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CHAPTER 1

INTRODUCTION

One of the general problems of topological algebra is to determine restrictions on the

set of possible topological group topologies that are definable on a given abstract group

G. This entails finding restrictions on the set of possible topologies on the abstract group

G for which the group operations are continuous. There are many special known results

related with this problem. Some of the most illustrious mathematicians of the twentieth

century have been linked to this area. One of the first results belongs to Elie Cartan, who

showed that if G is a compact semisimple Lie group, H is a Lie group and φ : G → H is an

abstract group homomorphism whose image is bounded, then φ is continuous [2]. Another

important result is due to van der Waerden who proved that if a linear representation of a

simple nonabelian compact Lie group is bounded around the identity, then it is continuous

[27]. Hans Freudenthal proves a theorem similar to van der Waerden: he considers G to be a

simple real Lie group (of dimension ≥ 3) which is absolutely simple, i.e. the complexification

of its Lie algebra remains simple as a complex Lie algebra, and he shows that, under this

assumption, any automorphism of G is continuous [4]. This result applies to SL2(R), but it

is not true for SL2(C) as von Neumann noted that if ψ is a discontinuous automorphism of

C, the mapping

ψ̃ : SL2(C) → SL2(C),


 a b

c d


 7→


 ψ(a) ψ(b)

ψ(c) ψ(d)




is not continuous. Furthermore, Borel and Tits extended the van der Waerden paper in a

variety of ways to Lie groups over locally compact fields [1], [26]. Similar questions about

metrizable topological groups arose naturally. One result is due to Robert Kallman, who

answered a question posed by Ulam, Schreier and von Neumann. By combining ideas from
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algebra and descriptive set theory, he proved that if G is a complete separable metric group

and if φ : G → S∞ is an algebraic isomorphism, then φ is a topological isomorphism [13].

This is perhaps a surprising result because, for example, it is false for the additive group

(R, +). To see this, note that R and R2 are isomorphic as vector spaces over Q and therefore

are isomorphic as additive groups, but they are not homeomorphic in spite of the fact that

both groups are Polish groups. Later, Kallman used similar methods to prove analogous

theorems for large classes of groups, each of which requires unique special algebraic tricks:

compact simple Lie groups [11]; compact connected metric groups with totally disconnected

center [14]; the homeomorphism group of manifolds [17]; the diffeomorphism group of C∞

manifolds [17]; the homeomorphism group of the Hilbert cube [17]; the homeomorphism

group of pseudo-arc (unpublished); the p-adic integers [12]; the group of measure-preserving

transforms of [0, 1] [16]; the group of measurable, non-singular, invertible transforms of [0, 1]

(clarifying an example of Kakutani)(unpublished); semisimple Lie groups of second kind

(unpublished); and the real ax + b group [15].

The purpose of my dissertation is to add to this list by proving that U(H), the group of

unitary operators acting on a separable infinite dimensional Hilbert space, admits a unique

topology in which it is a complete separable metric group. The basic idea again is to

combine algebraic techniques with descriptive set theoretical results and prove the following

theorem ”Let H be a separable infinite dimensional complex Hilbert space, let G be a Polish

topological group and φ : G → U(H) an algebraic isomorphism. Then φ is a topological

isomorphism”, Theorem 3.58. The same theorem holds for the projective unitary group

PU(H) Theorem 4.18, for the group of *-automorphisms of L(H) Corollary 5.37 and for

the complex isometry group Theorem 8.10. If H is a separable real Hilbert space with

dim(H) ≥ 3, the theorem is also true for the orthogonal group O(H) Theorem 6.40, for the

projective orthogonal group PO(H) Theorem 7.13 and for the real isometry group Theorem

8.13. It is surprising that the theorem fails for U(n) if H is n−dimensional complex Hilbert

space Corollary 3.64.
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Some of the theorems and propositions in this project do not represent original work.

They are reproduced here for the convenience of the reader, sometimes with slightly different

than the original proofs. If a theorem is a well known result, the name of the author is listed,

if it is just a general fact there is no name associated with it. Recommended references for

the general facts are [20], [21], [25] and [18]. All of the original theorems are marked with

F.
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CHAPTER 2

BASICS OF HILBERT SPACES

2.1. Inner Products

Definition 2.1. Let V be a vector space over C or R. A norm on V is a function p : V → R

satisfying, for every x, y ∈ V and every a ∈ R or a ∈ C the following:

1) p(x + y) ≤ p(x) + p(y);

2) p(ax) = |a|p(x);

3) p(x) > 0 whenever x 6= 0.

The function p is usually denoted ‖ · ‖.

Definition 2.2. A normed space is a pair (V, ‖ · ‖), where V is a vector space over C or R

and ‖ · ‖ is a norm on V .

Definition 2.3. If (V, ‖ ·‖) is a normed space, the closed unit ball is the set {x ∈ V | ‖x‖ ≤
1} and is denoted by V1.

Definition 2.4. A bilinear functional on a complex vector space V is a complex-valued

function φ on V × V such that φ(x, y) is linear in the first argument and it is complex

conjugate linear in the second argument. A bilinear functional φ is positive if φ(x, x) ≥ 0 for

every x ∈ V , and it is strictly positive if φ(x, x) > 0, whenever x 6= 0. A bilinear functional φ

is conjugate-symmetric if φ(x, y) = φ(y, x) for every x, y ∈ V . The quadratic form φ̂ induced

by a bilinear functional φ on a complex vector space is the real-valued function defined for

each x ∈ V by φ̂(x) = φ(x, x).

A real bilinear functional on a real vector space is a real valued function defined in a

similar way, except that the values φ(x, y) are required to be real and the conjugation no

longer appear.
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Definition 2.5. An inner product on a complex vector space V is a strictly positive,

conjugate-symmetric, bilinear functional on V . An inner product space is a complex vector

space V and a choice of inner product on V . The quadratic form 〈x, x〉 induced by the inner

product is denoted by ‖x‖2. The positive square root ‖x‖ of ‖x‖2 is a norm, called the norm

of x.

A real inner product space is a real complex vector space and a strictly positive, sym-

metric, real bilinear functional on it.

Definition 2.6. We say that a bilinear functional φ is bounded if there is a real number c

such that |φ(x, y)| ≤ c‖x‖‖y‖. When this is so, we denote by ‖φ‖ the least possible value of

c, which is given by

‖φ‖ = sup{|φ(x, y)| | ‖x‖ ≤ 1, ‖y‖ ≤ 1}

Proposition 2.7 (Parallelogram Law). If V is a complex or a real inner product space,

then

‖x + y‖2 + ‖x− y‖2 = 2(‖x2‖+ ‖y‖2)

for every x, y ∈ V .

Proof. ‖x+y‖2 +‖x−y‖2 = 〈x + y, x + y〉+ 〈x− y, x− y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉+
〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉 = 2〈x, x〉+ 2〈y, y〉 = 2(‖x2‖+ ‖y‖2). ¤

Proposition 2.8 (Polarization identity). If φ̂ is the quadratic form induced by a bilinear

functional φ on a complex vector space V , then

φ(x, y) = φ̂(
1

2
(x + y))− φ̂(

1

2
(x− y)) + iφ̂(

1

2
(x + iy))− iφ̂(

1

2
(x− iy))

for every x, y ∈ V .

Proof. φ̂(1
2
(x + y))− φ̂(1

2
(x− y)) + iφ̂(1

2
(x + iy))− iφ̂(1

2
(x− iy)) = φ(1

2
(x + y), 1

2
(x + y))−

φ(1
2
(x−y), 1

2
(x−y))+iφ(1

2
(x+iy), 1

2
(x+iy))−iφ(1

2
(x−iy), 1

2
(x−iy)) = 1

4
φ(x, x)+ 1

4
φ(x, y)+

1
4
φ(y, x)+ 1

4
φ(y, y)− 1

4
φ(x, x)+ 1

4
φ(x, y)+ 1

4
φ(y, x)− 1

4
φ(y, y)+ 1

4
iφ(x, x)+ 1

4
φ(x, y)− 1

4
φ(y, x)+

1
4
iφ(y, y)− 1

4
iφ(x, x) + 1

4
φ(x, y)− 1

4
φ(y, x)− 1

4
iφ(y, y) = φ(x, y) ¤
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Definition 2.9. Let V be a vector space over C. Define the distance between two vectors

x and y to be ‖x − y‖. Then V is a metric space with respect to this distance function.

A Hilbert space is an inner product space which, as a metric space, is complete. A Hilbert

space is usually denoted by H.

If V is a vector space over R, a real Hilbert space is defined in a similar way. As regards

elementary geometrical properties of Hilbert spaces, there is a little difference between the

real and the complex cases. In the main we shall restrict attention to the complex case,

making occasional comments on the modifications needed to deal with real spaces.

Definition 2.10. A Hilbert spaceH is separable if there is D ⊂ H a countable dense subset.

Throughout the Hilbert space H will be assumed to be separable.

Definition 2.11. We define two topologies on a Hilbert space H. The first topology is

compatible with the metric induced by the norm and is called the strong topology. A base

of neighborhoods for the strong topology at the point x0 is the collection of all sets of the

form

{x | ‖x− x0‖ < ε}

where ε > 0. We say that the net xj converges strongly to x if ‖xj − x‖ → 0 and we denote

this by xj
s−→ x.

Another topology on a Hilbert space is called the weak topology. A base of neighborhoods

for the weak topology at the point x0 is the collection of all sets of the form

{x | |〈x− x0, yi〉| < ε, 1 ≤ i ≤ k}

where y1, y2, ..., yk ∈ H and ε > 0. We say that the net xj converges weakly to x if

〈xj − x, y〉 → 0 for every y ∈ H and we denote this by xj
w−→ x.

2.2. Linear Operators

Definition 2.12. An operator is a linear transformation from H into H. We say that the

operator T : H → H is bounded if there exists C ∈ R such that ‖Tx‖ ≤ C‖x‖ for every
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x ∈ H. The least such constant C is the norm of T . The collection of all bounded operators

acting on a Hilbert space H is denoted by L(H).

Lemma 2.13. If T ∈ L(H), then ‖T‖ = sup{|〈Tx, y〉| | ‖x‖ ≤ 1, ‖y‖ ≤ 1}.
Proof. If ‖Tx‖ 6= 0, let y = Tx

‖Tx‖ . Then ‖y‖ = 1 and sup{|〈Tx, y〉| | ‖x‖ ≤ 1, ‖y‖ ≤
1} = sup

{
|〈Tx, Tx

‖Tx‖〉| | ‖x‖ ≤ 1
}

= sup
{
‖Tx‖2
‖Tx‖ | ‖x‖ ≤ 1

}
= sup{‖Tx‖ | ‖x‖ ≤ 1} =

sup
{
‖Tx‖
‖x‖ | x 6= 0

}
= inf

{
C | ‖Tx‖

‖x‖ ≤ C
}

= inf{C | ‖Tx‖ ≤ C‖x‖} = ‖T‖ ¤

Theorem 2.14 (Riesz’s Representation Theorem). If H is a Hilbert space and y ∈ H, the

equation φy(x) = 〈x, y〉 defines a continuous linear functional φy on H, and ‖φy‖ = ‖y‖.
Each continuous linear functional on H arises in this way from a unique element y of H.

Proof. Since the inner product is linear in the first argument, it is clear that φy is linear. For

every y ∈ H we have that |φy(x)| = |〈x, y〉| ≤ ‖x‖ ‖y‖ for every x ∈ H ⇒ φy is bounded and

hence continuous. If x = y we have that |φy(x)| = ‖x‖ ‖y‖ ⇒ ‖φy‖ = ‖y‖.
If φ 6= 0 is a continuous linear functional onH, let Y = φ−1(0). Then, since φ 6= 0 we have

that Y 6= H ⇒ Y ⊥ 6= {0}. Let u ∈ Y ⊥ be such that ‖u‖ = 1. Note that φ(φ(u)x−φ(x)u) =

φ(u)φ(x) − φ(x)φ(u) = 0 for every x ∈ H ⇒ φ(u)x − φ(x)u ∈ Y and, since u ∈ Y ⊥ we

have that 0 = 〈φ(u)x− φ(x)u, u〉 = φ(u)〈x, u〉 − φ(x) ⇒ φ(x) = φ(u)〈x, u〉 = 〈x, φ(u)u〉.
Let y = φ(u)u. Then φ(x) = φy(x) = 〈x, y〉 for every x ∈ H. If φ = 0 then it is clear

that 0 = φ(x) = φ0(x) = 〈x, 0〉 for every x ∈ H. If also φ = φz, with z ∈ H then

‖y − z‖ = ‖φy−z‖ = ‖φy − φz‖ = ‖φ− φ‖ = 0 ⇒ y = z ⇒ the representation of φ is unique.

¤

Theorem 2.15 (Banach-Alaoglu). Let H be a Hilbert space over C or R. The weak topology

on H1 = {x ∈ H | ‖x‖ ≤ 1}, the unit ball of H, is compact Hausdorff.

Proof. Here is the proof for the complex case only. The real case is similar.

For every x ∈ H, let Dx = {z ∈ C | |z| ≤ ‖x‖} be the closed disc in C. Let D =
∏

x∈H Dx

equipped with the product topology. By Tychonoff’s Theorem D is compact. For every x ∈
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H1 let δ(x) =
∏

y∈H〈x, y〉. Since for every x ∈ H1 and every y ∈ H, |〈x, y〉| ≤ ‖x‖ ‖y‖ = ‖y‖,
we have that δ(x) ∈ D and hence δ is a mapping from H1 into D.

If x1, x2 ∈ H1 such that δ(x1) = δ(x2), then〈x1, y〉 = 〈x2, y〉 for every y ∈ H ⇒ x1 =

x2 ⇒ δ is one-to-one. If xj, x ⊂ H1, then xj
w−→ x ⇔ 〈xj, y〉 → 〈x, y〉 for every y ∈ H ⇔

δ(xj) → δ(x). Hence δ is an embedding of H1 with the weak topology into D with the

product topology.

