the interval Q0 (�0 > p0 = r(ti) dt), then

it is known that ti+1 > ti + dt and the next step (n � 1) must be carried out;

� n � 1: it is known from the previous step n� 1 that ti+1 > ti + n � dt. Then, a

random number �n, uniform in [0; 1], must be drawn and compared with:

(8.8)

pn = r(ti + n � dt) dt = Pr fti + n � dt < ti+1 � ti + n � dt + dt j ti+1 > ti + n � dtg

as given by the Cox de�nition, Eq. (3.44). As before, if �n is in Pn (�n � pn),

then ti+1 = ti + (n + 1) � dt and �i+1 = (n + 1) � dt, otherwise, it is in Qn

(�n > pn), and the iteration must be repeated for n + 1, given the known

condition: ti+1 > ti + (n + 1) � dt;

Note that the iteration stops when the condition �n � pn is satis�ed for the �rst time.

The resulting computed time ti+1 is an approximated value with maximum error dt.

If we consider the unperturbed rate, Eq. (3.56), with r1 = 0, we get the Poisson

case, r(t) = r0, which is approximated by a two-state random process with a constant

jump probability: pn = r0 dt = r0 (dt = 1). As known, the PDF of inter-spike times is

an exponential function with decay rate r0.

In the unperturbed Poisson case, this model is exactly equivalent to a stochastic

generalization of the Leaky Integrate-and-Fire (LIF) model of Ref. [82]:

(8.9)
d
dt
x = S � 
x(t) + �(t);

when S = 0. Here, x denotes the neuron potential, 
x the leakage and �(t) a stochastic

force. Our model becomes Non-Poisson by setting r1 > 0 in Eq. (3.56). This Non-

Poisson condition could be reproduced by the users of the LIF model by assuming that,

after resetting, the threshold potential, rather than remaining �xed, increases linearly as

a function of time.

8.3. Perturbation of the Power Index �0

In this Section we limit ourselves to discussing the perturbation of r0, which, as proved

by Eqs. (3.50,8.6), is equivalent to perturbing the power index �0, while leaving the time
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scale T0 unchanged. This is the straight generalization of the way of perturbing a Poisson

process [80]. In fact, in the Poisson case r1 = 0, so that both �0 and T0 become in�nite.

The constant rate r(t) = r0, being an inverse time scale, becomes now the only basic

parameter of the unperturbed renewal system.

The perturbation of a Poisson process introduced in [80] is given by:

(8.10) rp(t) = r0 exp
[
� cos

(
2�
T!
t
)]

;

where rp(t) denotes the perturbed Poisson rate, i.e., the perturbation of r0, and T! is

the perturbation period.

A well-known example of Poisson process is generated by a symmetric double-well

potential [101]. In this case, the critical events are given by the jumps from one well to

the other one and the residence times in a given well correspond to the inter-spike time

distances. The unperturbed Poisson rate of event production is given by the following

escape rate:

(8.11) r0 = Aexp(�Q=D);

where A is a constant depending on the frequency of the processes of molecular collision,

Q is the potential barrier and D the white noise intensity. As a consequence, the expres-

sion in Eq. (8.10) coincides with the rate of escape of a particle over a time dependent

barrier Q(t), under the action of a white noise. This model was adopted by the authors

of Refs. [78, 79] to reproduce the experimental exponential cascade. Without referring

to the original model, the authors of Ref. [80] showed that a Poisson process with the

rate prescription given in Eq. (8.10) gives these same results. Consequently, the behavior

of the inter-spike time distances is independent of the particular model and depends only

on the e�ect of the perturbation on the rate rp(t).

It is straightforward to generalize the perturbation of the Poisson rate of Eq. (8.10)

by considering it as a limit, for r1 ! 0, of the Non-Poisson rate given by Eq. (3.56),
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with rp(t) replacing r0. This is equivalent to perturbing the parameter r0 itself:

(8.12) r(t) =
rp(t)

1 + r1�tr
=
r0exp

[
�cos( 2�

T! t)
]

1 + r1�tr
;

and, as earlier mentioned, to perturbing the power index �0. In fact, comparing with Eq.

(8.5) it results �0(t) = exp
[
�cos( 2�

T! t)
]

and �1(t) = 1 so that, from Eq. (8.6), we can

write an expression for the power index, changing in time, associated with the rate given

in Eq. (8.12):

(8.13) �(t) = 1 +
rp(t)
r1

= 1 + [�0 � 1] exp
[
�cos(

2�
T!
t)

]
;

being �0 given by Eq. (3.50). We refer to this perturbation process as non-linear

perturbation of �0.

We de�ne the linear perturbation of �0 as follows:

(8.14) r(t) =
r0(1 + � cos( 2�t

T! ))
1 + r1�tr

; � < 1

which implies for the power index:

(8.15) �(t) = �0 + (�0 � 1) � cos(
2�t
T!