Let x1 6= x2 ∈ H1. Then there exists y0 ∈ H such that 〈x1, y0〉 6= 〈x2, y0〉 ∈ Dy0 ⇒ there

exist U1, U2 ⊂ Dy0 open, disjoint such that 〈x1, y0〉 ∈ U1 ⊂ Dy0 and 〈x2, y0〉 ∈ U2 ⊂ Dy0 .

Then δ−1(U1×
∏

y 6=y0
Dy) and δ−1(U2×

∏
y 6=y0

Dy) are disjoint weakly open sets and separate

x1 and x2. Hence the weak topology on H1 is Hausdorff. We will show compactness by

showing that the range of δ is closed in D, which can be viewed as the set of all complex

valued functions acting on H.

Let f ∈ clD(δ(H1)). Then f : H → C and there exists xj ⊂ H1 such that δ(xj) → f ,

which is that 〈xj, y〉 → f(y) for every y ∈ H. Since |〈xj, y〉| ≤ ‖y‖, we have that |f(y)| ≤ ‖y‖
for every y ∈ H ⇒ ‖f‖ ≤ 1.

Let ε > 0, x1, x2 ∈ H, α, β ∈ C and let x3 = αx1 + βx2. Let U = {g ∈ D | |g(x1) −
f(x1)| < ε , |g(x2) − f(x2)| < ε , |g(x3) − f(x3)| < ε}. Then U ⊂ D is open and

contains f ⇒ δ(H1) ∩ U 6= ∅ ⇒ there exists x0 ∈ H1 such that |〈x0, x1〉 − f(x1)| <

ε , |〈x0, x2〉 − f(x2)| < ε , |〈x0, x3〉 − f(x3)| < ε. Then

|f(x3)− αf(x1)− βf(x2)| =

|f(x3)− 〈x0, x3〉+ 〈x0, x3〉 − αf(x1)− βf(x2)| =

|f(x3)− 〈x0, x3〉+ α〈x0, x1〉+ β〈x0, x2〉 − αf(x1)− βf(x2)| ≤

|f(x3)− 〈x0, x3〉|+ α|f(x1)− 〈x0, x1〉|+ β|f(x2)− 〈x0, x2〉| <

ε + αε + βε = ε(1 + α + β)
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Since this is true for every ε, we have that f is linear. By Riesz’s Representation Theorem we

have that there exists x ∈ H1 such that f(y) = 〈x, y〉 for every y ∈ H ⇒ f ∈ δ(H1) ⇒ δ(H1)

is closed in D ⇒ H1 is weakly compact. ¤

Theorem 2.16. If H is separable, the weak topology on H1 is compact and metrizable. In

this case, a metric compatible with the weak topology on H1 is

d(x, y) =
∑

l≥1

1

2l
|〈x− y, el〉|

where {e1, e2, ..., el, ...} is an orthonormal basis for H.

Proof. We have shown in the Theorem 2.15 that the unit ball is compact. To show that the

metric just defined is compatible with the weak topology, we have to show that if (xj) ⊂ H1

is a net and x ∈ H1, then xj
w−→ x ⇔ d(xj, x) → 0.

If (xj) ⊂ H1 is a net, x ∈ H1 and xj
w−→ x, then 〈xj − x, el〉 → 0 for every l ≥ 1. Let

ε > 0. Choose L so that 2L−1 > 2
ε
. Then ε

2
> 1

2L−1 = 1
2L−1 (

∑
l≥1

1
2l ) =

∑
l≥1

1
2L−1+l =

∑
l>L

1
2l−1 ≥

∑
l>L

1
2l‖xj − x‖ ‖el‖ ≥

∑
l>L

1
2l |〈xj − x, el〉| for every j. For every 1 ≤ l ≤ L

there is an Jl such that 1
2l |〈xj − x, el〉| < ε

2L
for every j ≥ Jl. Let J ≥ {Jl | 1 ≤ l ≤ L}. Then

∑
1≤l≤L

1
2l |〈xj − x, el〉| < ε

2
for every j ≥ J . Hence, if j ≥ J , then

∑
l≥1

1
2l |〈xj − x, el〉| <

ε ⇒ d(xj, x) → 0.

If (xj) ⊂ H1 is a net, x ∈ H1 and d(xj, x) → 0, then
∑

l≥1
1
2l |〈xj − x, el〉| → 0. This

implies that |〈xj − x, el〉| → 0 for every l ≥ 1 ⇒ |〈xj − x, v〉| → 0 for every v =
∑k

l=1 alel.

Let ε > 0, and y ∈ H1. Choose v =
∑k

l=1 alel be such that ‖y − v‖ < ε
4
. This can be

done since finite linear combinations of el are dense. Then |〈xj − x, y − v〉| ≤ |〈xj, y − v〉|+
|〈x, y − v〉| ≤ ‖xj‖ ‖y − v‖ + ‖x‖ ‖y − v‖ ≤ 2‖y − v‖ < ε

2
. Since |〈xj − x, v〉| → 0 for

every v =
∑k

l=1 alel, choose J such that |〈xj − x, v〉| < ε
2

for every j ≥ J . This implies that

|〈xj − x, y〉| ≤ |〈xj − x, y − v〉|+ |〈xj − x, v〉| < ε for every j ≥ J ⇒ xj
w−→ x. ¤

Theorem 2.17. If T ∈ L(H) then the equation bT (x, y) = 〈Tx, y〉 defines a bounded bilinear

functional on H×H and ‖bT‖ = ‖T‖. Each bounded bilinear functional on H×H arises in

this way from a unique element of L(H).
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Proof. Given T ∈ L(H) it is clear that bT is a bilinear form on H × H. Since |bT (x, y)| =

|〈Tx, y〉| ≤ ‖Tx‖‖y‖ ≤ ‖T‖‖x‖‖y‖ we have that bT is bounded and ‖bT‖ ≤ ‖T‖. Since

‖Tx‖2 = 〈Tx, Tx〉 = bT (x, Tx) ≤ ‖bT‖‖x‖‖Tx‖ we have that ‖Tx‖ ≤ ‖bT‖‖x‖ ⇒ ‖T‖ ≤
‖bT‖ and hence ‖T‖ = ‖bT‖.

Let b : H×H be a bounded bilinear form. For every x ∈ H let (Rx)(y) = b(x, y). Rx is a

linear functional onH and, since |(Rx)(y)| ≤ ‖b‖‖x‖‖y‖, Rx is bounded and ‖Rx‖ ≤ ‖b‖‖x‖.
Since b is linear in the first variable, the mapping R, R(x) = Rx from H into the dual space

of H is bounded, conjugate-linear. For every y ∈ H let (Sy)(x) = 〈x, y〉. It is clear that Sy

is linear. Since |(Sy)(x)| = |〈x, y〉| ≤ ‖x‖‖y‖ with equality if x = y ⇒ ‖Sy‖ = ‖y‖. Thus,

S is a norm-preserving conjugate-linear from H into the dual of H. Let T = S−1R. Then

T : H → H is linear and T is bounded by ‖b‖. Moreover, bT (x, y) = 〈Tx, y〉 = 〈S−1Rx, y〉 =

〈y, S−1Rx〉 = (Rx)(y) = b(x, y).

If also bU = b for some U ∈ L(H) then ‖T − U‖ = ‖bT−U‖ = ‖bT − bU‖ = ‖b − b‖ = 0

and hence T = U . ¤

Proposition 2.18. If T ∈ L(H) then

4〈Tx, y〉 = 〈T (x + y), x + y〉− 〈T (x− y), x− y〉+ i〈T (x + iy), x + iy〉− i〈T (x− iy), x− iy〉

for every x, y ∈ H.

Proof. If φ(x, y) = 〈Tx, y〉, then φ is a bilinear form onH. It follows from Proposition 2.8 that

〈Tx, y〉 = 〈T (1
2
(x + y)), 1

2
(x + y)〉 − 〈T (1

2
(x− y)), 1

2
(x− y)〉 + i〈T (1

2
(x + iy)), 1

2
(x + iy)〉 −

i〈T (1
2
(x− iy)), 1

2
(x− iy)〉 = 1

4
〈T (x + y), x + y〉− 1

4
〈T (x− y), x− y〉+ 1

4
i〈T (x + iy), x + iy〉−

1
4
i〈T (x− iy), x− iy〉 ¤

Proposition 2.19. If S and T are bounded linear operators on a Hilbert space H and if

〈Tx, x〉 = 〈Sx, x〉 for every x ∈ H, then S = T .

Proof. If x, y ∈ H, using Proposition 2.18 we have that

4〈Tx, y〉 = 〈T (x + y), x + y〉−〈T (x− y), x− y〉+i〈T (x + iy), x + iy〉−i〈T (x− iy), x− iy〉 =
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〈S(x + y), x + y〉 − 〈S(x− y), x− y〉+ i〈S(x + iy), x + iy〉 − i〈S(x− iy), x− iy〉 = 4〈Sx, y〉

⇒ S = T . ¤

Theorem 2.20. If H is a Hilbert space and T ∈ L(H) then there is a unique element

T ∗ ∈ L(H) such that

〈T ∗x, y〉 = 〈x, Ty〉

for every x, y ∈ H. Moreover,

1) (aS + bT )∗ = aS∗ + bT ∗

2) (TS)∗ = S∗T ∗

3) (T ∗)∗ = T

4) ‖T ∗T‖ = ‖T‖2

5) ‖T ∗‖ = ‖T‖
for every S, T ∈ L(H) and every a, b ∈ C.

Proof. The equation b(x, Ty) = 〈x, Ty〉 defines a bilinear functional b on H × H. Since

|b(x, y)| = |〈x, Ty〉| = |〈Ty, x〉| = |bT (y, x)|, where bT is the bilinear functional defined

in Theorem 2.17, we have that b is bounded. By the same theorem that there exists a

unique element T ∗ ∈ L(H) such that 〈T ∗x, y〉 = b(x, y) = 〈x, Ty〉 for every x, y ∈ H and

‖T ∗‖ = ‖b‖ = ‖T‖, which proves 5). If x ∈ H then ‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 ≤
‖T ∗T‖‖x‖2 ⇒ ‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2 and 4) follows.

Since 〈(aS∗ + bT ∗)x, y〉 = a〈S∗x, y〉+b〈T ∗x, y〉 = a〈x, Sy〉+b〈x, Ty〉 = 〈x, (aS + bT )y〉 =

〈(aS + bT )∗x, y〉 for every x, y ∈ H, we have that (aS + bT )∗ = aS∗ + bT ∗.

Since 〈S∗T ∗x, y〉 = 〈T ∗x, Sy〉 = 〈x, TSy〉 = 〈(TS)∗x, y〉 for every x, y ∈ H, we have that

(TS)∗ = S∗T ∗. Finally, since 〈Ty, x〉 = 〈x, Ty〉 = 〈T ∗x, y〉 = 〈y, T ∗x〉 = 〈(T ∗)∗y, x〉 for every

x, y ∈ H, we have that (T ∗)∗ = T and the theorem is proved. ¤

Definition 2.21. A bounded linear operator T ∈ L(H) is said to be self-adjoint or Hermit-

ian if T ∗ = T .
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Definition 2.22. The strong operator topology and the weak operator topology are topolo-

gies on the space of bounded linear operators on a Hilbert space. In the strong operator

topology, an element T0 has a base of neighborhoods consisting of all sets of the form

{T ∈ L(H) | ‖(T − T0)xi‖ < ε, 1 ≤ i ≤ k}

where x1, x2, ..., xk ∈ H and ε > 0. We say that the net Tj converges to T in the strong

operator topology if ‖(Tj − T )x‖ → 0 for every x ∈ H and we denote this by Tj
so−→ T .

A basic neighborhood at T0 in the weak operator topology is the collection of all sets of

the form

{T ∈ L(H) | |〈(T − T0)xi, yi〉| < ε, 1 ≤ i ≤ k}

where x1, x2, ..., xk, y1, y2, ..., yk ∈ H and ε > 0. We say that the net Tj converges weakly to

T in the weak operator topology if 〈(Tj − T )x, y〉 → 0 for every x, y ∈ H and we denote this

by Tj
wo−→ T .

Definition 2.23. Let X be a topological space. The set of all functions f : X → X such

that f is bijective and f and f−1 are continuous is denoted Hom(X). Hom(X) together

with the composition of functions is a group, called the homeomorphism group of X.

Theorem 2.24. Let X be a separable compact metric space and let Hom(X) be the home-

omorphism group of X. Then Hom(X) can be given a separable complete metric group

topology. The metric compatible with this group topology is given by

ρ(f, g) = sup
x∈X

d(f(x), g(x)) + sup
x∈X

d(f−1(x), g−1(x))

for every f, g ∈ Hom(X), where d is the metric on X.

A condensed sketch of this proof is in [17]. ¤

Corollary 2.25. Let H be a separable Hilbert space over C or R, H1 the unit ball and

Hom(H1) the homeomorphism group of the unit ball. Then

ρ(f, g) = sup
x∈H1

d(f(x), g(x)) + sup
x∈H1

d(f−1(x), g−1(x))

12



where d is the metric on H1, defines a complete separable metric on Hom(H1). Hom(H1)

is a topological group with respect to the corresponding topology. If fj → f with respect to

this topology, we will use the notation fj
ρ−→ f .

Proof. If H is separable, H1 is a separable compact metric space by Theorem 2.16. The

conclusion follows from the Theorem 2.24. ¤

2.3. Projections

Definition 2.26. An orthogonal projection on a subspace M ⊂ H is the transformation

P : H →M defined, for every z = x + y ∈ H, with x ∈M and y ∈M⊥, by P (z) = x.

Proposition 2.27. The orthogonal projection P on a subspace M is an idempotent and

Hermitian operator. If M 6= O, then ‖P‖ = 1. Conversely, if P is an idempotent Hermitian

operator and if M = {x ∈ H | P (x) = x}, then P is the orthogonal projection on M.

Proof. It is clear that P is linear. If z = x + y with x ∈ M and y ∈ M⊥, then ‖P (z)‖2 =

‖x‖2 ≤ ‖x‖2 + ‖y‖2 = ‖z‖2, and hence P is bounded and ‖P‖ ≤ 1. Since P 2(z) = P (x) =

x = P (z), we have that P is idempotent. If z1 = x1 + y1 and z2 = x2 + y2, where x1, x2 ∈M
and y1, y2 ∈M⊥, then 〈P (z1), z2〉 = 〈x1, x2 + y2〉 = 〈x1, x2〉+ 〈x1, y2〉 = 〈x1, x2〉 = 〈x1, x2〉+
〈y1, x2〉 = 〈x1, P (z2)〉+ 〈y1, P (z2)〉 = 〈z1, P (z2)〉, and hence P is Hermitian. Also, if M 6= O,

then P (x) = x implies that ‖P‖ = 1.

Conversely, let P be an idempotent Hermitian operator, M = {x ∈ H | P (x) = x}
and let z ∈ H. Since P is idempotent, P (P (z)) = P (z) and hence P (z) ∈ M. Since P is

Hermitian, 〈x, z − P (z)〉 = 〈x, z〉 − 〈x, P (z)〉 = 〈x, z〉 − 〈P (x), z〉 = 〈x, z〉 − 〈x, z〉 = 0 for

every x ∈ M, and hence z − P (z) ∈ M⊥. Since z = P (z) + (z − P (z)), the conclusion

follows. ¤

Definition 2.28. A partial isometry is an operator on a Hilbert space that is an isometry

on the orthogonal complement of its kernel.

Proposition 2.29. An operator U on a Hilbert space H is a partial isometry if and only if

U∗U is an orthogonal projection.
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Proof. Let U be a partial isometry and P be the orthogonal projection on Ker(U)⊥. If

x ∈ Ker(U)⊥, then 〈U∗Ux, x〉 = 〈Ux, Ux〉 = ‖Ux‖2 = ‖x‖2 = 〈x, x〉. Hence, if z ∈ H and

z = x + y, where x ∈ Ker(U)⊥ and y ∈ Ker(U), then 〈U∗Uz, z〉 = 〈U∗Ux, x〉+ 〈U∗Ux, y〉+

〈U∗Uy, x〉 + 〈U∗Uy, y〉 = 〈x, x〉 = 〈x, x〉 + 〈x, y〉 = 〈x, z〉 = 〈Pz, z〉. By Proposition 2.19,

U∗U = P is the orthogonal projection on Ker(U)⊥.

Let U∗U be the orthogonal projection on M. We will first show that M = Ker(U)⊥.

Let x ∈M and y ∈ Ker(U). Then 〈x, y〉 = 〈U∗Ux, y〉 = 〈Ux, Uy〉 = 〈Ux, 0〉 = 0, and hence

M ⊂ Ker(U)⊥. Let y ∈ M⊥. Then ‖Uy‖2 = 〈Uy, Uy〉 = 〈U∗Uy, y〉 = 〈0, y〉 = 0. This

implies that y ∈ Ker(U) and hence M⊥ ⊂ Ker(U) ⇒ Ker(U)⊥ ⊂M.

It remains to show that U is an isometry on the orthogonal complement of its kernel. To

this end, let x ∈ Ker(U)⊥ = M. Then, ‖Ux‖2 = 〈Ux, Ux〉 = 〈U∗Ux, x〉 = 〈x, x〉 = ‖x‖2. ¤

Lemma 2.30. If P is the orthogonal projection on the subspace M and x is a vector such

that ‖Px‖ = ‖x‖, then x ∈M.

Proof. Let x be any vector. Then Px ∈ M and, since 〈x− Px, y〉 = 〈x, y〉 − 〈Px, y〉 =

〈x, y〉 − 〈x, Py〉 = 0 for every y ∈ M, x − Px ∈ M⊥. Since x = Px + (x − Px), we

have that ‖x‖2 = ‖Px‖2 + ‖x − Px‖2 and, since ‖x‖ = ‖Px‖, that ‖x − Px‖ = 0. Hence,

Px = x ⇒ x ∈M. ¤

Proposition 2.31. Let P and Q be two orthogonal projections on subspaces M and N
respectively. Then the following relations are equivalent.

1) P ≤ Q;

2) ‖Px‖ ≤ ‖Qx‖ for every x;

3) M⊂ N ;

4) QP = P ;

5) PQ = P .

Proof. If P ≤ Q, then ‖Px‖2 = 〈Px, Px〉 = 〈Px, P ∗x〉 = 〈P 2x, x〉 = 〈Px, x〉 ≤ 〈Qx, x〉 =

‖Qx‖2 for every x.
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If ‖Px‖ ≤ ‖Qx‖ for all x, let x ∈ M, x = y + z, where y ∈ N and z ∈ N⊥. Then

‖x‖2 = ‖Px‖2 ≤ ‖Qx‖2 = ‖y‖2 ≤ ‖y‖2 + ‖z‖2 = ‖x‖2 ⇒ ‖x‖ = ‖Qx‖. By Lemma 2.30 we

have that x ∈ N and hence M⊂ N .

If M⊂ N , then Px ∈M ⊂ N for every x, and hence QPx = Px for every x.

If QP = P , then PQ = P ∗Q∗ = (QP )∗ = P ∗ = P .

If PQ = P , then 〈Px, x〉 = ‖Px‖2 = ‖PQx‖2 ≤ ‖Qx‖2 = 〈Qx, x〉 for every x, and

therefore P ≤ Q. ¤

Proposition 2.32. If P1 and P2 are two orthogonal projections on a Hilbert space H, then

P1 ≥ P2 if and only if P1 − P2 is an orthogonal projection.

Proof. If P1 ≥ P2, then P2P1 = P1P2 = P2. But then (P1 − P2)
∗ = P ∗

1 − P ∗
2 = P1 − P2 and

(P1 − P2)
2 = P 2

1 − P1P2 − P2P1 − P 2
2 = P1 − P2 − P2 + P2 = P1 − P2. Hence, P1 − P2 is an

orthogonal projection.

If P1 − P2 is an orthogonal projection, then 〈P1x, x〉 − 〈P2x, x〉 = 〈(P1 − P2)x, x〉 =

〈(P1 − P2)
2x, x〉 = 〈(P1 − P2)x, (P1 − P2)x〉 = ‖(P1 − P2)x‖2 ≥ 0 for every x ∈ H. Hence,

P1 ≥ P2. ¤
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CHAPTER 3

THE UNITARY GROUP

Throughout this section H is considered to be a separable infinite dimensional complex

Hilbert space.

3.1. Introduction

Definition 3.1. A bounded linear operator acting on a Hilbert spaceH is said to be unitary

if it is a norm preserving mapping fromH ontoH. We denote with U(H) the set of all unitary

operators acting on the Hilbert space H. If H is n-dimensional U(H) is sometimes denoted

U(n).

Proposition 3.2. A bounded linear operator U is unitary if and only if U∗U = UU∗ = I.

Proof. If U is unitary then, since ‖Ux1−Ux2‖ = ‖U(x1−x2)‖ = ‖x1−x2‖, U is one-to-one,

onto by definition and hence invertible. Since 〈U∗Ux, x〉 = 〈Ux, Ux〉 = ‖Ux‖2 = ‖x‖2 =

〈x, x〉, by Proposition 2.19 we have that U∗U = I and hence the inverse of U is the bounded

operator U∗. Therefore U∗U = UU∗ = I.

If U∗U = UU∗ = I then U is invertible and hence onto. Since ‖Ux‖2 = 〈Ux, Ux〉 =

〈U∗Ux, x〉 = 〈x, x〉 = ‖x‖2, then U preserves norms and hence U is unitary. ¤

3.2. Topologies on U(H)

Proposition 3.3. The weak operator topology and the strong operator topology coincide on

U(H).

Proof. If Uj
so−→ U then, since |〈Ujx, y〉 − 〈Ux, y〉| = |〈(Uj − U)x, y〉| ≤ ‖(Uj − U)x‖ ‖y‖ → 0

for j large and for every x, y ∈ H ⇒ Uj
wo−→ U .

If Uj
wo−→ U , then 〈Ujx, y〉 → 〈Ux, y〉 for every x, y ∈ H. In particular, 〈Ujx, Ux〉 →

〈Ux, Ux〉 for every x ∈ H. Then ‖(Uj − U)x‖2 = 〈(Uj − U)x, (Uj − U)x〉 = 〈Ujx, Ujx〉 −
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〈Ujx, Ux〉 − 〈Ux, Ujx〉 + 〈Ux, Ux〉 = ‖x‖2 − (〈Ujx, Ux〉 + 〈Ujx, Ux〉) + ‖x‖2 = 2‖x‖2 −
2Re(〈Ujx, Ux〉) → 2‖x‖2− 2Re(〈Ux, Ux〉) = 2‖x‖2− 2Re(‖x‖2) = 0 for every x ∈ H. Hence

Uj
so−→ U . ¤

Lemma 3.4. If (Tj), T ⊂ L(H) are linear operators and if Tj
wo−→ T , then T ∗

j
wo−→ T ∗.

Proof. If Tj
wo−→ T , then (Tj−T )

wo−→ 0 ⇒ 〈(Tj − T )x, y〉 → 0 for every x, y ∈ H. This implies

that 〈x, (Tj − T )∗y〉 → 0 ⇒ T ∗
j − T ∗ = (Tj − T )∗

wo−→ 0 ⇒ T ∗
j

wo−→ T ∗. ¤

Lemma 3.5. If H is a separable complex Hilbert space and f ∈ Hom(H1), then the mappings

f 7→ 〈f(x), y〉 and f 7→ 〈f−1(x), y〉, where x ∈ H1 and y ∈ H, are continuous.

Proof. The topology on Hom(H1) is given by the metric

ρ(f, g) = sup
x∈H1

∑

l≥1

1

2l
|〈f(x)− g(x), el〉|+ sup

x∈H1

∑

l≥1

1

2l
|〈f−1(x)− g−1(x), el〉|

where {el} is an orthonormal basis for H.

If fj, f ⊂ Hom(H1) such that ρ(fj, f) → 0, then supx∈H1

∑
l≥1

1
2l |〈fj(x)− f(x), el〉| → 0

and supx∈H1

∑
l≥1

1
2l |〈f−1

j (x)− f−1(x), el〉| → 0. This implies that |〈fj(x)− f(x), el〉| → 0

and |〈f−1
j (x)− f−1(x), el〉| → 0 for every x ∈ H1 and every l ≥ 1 ⇒ |〈fj(x)− f(x), v〉| → 0

and |〈f−1
j (x)− f−1(x), v〉| → 0 for every x ∈ H1 and every v =

∑k
l=1 alel.

Let ε > 0, and y ∈ H. Choose v =
∑k

l=1 alel be such that ‖y − v‖ < ε
4
. This can be

done since finite linear combinations of el are dense. Then, for every x ∈ H1 we have that

|〈fj(x)− f(x), y − v〉| ≤ |〈fj(x), y − v〉|+|〈f(x), y − v〉| ≤ ‖fj(x)‖ ‖y−v‖+‖f(x)‖ ‖y−v‖ ≤
2‖y−v‖ < ε

2
. Since |〈fj(x)− f(x), v〉| → 0 for every x ∈ H1 and every v =

∑k
l=1 alel, choose

J such that |〈fj(x)− f(x), v〉| < ε
2

for every j ≥ J . This implies that |〈fj(x)− f(x), y〉| ≤
|〈fj(x)− f(x), y − v〉| + |〈fj(x)− f(x), v〉| < ε for every j ≥ J . Hence, the mapping f 7→
〈f(x), y〉 is continuous. A similar argument shows that the mapping f 7→ 〈f−1(x), y〉 is

continuous. ¤

Proposition 3.6. F If H is a separable complex Hilbert space, the weak operator topology

on U(H) coincides with the relative topology on U(H) given by Hom(H1).
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Proof. Let (Uj) ⊂ U(H) be a net and U ∈ U(H). We want to prove that ρ(Uj, U) → 0 ⇔
Uj

wo−→ U . If ρ(Uj, U) → 0, since by Lemma 3.5 the mapping f 7→ 〈f(x), y〉 is continuous, we

have that 〈(Uj − U)(x), y〉 = ‖x‖〈(Uj − U)( x
‖x‖), y〉 → 0 for every x, y ∈ H. Hence Uj

wo−→ U .

If Uj
wo−→ U then, by Lemma 3.4, we have that U∗

j
wo−→ U∗ and then by Proposition 3.3 we

have that U∗
j

so−→ U . Since |〈Uj(x)− U(x), el〉| = |〈(Uj − U)(x), el〉| = |〈x, (Uj − U)∗(el)〉| ≤
‖x‖ ‖(U∗

j −U∗)(el)‖ ≤ ‖(U∗
j −U∗)(el)‖ → 0, we have that |〈Uj(x)− U(x), el〉| → 0 uniformly

for every x ∈ H1 and every l ≥ 1.