) ; � < 1:

Note that if we adopt the Arrhenius-like picture of Eq. (8.11) and then we set in

Eq. (8.10) the condition � � 1, the non-linear model becomes equivalent to the linear

model. In fact, in this case the linear perturbation of �0 is derived from the non-linear

perturbation by a simple Taylor expansion of the exponential function in Eq. (8.12),

with respect to the parameter �, when � � 1. If we adopt Eq. (8.14) with � < 1

without �tting the condition � � 1, we realize a condition that cannot be derived from

the Arrhenius-like model, and thus from the non-linear model. In conclusion, the linear

and non-linear model are di�erent models for the neuron �ring processes. However, it

was observed from numerical simulations that these two models are signi�cantly di�erent

only in the range � . 1.

Both the non-linear perturbation of Eqs. (8.12) and (8.13) and the linear perturbation

of Eqs. (8.14) and (8.15) are determined by four parameters: the intensity � and the

period T! of the perturbation, the power index �0 and the time scale T0 of the unperturbed
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system. Note that we are considering a Non-Poisson condition with �0 > 2, a condition

ensuring that the mean value of � exists, is �nite, and it is given by

(8.16) h�i =
T0

�0 � 2
=

1
r0 � r1 :

Therefore, following Ref. [80], we de�ne the following dimensionless parameter:

(8.17) R =
T!
h�i :

When R � 1, the perturbation is faster than the production of �ring events, thereby

producing what we de�ne as fast perturbation, linear or non-linear. The opposite limit,

R� 1, de�nes slow perturbation, linear or non-linear. Note that, as said in Section 3.10,

we must supplement the conditions of Eq. (8.7) with the following one

(8.18)
dt
T!

=
1
T!
� 1;

associated with the time scale T! of the external perturbation.

In the case of non-linear perturbation of �0, the fast condition allows us to de�ne the

e�ective power index �ef f as follows:

(8.19) �ef f = 1 + [�0 � 1]
〈

exp
[
�cos(

2�
T!
t)

]〉
;

where h:::i indicates an average over one perturbation period T!. This average value is

well-de�ned only in the range of fast perturbation (R� 1). In fact, when the condition

R � 1 applies, the perturbation makes �(t) execute many oscillations before reaching

the time regime where  (�) reveals its inverse power law nature. It is easy to prove that

the average value �ef f is independent of the perturbation period T!, but increases rapidly

with the perturbation strength �.

In Fig.(8.3) the numerical evaluation of �ef f as a function of � and for two di�erent

values of �0 is reported. As the limit �0 = 1 is associated with a genuine Poisson

process, it is expected that very large values of �ef f could generate a behavior of Poisson

kind in the perturbed system. The threshold �ef f = 3 has to do with the Di�usion

Entropy and will be explained in Section 8.5.
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Figure 8.1. �ef f vs. � as given by the numerical evaluation of Eq.

(8.19) for �0 = 2; 2:5. The horizontal dotted line indicates the threshold

�ef f = 3.

Conversely, it is also easy to see that the linear perturbation of �0, given by Eqs.

(8.14) and (8.15), does not a�ect the e�ective power index, i.e., �ef f = �0. In Section

8.5 we shall discuss in more detail the consequences of this behavior on the scaling

properties detected by the DE analysis.
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Figure 8.2. Slow linear perturbation of �0, Eq. (8.14). Comparison

of the perturbed histograms of the inter-spike times,  exp(�), with the

unperturbed ones,  (�). �0 = 2:2, T0 = 100, � = 0:6 (a) T! = 5 � 103

(R = 10); (b) T! = 5 � 106 (R = 104).
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Fig(8.3) and Fig(8.3) display the main results obtained from the application of the

numerical algorithm introduced in Section 3.10 to the rate function of Eqs. (8.12) and

(8.14).

Fig(8.3) and Fig(8.3) refer to the linear perturbation of �0, Eq. (8.14), with pertur-

bation strength � = 0:6, and Fig.(8.3) is generated by the non-linear perturbation of �0,

Eq. (8.12),with strength � = 7.
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Figure 8.3. Fast linear perturbation of �0, Eq. (8.14). Comparison of

the perturbed histogram of inter-spike times (oscillating pattern  exp(�))

with the unperturbed one. T0 = 100, T! = 50, �0 = 2:2, R = 0:1,

� = 0:6.
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Figure 8.4. Fast non-linear perturbation of �0, Eq. (8.12). Histogram

of inter-spike times. T0 = 105, T! = 500 (R = 10�3), �0 = 2:2, � = 7.

The dashed line is the exponential envelope of the maxima.

The probability density of inter-spike time distances is only weakly a�ected by making

perturbation very slow, namely, R� 1, as shown by the histograms reported in Fig.(8.3).

In Fig(8.3) a fast perturbation with the same strength � of Fig.(8.3) is shown. In this

case the fast perturbation produces more signi�cant e�ects, as weak oscillations appears

112



in the histogram. However, we notice that the weak oscillations of Fig.(8.3) do not a�ect

the inverse power law nature of  (�), insofar as the histogram is clearly the addition of

a genuinely power-law decay and of a pattern of weak and fast oscillations, with time

period T!. In conclusion, the histogram averaged over the time T! results in a power-law

decay with index �0.