Let ε > 0. Choose L so that 2L−1 > 2
ε
. Then ε

2
> 1

2L−1 = 1
2L−1 (

∑
l≥1

1
2l ) =

∑
l≥1

1
2L−1+l =

∑
l>L

1
2l−1 ≥

∑
l>L

1
2l‖Uj(x)−U(x)‖ ‖el‖ ≥

∑
l>L

1
2l |〈Uj(x)− U(x), el〉| for every x ∈ H1 and

every j. Since |〈Uj(x)− U(x), el〉| → 0 uniformly for every x ∈ H1 and every l ≥ 1, then

for every 1 ≤ l ≤ L there is an Jl such that 1
2l |〈Uj(x)− U(x), el〉| < ε

2L
for every x ∈ H1

and every j ≥ Jl. Let J ≥ {Jl | 1 ≤ l ≤ L}. Then
∑

1≤l≤L
1
2l |〈Uj(x)− U(x), el〉| < ε

2
for

every x ∈ H1 and every j ≥ J . Hence, if j ≥ J , then
∑

l
1
2l |〈Uj(x)− U(x), el〉| < ε for every

x ∈ H1 ⇒ supx∈H1

∑
l

1
2l |〈Uj(x)− U(x), el〉| < ε for every j ≥ J .

A similar proof shows that supx∈H1

∑
l

1
2l |〈U−1

j (x)− U−1(x), el〉| < ε for every j ≥ J ′.

Hence ρ(Uj, U) → 0, and therefore the two topologies coincide. ¤

Theorem 3.7. F If H is a complex separable Hilbert space, U(H) is a closed subgroup in

Hom(H1).

Proof. If U ∈ U(H), then U is a bijection from H1 into H1. If xj, x ∈ H1 such that

xj
w−→ x, then for every y ∈ H we have that 〈Uxj, y〉 = 〈xj, U

∗y〉 → 〈x, U∗y〉 = 〈Ux, y〉 ⇒
Uxj

w−→ Ux, and hence U is weakly continuous. Since the inverse has the same properties

U is a homeomorphism of H1 with the relative weak operator topology and hence U(H) ⊂
Hom(H1). If U, V ∈ U(H) ⇒ ‖UV x‖ = ‖x‖ and UV is onto ⇒ UV ∈ U(H). I ∈ U(H).

If U ∈ U(H), then ‖U∗x‖2 = 〈U∗x, U∗x〉 = 〈UU∗x, x〉 = 〈UU−1x, x〉 = 〈x, x〉 = ‖x‖2. This

implies that U∗ ∈ U(H), and hence that U(H) ⊂ Hom(H1) is a subgroup.

Let {Uj} ⊂ U(H) be a net such that Uj
ρ−→ φ ∈ Hom(H1). Since the inverse operation in

a Polish group is continuous, we have that U∗
j = U−1

j

ρ−→ φ−1. According to Lemma 3.5 we
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have that 〈Uj(x), y〉 → 〈φ(x), y〉 and 〈U∗
j (x), y〉 → 〈φ−1(x), y〉 for every x ∈ H1 and every

y ∈ H.

We will define U : H → H as follows. For every x ∈ H1 let U(x) = φ(x). If x ∈ H,

then there exists λ > 0 such that λx ∈ H1, and let U(x) = 1
λ
φ(λx). If x ∈ H and

λ1, λ2 > 0 are such that λ1x, λ2x ∈ H1, then 1
λ1
〈Uj(λ1x), y〉 → 1

λ1
〈φ(λ1x), y〉 = 〈 1

λ1
φ(λ1x), y〉

and 1
λ1
〈Uj(λ1x), y〉 = 〈Uj(x), y〉 = 1

λ2
〈Uj(λ2x), y〉 → 1

λ2
〈φ(λ2x), y〉 = 〈 1

λ2
φ(λ2x), y〉 for every

x, y ∈ H. This implies that 〈 1
λ1

φ(λ1x), y〉 = 〈 1
λ2

φ(λ2x), y〉 for every x, y ∈ H, which implies

that 1
λ1

φ(λ1x) = 1
λ2

φ(λ2x) for every x ∈ H. Hence, the definition of U is independent of λ.

If x ∈ H1 and y ∈ H, then 〈Uj(x), y〉 → 〈φ(x), y〉 = 〈U(x), y〉. If x, y ∈ H, let λ > 0

be such that λx ∈ H1, and then 〈Uj(x), y〉 = 1
λ
〈Uj(λx), y〉 → 1

λ
〈φ(λx), y〉 = 〈 1

λ
φ(λx), y〉 =

〈U(x), y〉 and hence 〈Uj(x), y〉 → 〈U(x), y〉 for every x, y ∈ H.

For every α, β ∈ C and x, y, z ∈ H we have α〈Uj(x), z〉+β〈Uj(y), z〉 = 〈Uj(αx + βy), z〉 →
〈U(αx + βy), z〉. Since 〈Uj(x), z〉 → 〈U(x), z〉 and 〈Uj(y), z〉 → 〈U(y), z〉, we have that

α〈U(x), z〉 + β〈U(y), z〉 = 〈U(αx + βy), z〉 ⇒ U(αx + βy) = αU(x) + βU(y) for every

α, β ∈ C and x, y ∈ H and hence U is linear. Since |〈U(x), y〉| = limj |〈Uj(x), y〉| ≤
limj ‖Uj(x)‖ ‖y‖ ≤ ‖x‖ ‖y‖, we have that ‖U(x)‖ ≤ ‖x‖ ⇒ ‖U‖ ≤ 1 and hence U is a

linear operator. It remains to show that U is unitary.

Lemma 3.4 implies that 〈U∗
j (x), y〉 → 〈U∗(x), y〉 for every x ∈ H1 and every y ∈ H.

Hence U∗(x) = φ−1(x) for every x ∈ H1. If x ∈ H1, then φ(x), φ−1(x) ∈ H1 and then

U∗U(x) = U∗(φ(x)) = φ−1(φ(x)) = x and UU∗(x) = U(φ−1(x)) = φ(φ−1(x)) = x. If

x /∈ H1, let λ > 0 be such that λx ∈ H1. Then U∗U(x) = U∗( 1
λ
φ(λx)) = 1

λ
U∗(φ(λx)) =

1
λ
φ−1(φ(λx)) = 1

λ
λx = x and UU∗(x) = 1

λ
UU∗(λx) = 1

λ
U(φ−1(λx)) = 1

λ
φ(φ−1(λx)) = 1

λ
λx =

x. Hence U∗U = UU∗ = I, and by Proposition 3.2 we have that U is unitary, and therefore

U(H) is closed. ¤

Corollary 3.8. U(H) is a complete separable metric topological group.

Proof. From Corollary 2.25 we have that Hom(H1) is a complete separable metric topological

group. The conclusion follows from Theorem 3.7. ¤
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Lemma 3.9. Let D ⊂ H be a dense subset of the Hilbert space H and let U0 ∈ U(H) be

unitary. Then the sets

∩1≤i≤k{U ∈ U(H) | ‖(U − U0)di‖ < ε, di ∈ D}

where ε > 0 and k ≥ 1, form a neighborhood base at U0 in U(H) for the strong operator

topology.

Proof. Let {U ∈ U(H) | ‖(U − U0)xi‖ < ε, 1 ≤ i ≤ k} be a basic neighborhood of U0, where

ε > 0 and x1, x2, ..., xk ∈ H. Since D is dense in H, there exist d1, d2, ..., dk ∈ D such that

‖xi − di‖ < ε
3
. If U ∈ {U ∈ U(H) | ‖(U − U0)di‖ < ε

3
, 1 ≤ i ≤ k} then ‖(U − U0)xi‖ ≤

‖Uxi − Udi‖ + ‖Udi − U0di‖ + ‖U0di − U0xi‖ = ‖xi − di‖ + ‖(U − U0)di‖ + ‖xi − di‖ < ε

and hence U ∈ {U ∈ U(H) | ‖(U − U0)xi‖ < ε, 1 ≤ i ≤ k}. This implies that the sets

{U ∈ U(H) | ‖(U − U0)di‖ < ε, 1 ≤ i ≤ k} form a neighborhood base at U0 for the strong

operator topology. ¤

Lemma 3.10. Let {el}l≥1 be an orthonormal subset of a Hilbert space H. Then finite linear

combinations of el are dense in H.

Proof. Let x =
∑

l≥1 alel ∈ H and let ε > 0. Since ‖x‖2 =
∑

l≥1 |al|2 we have that there exists

N such that
∑

l≥N |al|2 < ε. Then ‖x − ∑
1≤l≤N alel‖2 = ‖∑

l>N alel‖2 =
∑

l≥N |al|2 < ε,

and hence finite linear combinations of el are dense in H. ¤

Proposition 3.11. Let {el}l≥1 be an orthonormal subset of a Hilbert space H and let U0 ∈
U(H) be unitary. Then the sets

∩1≤l≤k{U ∈ U(H) | ‖(U − U0)el‖ < ε}

where ε > 0 and k ≥ 1, form a neighborhood base at U0 for the strong operator topology on

U(H).

Proof. Let ε > 0 and let D = {∑1≤l≤N alel | N ≥ 1}. Then by Lemma 3.10 D is dense in H
and thus by Lemma 3.9, N = ∩1≤i≤k{U ∈ U(H) | ‖(U−U0)di‖ < ε}, where di =

∑
1≤l≤Ni

ai
lel

for 1 ≤ i ≤ k, is a basic open neighborhood at U0 with respect to the strong operator
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topology. Let N = max1≤i≤k Ni and A = max1≤i≤k, 1≤l≤N |ai
l|. If U ∈ U(H) is such that

‖(U − U0)el‖ < ε
AN

, then ‖(U − U0)di‖ ≤
∑

1≤l≤Ni
|ai

l| ‖(U − U0)el‖ ≤
∑

1≤l≤Ni
A ε

AN
< ε for

every 1 ≤ i ≤ k and hence U ∈ N . ¤

3.3. The Subsets U(M) and SU(M) of U(H)

Definition 3.12. If H is a Hilbert space, we define Z(U(H)) = {U ∈ U(H) | UV =

V U, ∀V ∈ U(H)}, the center of U(H).

Proposition 3.13. Z(U(H)) = {λI | |λ| = 1}
Proof. Let U ∈ U(H), let λ be such that |λ| = 1 and let x ∈ H. Then λUx = Uλx ⇒
(λI)U = U(λI) ⇒ λI ∈ Z(U(H)).

Let W ∈ Z(U(H)). Then WA = AW for every A ∈ L(H) since A is a finite linear combi-

nation of unitary operators (Theorem 4.1.7., page 242, [10]). Let {el}l≥1 be an orthonormal

basis for H and let Pl be the orthogonal projection on the 1-dimensional subspace spanned

by el. Then W (el) = WPl(el) = PlW (el) = λlel for some scalar λl for every l ≥ 1. If

i 6= j and if U ∈ L(H) is such that Uei = ej, Uej = ei and Uel = el for every l 6= i, j,

then λiei = Wei = WUej = UWej = Uλjej = λjUej = λjei ⇒ λi = λj. Hence, there

exists a scalar λ such that λl = λ for every l ≥ 1 and Wel = λel. We also have that

1 = ‖e1‖ = ‖We1‖ = ‖λe1‖ = |λ| ‖e1‖ = |λ|. Hence W = λI, with |λ| = 1. ¤

Proposition 3.14. If M is a closed subspace of the Hilbert space H and if UM = {U ∈
U(H) | U |M⊥ = I}, then UM is a closed subgroup of U(H) and the mapping i : UM → U(M),

i(U) = U |M is a well defined isomorphism of topological groups. Accordingly, U(M) may be

identified with UM, and we can consider U(M) to be a closed subgroup of U(H).

Proof. If U, V ∈ UM, then U |M⊥ = I and V |M⊥ = I ⇒ UV |M⊥ = I ⇒ UV ∈ UM. Let

U ∈ U(M) and x ∈ M⊥. Then x = Ux ⇒ U∗x = U∗Ux = x ⇒ U∗|M⊥ = I ⇒ U∗ ∈ UM.

This proves that UM is a subgroup of U(H).

Let (Un) ⊂ UM be such that Un → U ∈ U(H). Since Un|M⊥ = I for every n, we have

that 〈x, y〉 = 〈Unx, y〉 → 〈Ux, y〉 for every x ∈ M⊥ and every y ∈ H ⇒ Ux = x for every
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x ∈ M⊥ ⇒ U ∈ UM ⇒ UM is closed in U(H). It remains to show that the mapping i is a

topological isomorphism.

Let U ∈ UM. Let x ∈ M and y ∈ M⊥. Then 〈i(U)x, y〉 = 〈U |Mx, y〉 = 〈Ux, y〉 =

〈x, U∗y〉 = 〈x, y〉 = 0 ⇒ i(U) : M →M. Since for every x ∈ M we have that ‖i(U)x‖ =

‖U |M(x)‖ = ‖Ux‖ = ‖x‖ ⇒ i(U) is norm preserving. Let y ∈ M. Since U is surjective,

there exists x ∈ H such that Ux = y. If x = x1 + x2, with x1 ∈ M and x2 ∈ M⊥ then

y = Ux1 + x2 ⇒ x2 = y − Ux1 ∈ M ⇒ x2 ∈ M ∩M⊥ = {0} ⇒ y = Ux1 = U |Mx1 =

i(U)x1 ⇒ i(U) is onto M. Hence, if U ∈ UM, then i(U) : M → M is a norm preserving

surjection ⇒ i(U) ∈ U(M) ⇒ i is well defined.

If U1, U2 ∈ UM are such that i(U1) = i(U2) then U1|M = U2|M and, since U1|M⊥ =

U2|M⊥ = I we have that U1 = U2 ⇒ i is one-to-one. If U ∈ U(M) let W : H → H be defined

as Wx = UP1x+P2x for every x ∈ H, where P1 and P2 are the orthogonal projections on M
and M⊥, respective. Then ‖Wx‖2 = ‖UP1x‖2 + ‖P2x‖2 = ‖P1x‖2 + ‖P2x‖2 = ‖x‖2 ⇒ W

is norm preserving. Let y ∈ H, then P1y ∈M⇒ there exists x′ ∈M such that Ux′ = P1y.

If x = x′ + P2y, then Wx = UP1x + P2x = Ux′ + P2y = P1y + P2y = y ⇒ W is surjective

⇒ W is unitary and, since W |M⊥ = I we have that W ∈ UM. Note that i(W ) = W |M = U

and hence i is onto U(M).

Let (Un) ⊂ UM be such that Un → U ∈ UM. Then for every x, y ∈ M we have that

〈i(Un)x, y〉 = 〈Un|Mx, y〉 = 〈Unx, y〉 → 〈Ux, y〉 = 〈U |Mx, y〉 = 〈i(U)x, y〉 ⇒ i is continuous.

Let (Un) ⊂ U(M) be such that Un → U ∈ U(M). Then, since i−1(Un)x = UnP1x + P2x

and i−1(U)x = UP1x+P2x for every x ∈ H, we have that 〈i−1(Un)x, y〉 = 〈UnP1x + P2x, y〉 =

〈UnP1x, y〉 + 〈P2x, y〉 → 〈UP1x, y〉 + 〈P2x, y〉 = 〈UP1x + P2x, y〉 = 〈i−1(U)x, y〉 ⇒ i−1 is

continuous. ¤

Definition 3.15. If M1,M2 ⊂ H are two closed subspaces we define their sum to be

M1 +M2 = {v1 + v2 | v1 ∈M1 and v2 ∈M2}. M1 +M2 is a vector subspace.

Proposition 3.16. If A ⊂ H is a vector subspace, then (A⊥)⊥ = cl(A).
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Proof. Let x ∈ A and y ∈ A⊥. Then x ⊥ y and hence x ∈ (A⊥)⊥ ⇒ A ⊂ (A⊥)⊥ ⇒ cl(A) ⊂
(A⊥)⊥. If cl(A) were a proper subspace of (A⊥)⊥, then (A⊥)⊥ would have a non-zero vector

x such that x ⊥ cl(A), i.e. there exists 0 6= x ∈ (A⊥)⊥ ∩ A⊥ = {0}, a contradiction. Thus

cl(A) = (A⊥)⊥. ¤

Lemma 3.17. If M1,M2 ⊂ H are two closed subspaces, then M1 ∩M2 = (M⊥
1 +M⊥

2 )⊥.

Proof. If x ∈M1∩M2 then 〈x, a〉 = 0 for every a ∈M⊥
1 and 〈x, b〉 = 0 for every b ∈M⊥

2 ⇒
〈x, a + b〉 = 0 for every a+b ∈M⊥

1 +M⊥
2 ⇒ x ∈ (M⊥

1 +M⊥
2 )⊥ ⇒M1∩M2 ⊂ (M⊥

1 +M⊥
2 )⊥.

If x ∈ (M⊥
1 +M⊥

2 )⊥ ⇒ 〈x, a + b〉 = 0 for every a ∈M⊥
1 and every b ∈M⊥

2 ⇒ 〈x, a〉 = 0

for every a ∈M⊥
1 and 〈x, b〉 = 0 for every b ∈M⊥

2 ⇒ x ∈ (M⊥
1 )⊥ = M1 and x ∈ (M⊥

2 )⊥ =

M2 ⇒ x ∈M1 ∩M2 ⇒ (M⊥
1 +M⊥

2 )⊥ ⊂M1 ∩M2. ¤

Corollary 3.18. If M1,M2 ⊂ H, are two closed subspaces, then cl(M⊥
1 +M⊥

2 ) = (M1 ∩
M2)

⊥.

Proof. It follows from Proposition 3.16 and Lemma 3.17 that (M1 ∩ M2)
⊥ = [(M⊥

1 +

M⊥
2 )⊥]⊥ = cl(M⊥

1 +M⊥
2 ). ¤

Proposition 3.19. Let Ml ⊂ H, l = 1, 2 be two finite dimensional closed subspaces. If

U ∈ U(Ml) for l = 1, 2, then U |Ml
: Ml → Ml is a linear mapping, the determinant

det(U |Ml
) exists and det(U |M1) = det(U |M2).

Proof. Since U ∈ U(Ml) for l = 1, 2, we have that U |M⊥
l

= I for l = 1, 2 ⇒ U |M⊥
1 +M⊥

2
= I ⇒

U |cl(M⊥
1 +M⊥

2 ) = I and, using Corollary 3.18, we have that U |(M1∩M2)⊥ = I. IfM1∩M2 = {0}
then, since (M1 ∩M2)

⊥ = H we have that U = I ⇒ det(U |M1) = det(U |M2) = 1.

If M1∩M2 6= {0}, let {e1, e2, ..., ek} be an orthonormal basis for M1∩M2. Extend this

to {e1, ..., ek, ek+1, ..., en}, an orthonormal basis for M1 and denote N = span({ek+1, ..., en}).
Since N ⊂ (M1 ∩M2)

⊥ it follows that U |N = I and hence det(U |N ) = 1. This implies that

det(U |M1) = det(U |M1∩M2) det(U |N ) = det(U |M1∩M2). Similarly, we have that det(U |M2) =

det(U |M1∩M2) and hence det(U |M1) = det(U |M2). ¤
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Definition 3.20. Define the finite dimensional unitaries to be UF (H) = ∪{U(M) | M ⊂
H,M finite dimensional }. For every U ∈ UF (H), there exists M ⊂ H finite dimensional

such that U |M⊥ = I, and we define det(U) = det(U |M). According with Proposition 3.19

this definition is independent on the choice of M and hence det : UF (H) → C is well

defined. If M ⊂ H is finite dimensional, we denote SU(M) to be the set SU(M) = {U ∈
U(M) | det(U) = 1}, and SUF (H) = {U ∈ UF (H) | det(U) = 1}. SU(M) is called the

special unitary group and sometimes is denoted SU(n), where n is the dimension of M.

Proposition 3.21. SU(M) ⊂ U(M) is a subgroup.

Proof. If U, V ∈ SU(M), then det(U) = 1 and det(V ) = 1 ⇒ det(UV −1) = det(U) det(V −1) =

det(U) 1
det(V )

= 1 ⇒ UV −1 ∈ SU(M). ¤

Definition 3.22. If M ⊂ H is a closed subspace, we denote with Z(U(M)) the center of

U(M).

Remark 3.23. Note that Z(U(M)) is a closed subgroup of U(M) and, as an immediate con-

sequence of Proposition 3.13, if ∅ 6= M ( H, we have that Z(U(M)) = {U ∈ U(M) | U |M =

λI, |λ| = 1 and U |M⊥ = I}

Lemma 3.24. F Let {el}1≤l≤n be an orthonormal subset of a Hilbert space H and let U ∈
U(H) a unitary operator acting on H. Then there exists M⊂ H a subspace and W ∈ U(H)

a unitary operator such that Wel = Uel for every 1 ≤ l ≤ n and W |M⊥ = I.

Proof. Let M = span({el, Uel}1≤l≤n). Then M is a closed finite dimensional subspace of

H. Let {e1, e2, ..., en, f1, ..., fk} be an orthonormal basis for M obtained by expanding the

orthonormal system {el}1≤l≤n. Since 〈Uei, Uej〉 = 〈ei, ej〉 = δij, then {Uel}1≤l≤n is also an

orthonormal system and expand this to {Ue1, Ue2, ..., Uen, g1, ..., gk}, another orthonormal

basis for M. Note that the two bases have the same cardinality. Define W to be Wel = Uel

for 1 ≤ l ≤ n, Wfl = gl for 1 ≤ l ≤ k and W |M⊥ = I. We will show that W is unitary.

Let y ∈ H. Then y = y1+y2 with y1 ∈M, y2 ∈M⊥ and y1 =
∑

1≤l≤n alUel+
∑

1≤l≤k blgl.

If x =
∑

1≤l≤n alel +
∑

1≤l≤k blfl + y2, then Wx = y and hence W is onto.
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If x = x1 + x2, where x1 =
∑

1≤l≤n alel +
∑

1≤l≤k blfl ∈M and x2 ∈M⊥, then ‖Wx‖2 =

‖Wx1‖2 + ‖Wx2‖2 = ‖∑
1≤l≤n alUel +

∑
1≤l≤k blgl‖2 + ‖x2‖2 =

√
a2

l + b2
l + ‖x2‖2 = ‖x1‖2 +

‖x2‖2 = ‖x‖2 and hence W is an isometry. ¤

Theorem 3.25. F Let {el}1≤l≤n be an orthonormal subset of a Hilbert space H and let

U ∈ U(H) be a unitary operator acting on H. Then there exists M⊂ H a finite dimensional

subspace, dim(M) = N ≥ n, such that span({el}1≤l≤n) ⊂M, and there exists V ∈ SU(M)

such that V el = Uel for every 1 ≤ l ≤ n.

Proof. Let {el}1≤l≤n be an orthonormal subset of H and U ∈ U(H) a unitary operator acting

on H. According with Lemma 3.24 there exists N ⊂ H a finite dimensional subspace of

H and W ∈ U(N ) a unitary operator such that Wel = Uel for every 1 ≤ l ≤ n. Note if

λ = det(W ), then |λ| = 1. Let N = dim(N ) + 1, let fN ∈ N⊥ be such that ‖fN‖ = 1 and

let M = span(N ∪ {fN}). Then dim(M) = N ≥ n and span({el}1≤l≤n) ⊂ N ⊂M. Define

V : H → H as V |M = W , V fN = 1
λ
fN and V |M⊥ = I. Obviously V ∈ U(M) and, since

det(V ) = 1
λ

det(W ) = 1, it follows that V ∈ SU(M). ¤

3.4. φ−1(U(M)) is Closed

Proposition 3.26. If G is a Hausdorff topological group and ∅ 6= S ⊂ G then the set

{g ∈ G | gs = sg ∀s ∈ S} is closed in G.

Proof. For every s ∈ S let Cs = {g ∈ G | gs = sg} = {g ∈ G | gsg−1s−1 = e}. Since G is

Hausdorff, {e} is closed in G, and since φs(g) = gsg−1s−1 is continuous, Cs = φ−1
s ({e}) is

closed in G. But then {g ∈ G | gs = sg ∀s ∈ S} = ∩s∈SCs is closed in G. ¤

Lemma 3.27. If W ∈ U(H) is such that WV = V W for every V ∈ U(M⊥), then W : M→
M is surjective and W : M⊥ →M⊥ is surjective.

Proof. Let W ∈ U(H) be such that WV = V W for every V ∈ U(M⊥). Let V : H → H be

defined as V x = x1− x2 for every x = x1 + x2 ∈ H, where x1 ∈M and x2 ∈M⊥. It is clear

that V is an isometry from H onto H and hence V ∈ U(H). Since V |M = I, we have that

V ∈ U(M⊥) and hence WV = V W . Let x1 ∈ M and let Wx1 = y1 + y2, with y1 ∈ M and
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y2 ∈ M⊥. Then y1 − y2 = V (y1 + y2) = V Wx1 = WV x1 = Wx1 = y1 + y2 ⇒ y2 = −y2 ⇒
y2 = 0 ⇒ Wx1 = y1 ∈M⇒ W : M→M.

Let x2 ∈ M⊥, and let Wx2 = y1 + y2, with y1 ∈ M and y2 ∈ M⊥. Then y1 − y2 =

V (y1 + y2) = V Wx2 = WV x2 = W (−x2) = −Wx2 = −y1 − y2 ⇒ y1 = −y1 ⇒ y1 = 0 ⇒
Wx2 = y2 ∈M⊥ ⇒ W : M⊥ →M⊥.

Let y1 ∈ M and y2 ∈ M⊥. Since W is onto H, there exists x = x1 + x2 ∈ H and

z = z1 + z2 ∈ H such that Wx = y1 and Wz = y2, where x1, z1 ∈ M and x2, z2 ∈ M⊥.

Then y1 = Wx1 + Wx2 ⇒ Wx2 = y1 −Wx1 ∈ M ⇒ Wx2 ∈ M∩W (M⊥) ⊂M∩M⊥ ⇒
Wx2 = 0 ⇒ x2 = 0 ⇒ y1 = Wx1 ⇒ W : M→M is onto and y2 = Wz1 + Wz2 ⇒ Wz1 =

y2−Wz2 ∈M⊥ ⇒ Wz1 ∈M⊥ ∩W (M) ⊂M⊥ ∩M⇒ Wz1 = 0 ⇒ z1 = 0 ⇒ y2 = Wz2 ⇒
W : M⊥ →M⊥ is onto. ¤

Theorem 3.28. F Let G be a Polish topological group, M a closed subspace of H and

φ : G → U(H) an algebraic isomorphism. Then φ−1[Z(U(H))U(M)] is closed in G.

Proof. We will prove that Z(U(H))U(M) = {W ∈ U(H) | WV = V W ∀V ∈ U(M⊥)}. This

will imply that φ−1[Z(U(H))U(M)] = φ−1({W ∈ U(H) | WV = V W ∀V ∈ U(M⊥)}) =

{φ−1(W ) | φ−1(W )φ−1(V ) = φ−1(V )φ−1(W ) ∀ φ−1(V ) ∈ φ−1(U(M⊥))} and then, according

with the Proposition 3.26 we will have that φ−1[Z(U(H))U(M)] is closed in G. Note that

by Proposition 3.13 we have that Z(U(H))U(M) = {λU | U ∈ U(M), |λ| = 1}.
Let U ∈ U(M), let V ∈ U(M⊥) and let x = x1 + x2 ∈ H, with x1 ∈ M and x2 ∈ M⊥.