It is important to compare Fig.(8.3) to Fig.(8.3). This comparison makes it possible

for us to become acquainted with the main result of this Chapter. In Fig.(8.3) the result

of a numerical simulation with a strong non-linear perturbation of �0 (� = 7) is shown.

In agreement with the heuristic reasoning of Fig.(8.3), it is easy to see that, when we

move from the weak linear perturbation of Fig.(8.3) (� = 0:6) to the strong non-linear

perturbation of Fig.(8.3) (� = 7), both fast, we see that the non-exponential (power-law)

average over the fast oscillation turns into the exponential cascade, a property shared by

the perturbed Poisson system of the earlier work of Ref. [80]. This is shown in Fig.(8.3)

by the exponential envelope of the maxima. As earlier mentioned, this is the reason why,

to a �rst sight, the result of Fig.(8.3), and the experimental results of [78, 79] as well,

can be interpreted as the consequence of the harmonic perturbation of a Poisson process

[80].

In summary, our numerical simulations showed that, with increasing the coupling

strength �, the power-law decay emerges at a larger and larger time scale and the expo-

nential cascade becomes more extended in time. On the other hand, the long inter-spike

times are rare, and in the histograms realized with sequences of �nite size, the statistical

errors of the long-time tails are so large as to make virtually invisible the presence of

an inverse power law behavior. This explains the lack of a signi�cant deviation from the

exponential behavior in Fig.(8.3) and the surprising qualitative similarity between the the-

oretical distribution of Fig.(8.3) and the experimental distribution of Fig. 1a of Ref. [78].

Note that in Fig. 1a of Ref. [78] the exponential regime extends to �ve perturbation

cycles and that, due to the special choice of parameters adopted, in Fig.(8.3) is even

more extended. As far as Fig.(8.3) is concerned, the origin of the exponential behavior
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rests on the fact, accounted for by Eq. (8.19), that the perturbation creates an e�ective

�ef f of the order of 200.

In conclusion, the numerical results illustrated in this Section show that a Non-Poisson

system under the in
uence of a strong and fast perturbation of �0 may produce the

exponential cascade of Refs. [78, 79].

8.4. Perturbation of the Time Scale T0

As pointed out in Section 3.10, the model of Eq. (8.5) can be applied to study

the e�ect of perturbing T0, while leaving �0 unchanged, by simply imposing �0(t) =

�1(t). However, mainly for reasons of computational convenience, we decided to use the

dynamic model of Ref. [100] instead. Further, as already said in Section 3.10, the model

of Ref. [100], in the range of small �, yields results equivalent to the model of Eq. (8.5)

[95, 96], which is also essentially equivalent to the model recently proposed by Daly and

Porporato [40].

To make this article as self-contained as possible, let us review the dynamic model of

Ref. [100]. Let us consider the equation of motion:

(8.20)
dy
dt

= �0y z ; z � 1;

with y being a coordinate de�ned in the interval I = [0; 1]. This is a particle undergoing

both regular motion and random jumps. The particle moves within the interval I with

the dynamic prescription of Eq. (8.20). When it reaches the border y = 1, is injected

back to a new initial random value within the interval I with uniform distribution. It is

easy to prove [100] that this model yields the inter-spike time distribution of Eq. (8.2)

with

(8.21) �0 =
z

z � 1
; T0 =

1
�0 (z � 1)

and

(8.22) z =
�0

�0 � 1
; �0 =

�0 � 1
T0

:
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Note that, in the unperturbed case, this model is exactly equivalent to the unperturbed

rate function of Eq. (3.56). By comparing Eqs. (8.21) and (3.50) we get the following

relationships between the parameters:

(8.23) r0 = �0 ; r1 = �0 (z � 1) :

The second equality in Eq. (8.21) shows that, when the power index z is kept constant,

T0 depends only on �0, thereby making it evident why the perturbation of the time scale

T0 is realized by replacing Eq. (8.20) with the following equation:

(8.24)
dy
dt

= �(t)y z :

It is possible to derive a general solution for this perturbed model, which shows how

the external perturbation a�ects the systems by essentially introducing a form of memory

in the renewal dynamics. To derive this solution, let us suppose that at time ti a �ring

event occurs. This means that we randomly select a given initial condition y(ti) = �i ,

�i being a random variable uniformly distributed in the interval I = [0; 1]. Then, y(t)

evolves according to Eq. (8.24) from the initial time ti till to the moment when the

particle reaches the border y(ti+1) = 1:

(8.25)
∫ 1

�i

dy
y z

=
∫ ti+1

ti
�(t 0)dt 0;

which then yields

(8.26)
1� �i1�z

1� z =
∫ ti+1

ti
�(t 0)dt 0:

and

(8.27) �i =
[

1� (1� z)
∫ ti+1

t i
�(t 0)dt 0

] 1
1�z
:

This last expression de�nes the relation between the uniform random variable �i and the

random inter-spike time �i+1 or, equivalently, between �i and the time ti+1 of occurrence

of the �rst �ring event following that occurred at time ti . We can exploit the relationship

between �i , ti and ti+1, given in Eq. (8.27), to derive an expression for the conditional
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probability  (ti+1jti) that an event occurs at time ti+1 given the condition that the

previous event occurs at time ti :