Then Ux2 = x2, V x1 = x1 and, by Proposition 3.14, Ux1 ∈ M and V x2 ∈ M⊥ and hence

V Ux1 = Ux1 and UV x2 = V x2. It follows that λUV x = λUV (x1 + x2) = λ(UV x1 +

UV x2) = λ(Ux1 + V x2) = λ(V Ux1 + V Ux2) = λV Ux = V λUx ⇒ λUV = V λU for every

V ∈ U(M⊥) ⇒ Z(U(H))U(M) ⊂ {W ∈ U(H) | WV = V W ∀V ∈ U(M⊥)}.
Let W ∈ U(H) be such that WV = V W for every V ∈ U(M⊥). Let U : M⊥ → M⊥

be unitary, and let V : H → H be defined as V x = x1 + Ux2 for every x = x1 + x2 ∈ H,

where x1 ∈ M and x2 ∈ M⊥. V is unitary since it is an isometry from H onto H, and

V |M = I. Thus V ∈ U(M⊥), and hence V W = WV . Let x1 ∈ M and x2 ∈ M⊥. Then,
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by Lemma 3.27 Wx1 ∈ M and Wx2 ∈ M⊥, and hence Wx1 + UWx2 = V Wx1 + V Wx2 =

V W (x1 + x2) = WV (x1 + x2) = W (x1 + Ux2) = Wx1 + WUx2 ⇒ UWx2 = WUx2 for every

x2 ∈ M⊥ ⇒ UW |M⊥ = W |M⊥U . By Proposition 3.13 it follows that W |M⊥ = λI for some

λ ∈ C with |λ| = 1. But then λW ∈ U(H) and λW |M⊥ = λλI = I ⇒ λW ∈ U(M) ⇒
W = λλW ∈ Z(U(H))U(M) and hence {W ∈ U(H) | WV = V W ∀V ∈ U(M⊥)} ⊂
Z(U(H))U(M). ¤

Proposition 3.29. F Let G be a Polish topological group, M⊂ H an infinite dimensional

closed subspace and φ : G → U(H) an algebraic isomorphism. Then φ−1(U(M)) is an

analytic subset of G.

Proof. Let [·, ·] : G × G → G be defined as [a, b] = aba−1b−1. Since the group opera-

tions are continuous, [·, ·] is continuous. If a, b ∈ φ−1(Z(U(H))U(M)) ⊂ G then φ(a), φ(b) ∈
Z(U(H))U(M) ⇒ there exist U, V ∈ U(M) and λ, µ scalars such that φ(a) = λU and φ(b) =

µV . But then [a, b] = φ−1(λU)φ−1(µV )φ−1(λ−1U−1)φ−1(µ−1V −1) = φ−1(UV U−1V −1) ∈
φ−1(U(M)). This proves that [·, ·]|φ−1(Z(U(H))U(M))×φ−1(Z(U(H))U(M)) takes its values in φ−1(U(M)).

Let T ∈ U(M) and denote T |M = W . SinceM is infinite dimensional and since W is unitary

on M, we have by [7], page 134, problem 191, that there exist unitaries U ′, V ′ : M →M
such that W = U ′V ′U ′−1V ′−1. If U, V : H → H are such that U |M = U ′, U |M⊥ = I, V |M =

V ′ and V |M⊥ = I then U, V ∈ Z(U(H))U(M) and [φ−1(U), φ−1(V )] = φ−1(UV U−1V −1) =

φ−1(T ) and hence [·, ·]|φ−1(Z(U(H))U(M))×φ−1(Z(U(H))U(M)) is onto φ−1(U(M)). Since G is a Pol-

ish topological group, G×G is a Polish topological group and since φ−1(Z(U(H))U(M)) is

closed in G by Theorem 3.28, we have that φ−1(Z(U(H))U(M)) × φ−1(Z(U(H))U(M)) is

closed in G×G. Since [·, ·] is continuous, it follows that φ−1(U(M)) is the continuous image

of a closed subset of a Polish topological group, and therefore an analytic subset of G. ¤

Definition 3.30. Let X be a topological space. A set A ⊂ X is said to be a set with the

Baire property if there exists an open set U ⊂ X such that A4 U ≡ (U \A) ∪ (A \ U), the

symmetric difference of A and U , is meager in X.
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Remark 3.31. The collection of subsets of X which have the Baire property, BP(X), is a

σ-algebra of subsets.(cf. [18], p.47)

Lemma 3.32 (D.E.Miller, [24]). Let G be a Polish topological group and H ⊂ G be a dense

subgroup. Suppose E ⊂ G is a subset with the Baire property which is right-invariant under

H (i.e. EH = E). Then E is meager or comeager.

Proof. This lemma and its proof are slightly different than the original of Miller, and is only

valid in the separable case.

Since G is a separable metric space, it has a countable base for its topology. The relative

topology on H is also second countable, and hence H is separable as a subspace of G. If

D ⊂ H is any countable dense subgroup of H, then D is dense in G and E is right-invariant

under D. Thus, by replacing H with D we may assume that H is countable.

Since E is a set with the Baire property, there exists U ⊂ G open, such that E 4 U is

meager. If a ∈ H, then (E 4 U)a = Ea 4 Ua = E 4 Ua is meager ⇒ E 4 (∪a∈HUa) =

(∪a∈HEa)4 (∪a∈HUa) ⊂ ∪a∈H(Ea4 Ua) = ∪a∈H(E 4 Ua) is meager. Let V = ∪a∈HUa.

Then V is open, right-invariant under H, E 4 V is meager and, since H is dense in G, V is

dense in G. If V = ∅, then E = E 4 V is meager.

If V 6= ∅, then EC ∩ V ⊂ E 4 V is meager and, since V is open and dense in G,

EC ∩ V C ⊂ V C is meager. This implies that EC = (EC ∩ V )∪ (EC ∩ V C) is meager ⇒ E is

comeager. ¤

Definition 3.33. If X is a topological space and F is a family of subsets of X, we say that

F separates points in X, or is a separating family of points if given any two points x, y ∈ X

with x 6= y, there exists E ∈ F such that x ∈ E and y /∈ E. We say that F separates subsets

of X if given any two disjoint subsets A,B ⊂ X with A 6= B, there exists E ∈ F such that

A ⊂ E and B ∩ E = ∅.
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Lemma 3.34. Let G be a topological group, H ⊂ G a dense subgroup and {Ei}i≥1 a collection

of subsets of G, right-invariant under H. Then {Ei}i≥1 separates the H-cosets if and only

if for every g ∈ G we have that gH = ∩{Ei | g ∈ Ei}.
Proof. Note that g ∈ Ei ⇔ gH ⊂ Ei since Ei is right-invariant under H. Assume that

for every g ∈ G we have that gH = ∩{Ei | g ∈ Ei} and suppose, for contradiction, that

the collection {Ei}i≥1 does not separate the H-cosets. Then there exist a, b ∈ G such that

aH 6= bH and there is no El such that aH ⊂ El and bH ∩ El = ∅. Thus for every El if

aH ⊂ El then bH ⊂ El ⇒ bH ⊂ ∩{Ei | aH ⊂ Ei} = ∩{Ei | a ∈ Ei} = aH ⇒ aH = bH, a

contradiction. Hence, the collection {Ei}i≥1 separates the H-cosets.

Assume now that {Ei}i≥1 separates the H-cosets and let g ∈ G. Since g ∈ Ei ⇔ gH ⊂ Ei,

we have that gH ⊂ ∩{Ei | g ∈ Ei}. Let x ∈ ∩{Ei | g ∈ Ei} and suppose that x /∈ gH. Then

xH 6= gH and there exists El such that gH ⊂ El and xH ∩ El = ∅ ⇒ g ∈ El and x /∈ El, a

contradiction to x ∈ ∩{Ei | g ∈ Ei}. Thus x ∈ gH ⇒ ∩{Ei | g ∈ Ei} ⊂ gH. ¤

Theorem 3.35 (D.E.Miller, [24]). Let G be a Polish topological group, H ⊂ G a subgroup

and {Ei}i≥1 a collection of subsets of G with the Baire property, right-invariant under H,

which separates the H-cosets. Then H is closed in G.

Proof. By replacing G with clG(H) and each Ei with Ei ∩ clG(H), then each Ei ∩ clG(H) has

the Baire property is invariant under H and separate the H-cosets. Thus, we may assume

that H is dense in G. It follows from Lemma 3.34 that for every g ∈ G, gH = ∩{Ei | g ∈ Ei}.
Suppose that H is meager, and let g ∈ G. Then gH = ∩{Ei | g ∈ Ei} is meager. From

Lemma 3.32 we have that each Ei is either meager or comeager. If each Ei, with g ∈ Ei is

comeager, then G \ Ei is meager ⇒ G \ gH = G \ ∩{Ei | g ∈ Ei} = ∪{G \ Ei | g ∈ Ei}
is meager ⇒ G = gH ∪ (G \ gH) is meager, a contradiction with G being Polish. Hence

there exists a meager Ei such that g ∈ Ei. Since g ∈ G was arbitrary, this implies that

G ⊂ ∪{Ei | Ei is meager } ⇒ G is meager, a contradiction. This implies that H is a

nonmeager subset of G.
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Since each Ei has the Baire property and the sets with the Baire property are closed

under countable intersection and since H = eH = ∩{Ei | e ∈ Ei}, we have that H has the

Baire property. Since it is also nonmeager, it follows from a theorem of Pettis (Theorem 9.9,

page 61, [18]) that H−1H contains an open neighborhood of e ∈ G. Let V ⊂ H be an open

neighborhood of e ∈ G and let x ∈ G. Then xV is an open neighborhood of x and, since H

is dense, xV ∩H 6= ∅. This implies that x ∈ HV −1 ⊂ H ⇒ G ⊂ H ⇒ H is closed. ¤

Corollary 3.36. F Let G be a Polish topological group, A ⊂ G an analytic subset and

H ⊂ G an analytic subgroup such that A intersects each H-coset in exactly one point and

G = AH. Then H is closed in G.

Proof. Since the topology on G is Polish, the relative topology on A is second countable,

and there exist {Ci}i≥1 a separating family of relatively open sets for the topology on A.

Each Ci is the intersection of an open subset of G with an analytic subset of G and hence

is analytic. Let Ei = CiH for every i ≥ 1. Since each Ei is a product of two analytic sets,

each Ei is analytic and hence has the Baire property. Since EiH = CiHH = CiH = Ei for

every i ≥ 1, we have that each Ei is right-invariant under H.

Let a, b ∈ A be such that aH 6= bH. Then a 6= b, and there exists Cl such that a ∈ Cl and

b /∈ Cl. We will show that El = ClH is such that aH ⊂ El and bH ∩El = ∅. If h ∈ H, then

ah ∈ ClH = El ⇒ aH ⊂ El. Suppose that bH ∩ El 6= ∅ and let x ∈ bH ∩ El = bH ∩ ClH.

Then there exist c ∈ Cl and h, k ∈ H such that bh = ck ⇒ c = bhk−1 ∈ bH. Since

c ∈ Cl ⊂ A ⇒ c ∈ A ∩ bH. Since b ∈ A ∩ bH and since A intersects the H-cosets in exactly

one point, we have that b = c ∈ Cl, a contradiction. Hence, bH ∩ El = ∅ and therefore

{Ei}i≥1 separates the H-cosets.

Since the hypothesis of the Theorem 3.35 is satisfied, it follows that H is closed in G. ¤

Definition 3.37. Let X be a set and E an equivalence relation on X. A selector for E is

a map s : X → X such that xEy ⇒ s(x) = s(y) and s(y)Ex. A transversal for E is a set

T ⊂ X that meets every equivalence class in exactly one point.
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If X is a Borel subset of a Polish space and E an equivalence relation on X, a Borel

selector for E is a selector for E which is also a Borel map and a Borel transversal for E is

a transversal for E which is also a Borel subset of X.

Lemma 3.38. Let X be a Borel subset of a Polish space and let E be an equivalence relation

on X. If s : X → X is a Borel selector for E, then T = {x ∈ X | x = s(x)} is a Borel

transversal for E.

Proof. Let A be an equivalence class for E. Then A 6= ∅ and let x ∈ A. Since xEx we have

that s(x)Ex and s(x) ∈ A ⇒ s(s(x)) = s(x) ⇒ s(x) ∈ T ⇒ s(x) ∈ A∩ T ⇒ A∩ T 6= ∅. Let

x, y ∈ T ∩ A. Since x, y ∈ A we have that xEy ⇒ s(x) = s(y) and since x, y ∈ T we have

that x = s(x) and y = s(y). Thus x = y and hence T is a transversal for E. It remains to

show that T is a Borel subset of X.

Let φ : X → X × X be defined as φ(x) = (x, s(x)). If x 6= y ∈ X then φ(x) =

(x, s(x)) 6= (y, s(y)) = φ(y) ⇒ φ is one-to-one. Let A ⊂ X and B ⊂ X be Borel subsets.

Then φ−1(A × B) = {x ∈ X | φ(x) ∈ A × B} = {x ∈ X | (x, s(x)) ∈ A × B} = {x ∈
X | x ∈ A and s(x) ∈ B} = {x ∈ X | x ∈ A and x ∈ s−1(B)} = A ∩ s−1(B) is a Borel

set, since A,B are Borel and s is a Borel map. This implies that φ is a Borel map. Using a

well-known Theorem of Souslin (Corollary 15.2, page 89, [18]) we have that φ(X) is Borel.

Let ∆ = {(x, x) | x ∈ X} the diagonal of X × X and let P : ∆ → X, P (x, x) = x be the

natural projection on the first coordinate. Then ∆ is closed in X × X and since φ(X) is

Borel, we have that φ(X)∩∆ is Borel. If (x, x) 6= (y, y) ∈ ∆ then P (x, x) = x 6= y = P (y, y)

and hence P is one-to-one. If (xj, xj) → (x, x) then P (xj, xj) = xj → x = P (x, x) and hence

P is continuous. Using Souslin’s Theorem again, we have that P (φ(X)∩∆) is a Borel subset

of X. But P (φ(X) ∩∆) = P ({(x, s(x)) | x ∈ X} ∩ {(x, x) | x ∈ X}) = P ({(x, s(x)) | x =

s(x)}) = {x | x = s(x)} = T , and hence T is Borel. ¤

Corollary 3.39. F Let G be a Polish topological group, A ⊂ G a closed subgroup and

H ⊂ G an analytic subgroup such that A ∩H = C is closed in G and G = AH. Then H is

closed in G.
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Proof. Since A is a closed subgroup of G, A is a Polish topological group. Since C is a closed

subgroup of G and hence of A and using Theorem 12.17, page 78, [18], we have that there

exists a Borel selector s : A → A for the equivalence relation whose classes are the C-cosets

in A. Let T = {a ∈ A | s(a) = a}. By Lemma 3.38 we have that T intersects each C-coset in

exactly one point and T is a Borel subset of A, thus an analytic subset of G. We will prove

that G = TH and that T intersects each H-coset in exactly one point. The conclusion will

follow from Corollary 3.36.

Suppose for contradiction that there exists an H-coset aH such that T ∩ aH = {x, y}
and x 6= y. Since x, y ∈ aH, we have that y−1x ∈ H and since x, y ∈ T ⊂ A we have

that y−1x ∈ A ⇒ y−1x ∈ A ∩ H = C ⇒ x and y belong to the same C-coset. But then T

intersects a C-coset in two different points, a contradiction.

Let g ∈ G = AH. Then g = ah with a ∈ A and h ∈ H. Denote with EC the

equivalence relation whose classes are the C-cosets. Since aECa ⇒ s(a)ECa ⇒ a ∈ s(a)C ⇒
there exists c ∈ C such that a = s(a)c ⇒ g = s(a)ch. Since s(a)ECa we have that

s(s(a)) = s(a) ⇒ s(a) ∈ T . Since c ∈ C ⊂ H and h ∈ H we have that ch ∈ H and hence

g = s(a)ch ∈ TH ⇒ G ⊂ TH. ¤

Corollary 3.40. F Let G be a Polish topological group, M ⊂ H an infinite dimensional

closed subspace of the Hilbert space H and φ : G → U(H) an algebraic isomorphism. Then

φ−1(U(M)) is closed in G.

Proof. If M = H then U(M) = U(H) ⇒ φ−1(U(M)) = G is closed in G. Suppose M 6= H.

By Theorem 3.28 we have that φ−1(Z(U(H))U(M)) = φ−1(Z(U(H)))φ−1(U(M)) is closed

in G and hence Polish. Since φ is an isomorphism we have that φ−1(Z(U(H))) = Z(G),

the center of G, is a closed subgroup of G and φ−1(U(M)) ⊂ G is analytic by Proposition

3.29. If U ∈ Z(U(H)) ∩ U(M), then U = λI, with |λ| = 1, and, since U |M⊥ = I, we

have that λ = 1 ⇒ U = I ⇒ Z(U(H)) ∩ U(M) = {I} ⇒ φ−1(Z(U(H))) ∩ φ−1(U(M)) =

φ−1(Z(U(H)) ∩ U(M)) = φ−1(I) = {e} is closed in G. Using Corollary 3.39 we have that
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φ−1(U(M)) is closed in φ−1(Z(U(H))U(M)) and since φ−1(Z(U(H))U(M)) is closed in G

it follows that φ−1(U(M)) is closed in G. ¤

Corollary 3.41. F Let G be a Polish topological group, M ⊂ H a finite dimensional

closed subspace of the infinite dimensional Hilbert space H and φ : G → U(H) an algebraic

isomorphism. Then φ−1(U(M)) is closed in G.

Proof. Let {e1, e2, ..., en} be a orthonormal basis for M. Extend this to {e1, ..., en, ..., en+l, ...}
an orthonormal basis for H. For every l ≥ 1, let Ml = span({ei}i≥1 \ {en+l}). Each Ml is

infinite dimensional. Hence, by Corollary 3.40, we have that φ−1(U(Ml)) is closed in G, for

every l ≥ 1.

Since U ∈ U(M) ⇔ U |M⊥ = I ⇔ Uen+l = en+l for every l ≥ 1 ⇔ U ∈ U(Ml)

for every l ≥ 1 ⇔ U ∈ ∩l≥1U(Ml) we have that U(M) = ∩l≥1U(Ml) ⇒ φ−1(U(M)) =

φ−1(∩l≥1U(Ml)) = ∩l≥1φ
−1(U(Ml)) ⇒ φ−1(U(M)) is closed in G. ¤

Corollary 3.42. F Let G be a Polish topological group, M⊂ H a closed subspace of the

infinite dimensional Hilbert space H and φ : G → U(H) an algebraic isomorphism. Then

φ−1(U(M)) is closed in G.

Proof. Put together Corollary 3.40 and Corollary 3.41. ¤

3.5. φ−1(SU(M)) is Closed

Lemma 3.43.

If U =


 0 1

−1 0


 , then U ∈ SU(2) and U


 λ1 0

0 λ2


 U∗ =


 λ2 0

0 λ1




Proof. Note that

U∗ =


 0 −1

1 0



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and then by a straight forward computation we have that UU∗ = U∗U = I and det(U) = 1

and hence U ∈ SU(2).


 0 1

−1 0





 λ1 0

0 λ2





 0 −1

1 0


 =


 0 λ2

−λ1 0





 0 −1

1 0


 =


 λ2 0

0 λ1




¤

Lemma 3.44. Let M be a finite dimensional Hilbert space with dim(M) = n and let P,Q

be two operators acting on M. If

Pk =




1

. . .

1

0

0 1

−1 0

0

1

. . .

1




and Q =




λ1

. . .

λk

0

0

λk+1

. . .

λn




are the matrix representations of Pk, respective Q with respect to some basis in M, then

Pk ∈ SU(M) and

PkQP ∗
k =




λ1

. . .

λk+1

0

0

λk

. . .

λn




Proof. Note that Pk restricted to the appropiate two dimensional subspace equals the matrix

U from Lemma 3.43 and outside that subspace is the identity. Lemma 3.43 implies that

PkQP ∗
k is obtained from Q by interchanging the two entries of the diagonal λk and λk+1.
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Straight forward computation shows that PkP
∗
k = P ∗

k Pk = I and that det(Pk) = 1, and

hence Pk ∈ SU(M). ¤

Lemma 3.45. Let M be a finite dimensional Hilbert space and let U ∈ SU(M). Then there

exist P,Q ∈ SU(M) such that U = PQP ∗Q∗.

Proof. This is a consequence of the main theorem in [5]. Here is a simple, direct proof.

If U ∈ SU(M), then by the Spectral Theorem U is diagonalizable and U can be repre-

sented as

U =




eiα1 0

. . .

0 eiαn




where α1 + α2 + ... + αn = 0.

Let P = P1P2...Pn−1, where Pk is defined in Lemma 3.44. Note that P ∈ SU(M) and

P ∗ = P ∗
n−1...P

∗
1 . Let Q be defined as

Q =




eiθ1 0

. . .

0 eiθn




where θn = (n−1)α1+(n−2)α2+...+αn−1

n
and θl = θn − (α1 + α2 + ... + αl) for every 1 ≤ l ≤ n− 1.

Then θ1 + ... + θn = θn − α1 + θn − (α1 + α2) + ... + θn − (α1 + α2 + ... + αn−1) + θn =

nθn − (n − 1)α1 − (n − 2)α2 − ... − αn−1 = 0 ⇒ det(Q) = 1 ⇒ Q ∈ SU(M). Note that

θn− θ1 = θn− θn +α1 = α1 and θl− θl+1 = θn− (α1 + ...+αl)− θn +(α1 + ...+αl+1) = αl+1.

Using Lemma 3.44 we have that

PQP ∗ =




eiθn 0

eiθ1

. . .

0 eiθn−1




and since Q∗ =




e−iθ1 0

. . .

0 e−iθn



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⇒ PQP ∗Q∗ =




ei(θn−θ1) 0

ei(θ1−θ2)

. . .

0 ei(θn−1−θn)




=




eiα1 0

. . .

0 eiαn


 = U

¤

Proposition 3.46. F Let G be a Polish topological space, H infinite dimensional Hilbert

space, M⊂ H a finite dimensional closed subspace and φ : G → U(H) an algebraic isomor-

phism. Then φ−1(SU(M)) is an analytic subset of G.

Proof. Since φ−1(U(M)) is closed in G by Corollary 3.42, φ−1(U(M))×φ−1(U(M)) is closed

in G × G. Let [·, ·] : φ−1(U(M)) × φ−1(U(M)) → G be defined as [a, b] = aba−1b−1.

Since the group operations are continuous, [·, ·] is continuous. If a, b ∈ φ−1(U(M)) then

φ(a), φ(b) ∈ U(M), φ([a, b]) = φ(aba−1b−1) = φ(a)φ(b)(φ(a))−1(φ(b))−1 ∈ U(M) and

det(φ([a, b])) = det(φ(aba−1b−1)) = det(φ(a)) det(φ(b))(det(φ(a)))−1(det(φ(b)))−1 = 1 ⇒
φ([a, b]) ∈ SU(M) ⇒ [a, b] ∈ φ−1(SU(M)). This proves that [·, ·] takes its values in

φ−1(SU(M)). Let y ∈ φ−1(SU(M)). Then φ(y) = W ∈ SU(M). By Lemma 3.45 we

have that there exist U, V ∈ SU(M) such that W = UV U−1V −1. Let a = φ−1(U) ∈
φ−1(U(M)) and b = φ−1(V ) ∈ φ−1(U(M)). Then y = φ−1(W ) = φ−1(UV U−1V −1) =

φ−1(U)φ−1(V )(φ−1(U))−1(φ−1(V ))−1 = aba−1b−1 = [a, b] ⇒ [·, ·] is onto φ−1(SU(M)). Since

[·, ·] is continuous, it follows that φ−1(SU(M)) is the continuous image of φ−1(U(M)) ×
φ−1(U(M)), a closed set of a Polish space, and therefore φ−1(SU(M)) is an analytic subset

of G. ¤

Proposition 3.47. If M is a finite dimensional Hilbert space, then U(M) = Z(U(M)) ·
SU(M).

Proof. Since both Z(U(M)), SU(M) ⊂ U(M) and since U(M) is a subgroup it follows that

Z(U(M)) · SU(M) ⊂ U(M).
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Let U ∈ U(M) and let det(U) = det(U |M) = λ. Then 1 = det(I) = det(UU∗) =

det(U) det(U∗) = det(U)det(U) = λλ = |λ|2 ⇒ |λ| = 1. Choose θ such that einθ = λ,

where n = dim(M). Let V be defined as V |M = eiθI, V |M⊥ = I and W be defined as

W |M = e−iθU |M, W |M⊥ = I. Then V ∈ Z(U(M)) and, since det(W ) = det(e−iθU |M) =

(e−iθ)n det(U |M) = λ−1λ = 1, we have that W ∈ SU(M). Since U |M = (eiθI)(e−iθU |M) =

V |MW |M and since U |M⊥ = I = V |M⊥W |M⊥ we have that U = V W ∈ Z(U(M)) ·
SU(M) ⇒ U(M) ⊂ Z(U(M)) · SU(M). ¤

Corollary 3.48. F Let G be a Polish topological space, H infinite dimensional Hilbert

space, M⊂ H a finite dimensional closed subspace and φ : G → U(H) an algebraic isomor-

phism. Then φ−1(SU(M)) is closed in G.

Proof. From Corollary 3.42 we have that φ−1(U(M)) is closed in G and hence Polish. From

Proposition 3.47 we have that Z(U(M))SU(M) = U(M) ⇒ φ−1(Z(U(M)))φ−1(SU(M)) =

φ−1(Z(U(M))SU(M)) = φ−1(U(M)). φ−1(Z(U(M))) = Z(φ−1(U(M))), the center of

φ−1(U(M)) is a closed subgroup of φ−1(U(M)) and φ−1(SU(M)) is an analytic subgroup

of G by Proposition 3.46, and hence analytic subgroup of φ−1(U(M)). Let C = Z(U(M))∩
SU(M). Then C = {U ∈ U(M) | U |M = λI, U |M⊥ = I and det(U) = λn = 1}, where

n = dim(M) ⇒ C is finite. Since φ is an isomorphism we have that φ−1(Z(U(M))) ∩
φ−1(SU(M)) = φ−1(C) is finite and hence closed in φ−1(U(M)). It follows from Corollary

3.39 that φ−1(SU(M)) is closed in φ−1(U(M)) and hence closed in G. ¤

3.6. Main Result

Lemma 3.49. F Let H be a separable infinite dimensional Hilbert space, let {el}l≥1 ⊂ H
be an orthonormal basis for H and let P be the orthogonal projection on span({e1}). Then

there exists M a three dimensional subspace of H such that for every U ∈ U(H) there exists

U0 ∈ SU(M) such that PU0e1 = PUe1.

Proof. Let M = span({e1, e2, e3}) be a three dimensional subspace of H. Note that since P

is the orthogonal projection on span({e1}), then PUe1 = λe1 and since |λ|2 = |λ|2‖e1‖2 =

‖λe1‖2 = ‖PUe1‖2 ≤ ‖PUe1‖2 +‖(I−P )Ue1‖2 = ‖Ue1‖2 = ‖e1‖2 = 1 we have that |λ| ≤ 1.
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If |λ| = 0 let

U0 =




0 −1 0

1 0 0

0 0 1




be the matrix representation of U0 with respect to the basis {e1, e2, e3}. Then

U∗
0 =




0 1 0

−1 0 0

0 0 1




and by a straight forward computation we have that U0U
∗
0 = U∗

0 U0 = I and det(U0) = 1 and

hence U0 ∈ SU(M). Note that U0e1 = e2 and hence PU0e1 = 0 = λe1 = PUe1.