(8.28)  (ti+1jti)dti+1 = u(�i)d�i ;

where u(�i) is the uniform distribution in the interval I, describing the random back-

injection mechanism. Thus, we derive:

(8.29)  (ti+1jti) = �(ti+1)
[

1 + (z � 1)
∫ ti+1

ti
�(t 0)dt 0

] 1
1�z�1

:

By expressing the result in terms of �0, using Eq. (8.21), and of the inter-spike time

�i+1 = ti+1 � ti , we obtain

(8.30)  (�i+1jti) =
�(ti + �i+1)[

1 + 1
�0�1

∫ ti+�i+1
ti

�(t 0)dt 0
]�0 :

The dependence on ti is due to the important fact that the dynamic rule is changing

as a function of time as a consequence of the external perturbation. We see that, as

an e�ect of perturbation, the independence of the earlier jumps is lost. In fact, now the

shape of  (�i+1jti) depends on the fact that the earlier jump occurs at ti . Since the

earlier jump depends on the jump before it, and so on, we �nd the surprising e�ect that

an external perturbation undermines the renewal nature of the process and establishes,

so to speak, an in�nitely extended memory.

Let us make the following assumption [72]:

(8.31) �(t) = �0

[
1 + �cos

(
2�
T!
t
)]

:

As a consequence of this assumption it is possible to derive an analytical expression from

Eq. (8.30):

 (�i+1jti) =
�0 � 1
T0

A(�i+1 + ti)(
1 + �i+1

T0
+ �

2�
T!
T0
G(�i+1; ti)

)�0 ;(8.32)

A(�i+1 + ti) = 1 + � cos
(

2�
T!

(�i+1 + ti)
)

;(8.33)
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G(�i+1; ti) = sin
(

2�
T!

(�i+1 + ti)
)
� sin

(
2�
T!
ti
)
:(8.34)

It is evident that the very large times �i+1 cannot be signi�cantly a�ected by the external

perturbation, due to its periodic nature and to the fact that the perturbation strength �

cannot exceed the maximum value of 1. The numerical results of this Section con�rm

this expectation. An additional con�rmation is given by the statistical analysis of Section

8.5.

As proved in Appendix A, this model generates a numerical algorithm drawing a

random number only in association with the occurrence of a �ring event. On the contrary,

in the algorithm of Section 3.10 the draw of a random number is done at each time step

and, consequently, the algorithm is much more time consuming.
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Figure 8.5. Linear perturbation of T0, Eqs. (8.24) and (8.31). Com-

parison of the perturbed histograms of inter-spike times,  exp(�), with the

unperturbed ones,  (�). T0 = 42:85174, �0 = 2:4285174, � = 0:8 (a)

T! = 50 (R = 0:5, fast perturbation), (b) T! = 105 (R = 103, slow

perturbation).
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Figure 8.6. Fast linear perturbation of T0, Eqs. (8.24) and (8.31).

Histogram and exponential envelope of the maxima (dashed line) in the

range of short inter-spike times. T0 = 104, T! = 500, �0 = 2:2, R = 0:01,

� = 0:99.
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Figure 8.7. Fast linear perturbation of T0, Eqs. (8.24) and (8.31).

Comparison of the perturbed histogram of inter-spike times,  exp(�), with

the unperturbed one,  (�). T0 = 104, T! = 500, �0 = 2:2, R = 0:01,

� = 0:99.

We devote Figs.(8.4) and Fig.(8.4) to the illustration of the corresponding results.

In Fig.(8.4) we explore the case � = 0:8 for both fast (R = 0:5) and slow (R = 103)

perturbation. In this range of parameters, the perturbed system shows behaviors similar

to those revealed in the case of the linear perturbation of the power index �0, Eq. (8.14).

In particular, we observe that the e�ect of the perturbation is the emergence of small

oscillations in the probability density, and they become more evident as R decreases.

We devote Figs.(8.4) and Fig.(8.4) to illustrating a condition corresponding to fast

perturbation, R = 0:01, and to a value of � close to the maximum (� = 0:99). An impor-

tant remark must be made on the qualitative similarity between Fig.(8.4)and Fig.(8.3),
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both showing the exponential cascade e�ect. Fig.(8.3) refer to the condition of non-

linear perturbation of �0 described by Eq. (8.12), whereas the result of Fig.(8.4) was

obtained by using the linear perturbation of T0 introduced in this Section, although with

a relatively strong coupling strength � = 0:99.

Figs.(8.4) and Fig.(8.4) show the same histogram at two di�erent scales of the inter-

spike times. The inter-spike time distribution in the range of short times (� < T0) is

displayed in Fig.(8.4), showing, as earlier remarked, an exponential cascade similar to that

of Fig.(8.3) Fig.(8.4) shows the same histogram on a more extended range of inter-spike

times, including times larger than T0.

This allows to see that, for inter-spike times larger than T0, the unperturbed histogram

is essentially recovered, apart from the fast oscillations around a distinctly inverse power

law behavior with the unperturbed power index �0 = 2:2. We see that the transition from

the former to the latter regime occurs at a time of the same order as T0, thereby con�rm-

ing our earlier observation that in the long-time regime the non-Poisson system recovers

its original complexity, albeit partly blurred by fast oscillations making less accurate the

evaluation of �0.

We are now in a position to argue that the non-linear perturbation of �0 behind

Fig.(8.3) has more dramatic e�ects than the linear perturbation of T0 introduced in this

Section (Fig.(8.4) and Fig.(8.4).

In next Section 8.5 we show how our guess is supported by the analysis of Di�usion

Entropy.

8.5. DEA as applied to Non-Poisson Renewal Processes under Perturbation

Let us denote with � the perturbed scaling, If � > 0:5 the system lives in the non-

Poisson basin. The transition from � > 0:5 to � = 0:5 corresponds to a transition

from the non-Poisson to the Poisson basin. Our guess is that the perturbed scaling � is

related to the e�ective power index �ef f of Eq. (8.19) (at least, in the fast perturbation

case). In Fig.(8.3) the threshold �ef f = 3 is reported to indicate the transition of the

function �ef f (�) from the non-Poisson to the Poisson basin. From this heuristic sketch,
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a transition is expected in the range 1 < � < 2. Actually, our numerical simulations

showed that larger values of � are needed to get reliable results (see Fig.(8.3).
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Figure 8.8. Slow linear perturbation of �0, Eq. (8.14). Di�usion

Entropy (same parameters as Fig.(8.3)). �0 = 2:2, T0 = 100, � = 0:6,

�0 ' 0:83. (a) T! = 5 � 103 (R = 10); (b) T! = 5 � 106 (R = 104).
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Figure 8.9. Fast linear perturbation of �0, Eq. (8.14). Di�usion

Entropy (same parameters as Fig.(8.3)) . T0 = 100, T! = 50, R = 0:1,

�0 = 2:2, � = 0:6, �0 ' 0:83.

In Fig.(8.5)-Fig.(8.5) we show the DE analysis at work. Figs.(8.5) and (8.5) illustrate

the DE analysis applied to the case of linear perturbation of �0, as described by Eq.
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Figure 8.10. Fast non-linear perturbation of �0, Eq. (8.12). Di�usion

Entropy (same parameters as Fig.(8.3)). �0 = 2:2, T0 = 105, � = 7,

T! = 500 (R = 10�3), �0 ' 0:83.
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Figure 8.11. Linear perturbation of T0, Eqs. (8.24) and (8.31). Dif-

fusion entropy (same parameters as Fig.(8.4)). T0 = 42:85174, �0 =

2:4285174, � = 0:8, �0 = 0:7. (a) T! = 50 (R = 0:5, fast perturbation),

(b) T! = 105 (R = 103, slow perturbation).

(8.14), Fig.(8.5) illustrates the DE analysis applied to the case of non-linear perturbation

of �0, according to the prescription of Eq. (8.12), and, �nally, Figs.(8.5) and (8.5) show

the DE analysis in action in the case of perturbation on the time scale T0.
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Figure 8.12. Fast linear perturbation of T0, Eqs. (8.24) and (8.31).

Di�usion entropy (same parameters as Fig.(8.4)). T0 = 104, T! = 500,

R = 0:01, �0 = 2:2, � = 0:99, �0 ' 0:83.

Figs.(8.5) and (8.5) correspond to the inter-spike time distributions of Figs.(8.3) and

(8.3), respectively. Fig.(8.5) shows the DE analysis applied to two distinct sequences,

simulating the e�ect of two slow (R > 1) linear perturbations of �0. We recall that,

in this range of parameters, the probability density does not show signi�cant oscillating

behavior (see Fig.(8.3)). By comparing panels (a) and (b) of Fig. 9 and Fig. 10, it is

possible to see that, at variance with the probability density, a clear oscillating pattern

emerges in the DE curve only in the case of very slow linear perturbation, R = 104 (Fig.

9b). Fig. 9a illustrates the case where the linear perturbation is moderately slow, namely,

in between the fast condition of Fig. 10 and the very slow perturbation of Fig. 9b.

Let us discuss the scaling detected by means of the DE analysis. First of all, let us

notice that, according to the rule of Eq. (5.21), the power index �0 = 2:2, shared by

both Fig. 9 and Fig. 10, is expected to yield �0 ' 0:83. We see that moving from the

fast perturbation of Fig.(8.5) (R = 0:1) to the intermediate perturbation of Fig.(8.5)a

(R = 10), does not produce any signi�cant sign of oscillating behavior so that in both

cases a neat asymptotic scaling � appears. In the fast perturbation case (Fig.(8.5)) this

scaling coincides with the unperturbed scaling �0 ' 0:83, while in the intermediate case of

Fig.(8.5)a the scaling gets the value � = 0:91, signi�cantly larger than �0. In the case of

very slow perturbation of Fig.(8.5)b the unperturbed scaling �0 appears again, although

as the slope of the straight line on which the relative minima of S(t) are located.
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Let us explain this interesting result. In the case of fast linear perturbation of

Fig.(8.5), the time dependent power index �(t) of Eq.(8.15) oscillates many times within

the time scale h�i, so that the DE analysis perceives only its time average �ef f , which,

for the linear model of Eq. (8.14), is identical to �0, thereby yielding the unperturbed

scaling �0. In the case of very slow perturbation of Fig. 9b we have to recall that the

DE analysis rests on converting a single sequence into many di�usion trajectories using

the mobile window method. When the length of the mobile window is equal to nT!, the

in
uence of external perturbation is annihilated. This is the same explanation as that

used in Ref. [80] and in the references to DE analysis therein. As a consequence, the

relative minima of S(t), represented in the linear-log representation, lie on the straight

line, whose slope corresponds to the unperturbed scaling �0.

In the intermediate condition R=10 (T! = 10h�i), displayed in Fig.(8.5)a, the scaling

changes to the value � = 0:91, signi�cantly larger than the unperturbed scaling �0 = 0:83.

This result suggests the emergence of a form of complexity which is the consequence

of the joint action of non-Poisson statistics and harmonic perturbation. This is not

the linear superposition of two independent contributions, so that we can argue that, in

this intermediate condition, linear perturbation and non-Poisson dynamics cooperate to

create a new condition of complexity.

Let us now address with the help of DE analysis the interesting problem of exponential

cascade. We want to prove that the DE analysis, through the inspection of the long-time

limit, a�ords a way to distinguish the genuine from the apparent perturbation-induced

transition from the Non-Poisson to the Poisson condition. The former kind of transition

is illustrated by Fig.(8.5) and the latter by Figs.(8.5) and (8.5). Let us explain why it is

so.

Fig.(8.5) illustrates the result of DE analysis in the case of fast non-linear perturbation

of �0, Eq. (8.12), which produces the inter-spike time distribution of Fig.(8.3).

We see that there exists an extended transition regime with the e�ective scaling of

�0 = 1, but, after this extended transient of the order of T0, we see the emergence of the

ordinary scaling � = 0:5 rather than of the unperturbed scaling �0 ' 0:83. According to
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the prescription of Eq. (5.21), the scaling � = 0:5 corresponds to the condition �0 > 3.

A quite plausible explanation is that the DE analysis is mostly a�ected by the extended

time intervals in which the e�ective power index �(t), given in Eq. (8.13), is greater

than 3. This is con�rmed by the large value of the average power index �ef f ' 200,

obtained by considering Eq. (8.19) with the parameters of Fig.(8.5). In conclusion, the

exponential cascade of the case illustrated by Fig.(8.3) is the manifestation of a genuine

transition from the non-Poisson to the Poisson condition.

Figs.(8.5) and (8.5) show the DE analysis in action in the case of a perturbation

a�ecting the length of the inter-spike times, namely the parameter T0, by means of Eqs.

(8.24) and (8.31).

Fig.(8.5) shows an extended transient regime, of the order of 10h�i, with h�i given

by Eq. (8.16). In panel (a) of Fig.(8.5) (fast perturbation) there is an abrupt transition

to the asymptotic scaling, and in panel (b) (slow perturbation) this abrupt transition is

rendered much smoother by the emergence of an oscillating behavior. In both cases the

�nal scaling regime is found at times larger than T!, and in both cases this scaling regime

turns out to be � ' �0 = 0:7, in agreement with the interpretation that the model given

in Eq. (8.24) does not a�ect the power index �0, which is linked to z by the expressions

given in Eqs. (8.21) and (8.22). The result of the DE analysis reported in Fig.(8.5)

con�rms this prediction, through a well de�ned slope, which is again �0 = 0:83, emerging

after a transient that we estimate to be of the order of 10h�i.
We recall that the histogram of Fig.(8.4) shows the exponential cascade in the range

of short inter-spike times � < T0.

This feature is similar to that found for the fast non-linear perturbation of �0 (see

Fig.(8.3)), but it is important to note that, at variance with that case, the DE now

reveals the right unperturbed scaling (� = 0:83).

This is a crucial di�erence between the perturbation of T0 and that of �0. The results

of Fig.(8.5) and (8.5) �t the theoretical expectation, insofar as the perturbation of T0

does not a�ect the power index �0, thereby making it natural to predict the emergence

of the unperturbed scaling in the long-time regime.
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8.6. Why the Exponential-Cascade does not necessarily prove the Poisson Nature of the

Neuron Firing Process

.

The research work of this Chapter has been motivated by the experimental results

of Ref. [78, 79] and especially by exponential cascade phenomenon. This phenomenon

admits a straightforward interpretation as the response of a Poisson process to an external

harmonic perturbation [80]. On the contrary, in this work we have shown that this

phenomenon does not necessarily imply that the dynamics of neuron �ring is a Poisson

process. In particular, we have proved:

Result #1. The non-linear perturbation of �0, Eqs. (8.12) and (8.13), generates

an exponential cascade representing a genuine transition from Non-Poisson to Poisson

statistics.

Result #2. The linear perturbation of T0 may generate the phenomenon of expo-

nential cascade. However, in this case this is not the signature of a genuine transition

from Non-Poisson to Poisson statistics, and the adoption of DE analysis shows that the

long-time region is still characterized by the same complexity parameter �0 as in the

unperturbed case.

The original purpose of this research work, aiming at shedding light into the phenom-

enon of exponential cascade of Refs. [78, 79] led us to a further, unexpected, result:

Result #3. It was found that a relatively weak (linear) harmonic perturbation of �0,

Eqs. (8.14) and (8.15), either very slow, R � 1, or very fast, R � 1, does not a�ect

the system's complexity, which emerges again in the long-time region. However, in the

intermediate range R � 10 (T! � 10h�i), a surprising cooperation between perturbation

and Non-Poisson dynamics occurs. The e�ect of this cooperation is the emergence in

the long-time limit of the scaling parameter � with a value signi�cantly larger than the

unperturbed complexity parameter �0.

Although this research work has been motivated by the neuron �ring processes of Refs.

[78, 79] we think that the results of this Chapter are of general interest, and provide
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interesting indications on the response of non-Poisson processes to external harmonic

perturbations.

8.7. Conclusions, Conjectures and Proposals for Future Research Work

In a recent work [102] the observation was made that both the brain and the music

composition are non-Poisson renewal processes. The transport of information from mu-

sic, as a form of weak perturbation, to the brain, is described by a linear response theory

[96, 103] adapted to this unusual physical condition. These results can be explained by

adopting the conceptual perspective that the interaction among many individual com-

ponents (neurons) generates non-Poisson renewal events. Therefore, it would be disap-

pointing to be forced to invoke the Poisson condition as the only one compatible with

the exponential cascade of Refs. [78, 79].

Actually, half of the data of Ref. [78] comes from the work of Siegel [104], which

reports on the response of single electrodes in the primary visual cortex of the cat while the

cat received oscillatory visual stimulus from a screen (hence the periodic perturbations of

Ref. [78]). Notice however that even though the recordings are from a single electrode,

the response of this single electrode ultimately depends on the dynamics of the entire

visual cortex (and presumably other regions of the brain as well). This is closely related

to the conjecture made in Ref. [102] that a single electrode inherits the complexity of

the whole brain. Consequently, the experimental data refer to a collective behavior (even

though the signal of a single electrode is analyzed), thereby justifying the adoption of

the models yielding the waiting time distribution of Eq. (8.2).

These conjectures are supported by many more recent experimental results. We quote

the work by D. Plenz and colleagues, e.g. [105], or the more recent work of Ref. [106].

The experimental results of these authors support the claim of a collective critical regime

in the cortex which may be compatible with the non-Poisson assumption made in this

manuscript (Eq.(8.2). These conjectures are also supported by recent theoretical papers,

see, for instance, [107, 108].
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On the basis of all these remarks, we conclude that this article proves that the adop-

tion of a strong invasive perturbation could have the e�ect of provoking a transition

from the non-Poisson to the Poisson condition, thereby annihilating the complexity con-

dition emerging from the collective behavior of a neuron set. This is an incentive to

adopt non-invasive perturbations sharing, however, the brain complexity [102]. This re-

quires the study of random perturbations, for instance, dichotomous perturbations that

may realistically simulate the in
uence of a noisy environment [103]. The complexity

matching condition invoked by both the authors of Ref. [102] and [103] may be an ad-

ditional request to make non-invasive the perturbation in
uence. Thus, the result #3,

which is beyond our current understanding may be a consequence of perturbing a system

with complexity index �0 (2 < �0 < 3) with a simple (deterministic) excitation, thereby

creating a signi�cant departure from the condition of complexity matching.
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CHAPTER 9

CONCLUSION

In this thesis we have investigated the perturbation of Renewal stochastic processes

with regard to their properties concerning the waiting tim distributions and Complexity

indices such as scaling coe�cient and power law index. The perturbation of Poisson

processes appeared to be closed connected to the stochastic resonance phenomena, the

essential identity of some basic models for SR with perturbation of Poisson renewal

processes has been discussed. It has also been shown that with Poisson and non-Poisson

renewal processes, provided that they are in the ergodic regime � > 2, the power spectral

density also displays similar properties to that of SR even sequences.

It has been show with reference to teen data birth Texas analyzed [63] earlier that, a

sinusoidal perturbation of Poisson renewal processes may serve as a paradigmatic model

where the noise is directly correlated to the seasonal e�ect itself. This noise although had

no auto-correlation as it is, proved to have the same scaling properties as the seasonality

e�ect, namely the signal itself [80]. It was also shown that perturbation induces some

kind of a cumulative memory on a Poisson renewal system whose basic identity is to be

memory-less. The e�ect memory on the properties of Renewal aging has been detected

by Paradisi et.al.[94],[109]. As for future research we can expect the detection of induced

memory by perturbation e�ects by means of some kind of aging analysis.

The perturbation of non-Poisson renewal processes can be performed by means of

linear perturbation or non-linear perturbation, the former being a sub-class of the latter.

Also the perturbation might be a�ecting the transition time to power law T0 or the

power index itself �0. We have found out that the linear perturbation of �0 leaves the

scaling properties unchanged while the di�usion entropy analysis determines the e�ect

of perturbation forming a joint e�ect of the ordinary scaling of the unperturbed system

and an extra e�ect due to the periodic perturbation. DE using the Asymmetric Jump
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Model of walking for di�usion agents based on the time series, detects the correct scaling

properties of the system and the e�ect o perturbation appears in the same way of the

superposition of a seasonal e�ect and a noise a�ects the scaling condition /citeosman2.

As to the non-linear perturbation of the ergodic non-Poisson system [39] it is detected

that this form of perturbation as well as the non-linear perturbation of the Poisson

processes [80] forms an exponential cascade akin to the experimental results obtained

from neuronal data before [104], [78]. The similarity with the SR models are discussed

and it is concluded that unlike the general impression obtained from the exponential

decaying envelope of the data, on can not decisively conclude that the system has to

be a Poisson system. The work concludes that a non-Poisson system under non-linear

perturbation will give us exponential cascade waiting time distributions just as the data

does [104], and that, this kind of perturbation can make the statistics of the system to

make a transition from non-Poisson to Poisson statistics. This claim has been proved by

means of DE-AJM analysis [39]. In conclusion the non-linear perturbation of the rate of

a non-Poisson system via �0 may cause a transition to Poisson basin of statistics. This

may �nd applications in complex network theory as well as an analysis of neuronal data.
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APPENDIX A

NUMERICAL METHOD FOR THE PERTURBATION OF THE RATE OF A

POISSON PROCESS
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In a perturbed Poisson process one can reverse engineer the random number

(A-1) � = e�(
∫ t0+�
t0 r(t 00dt 00))

under harmonic perturbation of the type

(A-2) r(t) = r0(1 + � cos(!t))

we can set the equation

(A-3) � ln �
r0

= � + �(sin(!t 0 + !�) + sin(!t 0))

This equation will be solved iteratively by numerical means. Once the equation holds

then t 0 ! t 0 + � will be set and generating another random number � one proceeds for

the next � . This procedure is used only for � < 0:5 for the perturbed Poisson system.

131



APPENDIX B

NUMERICAL PROCEDURE FOR THE PERTURBATION OF T0
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Let us consider the system described by the following equations:

(B-1)
dy
dt

= �(t)y z ;

(B-2) �(t) = �0(1 + � cos(
2�t
T!

))

where � is the perturbation parameter in the range [0; 1] and T! is the perturbation period.

The variable y is de�ned in the interval [0; 1]. We can derive a relation between the initial

condition y(t 0) = � and the exit time � , de�ned by y(t 0 + �) = 1 and corresponding to

the inter-spike time. � is a uniform random variable in [0; 1] and t 0 is the absolute time

corresponding to the previous exit from the interval [0; 1]. Then, we have:

(B-3)
dy
dt

= (�0 + �0� cos(!t))y z :

We integrate this expression

(B-4)

y∫

y0

y�zdy =
t 0+�∫

t 0
�0dt 00 +

t 0+�∫

t 0
�0� cos(!t 0)dt 00

and we get

(B-5)
y 1�z
1� z �

y 1�z
0

1� z = �0� +
�0�
!

(sin(!t 0 + !�)� sin(!t 0)) :

Substituting y(t 0 + �) = 1, we get:

(B-6)
1� �1�z
�0(1� z)

= � +
�
!

(sin(!� + !t 0)� sin(!t 0)) :

This is the basic relation used in the algorithm. The �rst step is de�ned by inserting

t 0 = 0 and the �rst inter-spike time is drawn with the following equation

(B-7)
1� �1�z
�0(1� z)

� �1 =
�
!

(sin(!�1)) :

For a given �, a numerical solution �1 of this equation can be found directly using an

iterative procedure, explained below. Then, the �rst t 0 = t1 is given by �1 and, substitut-

ing in Eq. (B-6) t 0 = �1, we compute the second inter-spike time �2 and the occurrence

time t2 = t1 + �2. Iterating this procedure, we de�ne, at each step n, tn = tn�1 + �n and,

substituting t 0 = tn in Eq. (B-6), we compute the next inter-spike time �n+1.
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The iterative procedure used, at each step n, to compute the solution � = �n+1 of

Eq. (B-6), is given by the following expression:

(B-8) � j+1 = �unp � B (
sin(!� j + !t 0)� sin(!t 0)

)

where:

(B-9) �unp =
1� �1�z
�0(1� z)

; B =
�
!

; t 0 = tn:

In order to avoid numerical problems, the algorithm is written in the following way:

(B-10) � j+1 = �unp � B [
sin(!� j) cos(!t 0) + cos(!� j) sin(!t 0)� sin(!t 0)

]
:

Even if this expression is analytically equivalent to the previous one, this expression

allows to prevent the e�ects of the truncations performed in the practical realization

of the algorithm, which determine large numerical errors in the evaluation of � , as t 0

becomes much larger than � itself.

The initial condition for the iteration is given by �unp. The iteration is stopped when:

(B-11) � =
∣∣∣∣
� j+1 � � j

� j

∣∣∣∣ < �0

and then we put �n+1 = � j+1. The choice of the threshold �0 is a compromise between

the accuracy and the program running time, which is a function of � as well.
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