If |λ| 6= 0 let

U0 =




λ −
√

1−|λ|2
|λ| λ 0√

1−|λ|2
|λ| λ λ 0

0 0 |λ|2λ−2




Then we have that

U∗
0 =




λ

√
1−|λ|2
|λ| λ 0

−
√

1−|λ|2
|λ| λ λ 0

0 0 |λ|2λ−2




and hence

U0U
∗
0 =




λ −
√

1−|λ|2
|λ| λ 0√

1−|λ|2
|λ| λ λ 0

0 0 |λ|2λ−2







λ

√
1−|λ|2
|λ| λ 0

−
√

1−|λ|2
|λ| λ λ 0

0 0 |λ|2λ−2


 =

=




λλ + 1−|λ|2
|λ|2 λλ

√
1−|λ|2
|λ| λλ−

√
1−|λ|2
|λ| λλ 0√

1−|λ|2
|λ| λλ−

√
1−|λ|2
|λ| λλ 1−|λ|2

|λ|2 λλ + λλ 0

0 0 |λ|4(λλ)−2


 =
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=




|λ|2 + 1−|λ|2
|λ|2 |λ|2 0

1−|λ|2
|λ|2 |λ|2 + |λ|2 0

0 0 |λ|4(|λ|2)−2


 = I

and similarly U∗
0 U0 = I. We also have that det(U0) = |λ|2−

(√
1−|λ|2
|λ| λ

)(
−
√

1−|λ|2
|λ| λ

)
|λ|2λ−2 =

|λ|2 + (1− |λ|2) = 1 and hence U0 ∈ SU(M).

Since U0e1 = λe1 +

√
1−|λ|2
|λ| λe2 it follows that PU0e1 = λe1 = PUe1. ¤

Lemma 3.50. Let H be a Hilbert space, let e ∈ H, let P be the orthogonal projection on

span({e}) and Q = I − P . If W ∈ U({e}⊥) then W commutes with P and with Q.

Proof. Let x ∈ H. Since Px ∈ span({e} and W |span({e}) = I we have that WPx = Px. Since

Qx ∈ {e}⊥ and W |span({e}) = I we have that WQx ∈ {e}⊥ ⇒ PWQx = 0. It follows that

PWx = PW (Px + Qx) = PWPx + PWQx = P 2x + 0 = Px = WPx.

On the other hand we have that WQx = W (x− Px) = Wx−WPx = PWx + QWx−
WPx = QWx. ¤

Lemma 3.51. F Let H be a separable infinite dimensional Hilbert space, let e ∈ H be such

that ‖e‖ = 1 and let S = {U ∈ U(H) | ‖e − Ue‖ < ε}. Then there exists M ⊂ H a three

dimensional subspace such that S = U({e}⊥) [SU(M) ∩ S] U({e}⊥).

Proof. Note that if W ∈ U({e}⊥) and if U ∈ S then ‖e − UWe‖ = ‖e − Ue‖ < ε ⇒
UW ∈ S ⇒ S U({e}⊥) ⊂ S ⇒ S U({e}⊥) = S and ‖e − WUe‖ = ‖We − WUe‖ =

‖W (e− Ue)‖ = ‖e− Ue‖ < ε ⇒ WU ∈ S ⇒ U({e}⊥) S ⊂ S ⇒ U({e}⊥) S = S and hence

U({e}⊥) S U({e}⊥) = S.

Let U ∈ S. Let P be the orthogonal projection on span({e}) and let Q = I − P . By

Lemma 3.49 we have that there exists M a three dimensional subspace and U0 ∈ SU(M)

such that PU0e = PUe. Since ‖PUe‖2 + ‖QUe‖2 = ‖Ue‖2 = 1 = ‖U0e‖2 = ‖PU0e‖2 +

‖QU0e‖2 we have that ‖QUe‖2 = ‖QU0e‖2. Since QUe ∈ {e}⊥ and QU0e ∈ {e}⊥ there exists

W ∈ U({e}⊥) such that WQU0e = QUe. Since by Lemma 3.50 W commutes with P and

with Q we have that WU0e = PWU0e + QWU0e = WPU0e + WQU0e = PU0e + QUe =
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PUe + QUe = Ue ⇒ U∗
0 W ∗Ue = e ⇒ U∗

0 W ∗U = V ∈ U({e}⊥) ⇒ U = WU0V . We also

have that ‖e−U0e‖2 = ‖e−PU0e‖2 +‖QU0e‖2 = ‖e−PU0e‖2 +‖WQU0e‖2 = ‖e−PUe‖2 +

‖QUe‖2 = ‖P (e − Ue)‖2 + ‖Q(e − Ue)‖2 = ‖e − Ue‖2 < ε2 ⇒ U0 ∈ S. Thus U = WU0V ,

with W,V ∈ U({e}⊥) and U0 ∈ SU(M) ∩ S. This implies that S ⊂ U({e}⊥) [SU(M) ∩
S] U({e}⊥) ⊂ U({e}⊥) S U({e}⊥) = S ⇒ S = U({e}⊥) [SU(M) ∩ S] U({e}⊥). ¤

Lemma 3.52. The intersection of two analytic subsets of a Polish space is analytic.

Proof. Let X be a Polish space and let A1, A2 ⊂ X be analytic. Then there exist Bl

Borel sets and fl : Bl → Al Borel mappings such that fl(Bl) = Al, for l = 1, 2. Let

F : B1 × B2 → X × X be defined as F (b1, b2) = (f1(b1), f2(b2)). Then F is obviously

a Borel mapping and hence if D = {(x, x) | x ∈ X} ⊂ X × X is the diagonal, then

F−1(D) = {(b1, b2) | bl ∈ Bl, f1(b1) = f2(b2)} ⊂ B1 ×B2 is a Borel subset.

Let y ∈ A1 ∩ A2. Then there exist bl ∈ Bl such that y = fl(bl), for l = 1, 2 and

(b1, b2) ∈ F−1(D). The mapping π1 ◦ F : B1 × B2 → X is the composition between a

continuous and a Borel mapping, and hence a Borel mapping and (π1 ◦F )(b1, b2) = y. Hence

A1 ∩ A2 is the Borel image of the Borel subset F−1(D), and hence an analytic subset. ¤

Lemma 3.53. The product of two analytic subsets of a Polish space is analytic.

Proof. Let X be a Polish space and let A1, A2 ⊂ X be analytic. Then there exist Bl Borel sets

and fl : Bl → Al Borel mappings such that fl(Bl) = Al, for l = 1, 2. Let F : B1×B2 → X be

defined as F (b1, b2) = f1(b1)f2(b2). Since the multiplication is continuous, F is a composition

between a continuous mapping and a Borel mapping and hence a Borel mapping. Since

B1 ×B2 is Borel, it follows that A1A2 = F (B1 ×B2) is analytic. ¤

Lemma 3.54. F Let G be a Polish topological group, let H be a separable infinite dimensional

Hilbert space and let e ∈ H be such that ‖e‖ = 1. Let S = {U ∈ U(H) | ‖e− Ue‖ < ε} and

let φ : G → U(H) be an algebraic isomorphism. Then φ−1(S) is analytic in G.

Proof. LetM be as in Lemma 3.51 so that S = U({e}⊥) [SU(M)∩S] U({e}⊥). Since SU(M)

is a connected compact metric group with a totally disconnected center (Chapter I, Section
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14, [19]), using the result from [14] we have that φ|φ−1(SU(M)) : φ−1(SU(M)) → SU(M) is a

homeomorphism. S ∩ SU(M) is a relatively open subset of SU(M) ⇒ φ−1(S ∩ SU(M)) is

relatively open in φ−1(SU(M)). Since φ−1(SU(M)) is closed in G by Corollary 3.48, we have

that φ−1(S ∩SU(M)) is a Borel subset of G. Since φ−1(U({e}⊥)) is closed in G by Corollary

3.42, it follows from Lemma 3.53 that φ−1(S) = φ−1(U({e}⊥) [S ∩ SU(M)] U({e}⊥)) =

φ−1(U({e}⊥))φ−1(S ∩ SU(M))φ−1(U({e}⊥)) is analytic. ¤

Lemma 3.55. The union of a sequence of analytic subsets of a Polish topological space is

analytic.

Proof. Let Y be a Polish topological space and let {Al}l≥1 be a sequence of analytic subsets

of Y . Then there exist Bl Borel sets and fl : Bl → Al Borel mappings such that fl(Bl) = Al,

for every l ≥ 1. Without loss of generality we may assume that the Bl’s are Borel subsets of

the same Polish topological space X. Let F : N×X → Y be defined as F ((n, x)) = fn(x). If

we define D : (N×X)× (N×X) → R by D((n, x), (n, y)) = d(x, y) and D((n, x), (m, y)) = 1

if n 6= m, then D is a complete metric on N × X and hence N × X becomes a Polish

topological group. The mapping F is Borel, ∪l≥1{l} × Bl is a Borel subset of N × X and

hence ∪l≥1Al = F (N× ∪l≥1Bl = F (∪l≥1{l} ×Bl) is analytic. ¤

Lemma 3.56. A translate of an analytic subset of a Polish topological group is analytic.

Proof. Let X be a Polish topological group, let x ∈ X and let A ⊂ X be an analytic subset.

Then there there exists B a Borel set and f : B → A a Borel mapping such that f(B) = A.

Let F : X × B → X be defined as F ((x, y)) = xf(y). Then {x} × B is a Borel set and

since the multiplication is continuous, the mapping F is Borel. Hence xA = F ({x} × B) is

analytic. ¤

Lemma 3.57. Let G and H be two Polish topological groups and let φ : G → H be an algebraic

isomorphism. If φ−1(U) is a set with the Baire property for every U in a neighborhood basis

U at e in H, then φ is a topological isomorphism.
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Proof. Let U ⊂ H be open. Then U = ∪n≥1xnVn, where xn ∈ U and Vn ∈ U . Then

φ−1(xnVn) = φ−1(xn)φ−1(Vn) is a set with the Baire property for every n ≥ 1 ⇒ φ−1(U) =

∪n≥1φ
−1(xnVn) is a set with the Baire property ⇒ φ is measurable with respect to the sets

with the Baire property.

Since G is Baire and H is separable, it follows from a well-known theorem of Banach,

Kuratowski and Pettis (Theorem 9.10, page 61, [18]) that φ is continuous. From Lusin-

Souslin Theorem (page 89, [18]) we have that φ−1 is Borel measurable, and hence it is

measurable with respect to the sets with the Baire property. From the same result of

Banach-Kuratowski-Pettis it follows that φ−1 is continuous and hence φ is a topological

isomorphism. ¤

Theorem 3.58. F Let H be a separable infinite dimensional Hilbert space, let G be a Polish

topological group and φ : G → U(H) be an algebraic isomorphism. Then φ is a topological

isomorphism.

Proof. Let {el}l≥1 be an orthonormal basis forH. Let U be a basic neighborhood of I in U(H).

According with Proposition 3.11 U is of the form U = ∩1≤l≤n{U ∈ U(H) | ‖Uel − el‖ < ε}
for some ε > 0. φ−1(U) is analytic by Lemma 3.54 and, since analytic sets have the Baire

property, φ−1(U) is a set with the Baire property. The conclusion follows from Lemma 3.57.

¤

3.7. The Finite Dimensional Case

Lemma 3.59. Let G be a group, A,B ⊂ G two subgroups such that G = AB and ab = ba for

every a ∈ A and b ∈ B. If C = {(c, c−1) | c ∈ A ∩B}, then (A×B)/C is isomorphic to G.

Proof. Let φ : A×B → G be defined as φ((a, b)) = ab. Since φ(a1, b1)φ(a2, b2) = a1b1a2b2 =

a1a2b1b2 = φ(a1a2, b1b2) we have that φ is a homomorphism. If g ∈ G then g = ab, with

a ∈ A and b ∈ B and φ(a, b) = g ⇒ φ is onto G. Since ker(φ) = {(a, b) | φ((a, b)) = e} =

{(a, b) | ab = e} = {(a, b) | b = a−1 ∈ A ∩ B} = {(a, a−1) | a ∈ A ∩ B} = C, it follows from

the Isomorphism Theorem for groups that (A×B)/C is isomorphic to G. ¤
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Lemma 3.60. If A,B are two abstract groups, H is a normal subgroup of A and K is a

normal subgroup of B then H ×K is a normal subgroup of A×B and (A×B)/(H ×K) '
(A/H)× (B/K).

Proof. If (a, b) ∈ A×B and (h, k) ∈ H×K then (a, b)(h, k)(a, b)−1 = (aha−1, bkb−1) ∈ H×K,

we have that H ×K is a normal subgroup of A×B.

Let π : A×B → (A/H)× (B/K) be defined as π(a, b) = (π1(a), π2(b)), where π1, π2 are

the natural quotient mappins π1 : A → A/H and π2 : B → B/K. Since π(a1, b1)π(a2, b2) =

(π1(a1), π2(b1))(π1(a2), π2(b2)) = (π1(a1)π1(a2), π2(b1)π2(b2)) = (π1(a1a2), π2(b1b2)) = π(a1a2, b1b2)

we have that π is a homomorphism. π is obviously onto since π1 and π2 are onto. Since

π(a, b) = (e, e) ∈ (A/H)× (B/K) ⇔ π1(a) = e ∈ A/H and π2(b) = e ∈ B/K ⇔ a ∈ H and

b ∈ K ⇔ ker(π) = H ×K we have that (A×B)/(H ×K) ' (A/H)× (B/K). ¤

Lemma 3.61. Let G be a group, let A,B be two subgroups such that G = AB, A ∩B = {e}
and ab = ba for every a ∈ A and b ∈ B. If N is a normal subgroup of B then N is a normal

subgroup of G and G/N ' A× (B/N).

Proof. Let g = ab ∈ G. If c ∈ N then gcg−1 = abcb−1a−1 = baca−1b−1 = bcaa−1b−1 =

bab−1 ∈ N ⇒ N is a normal subgroup of G. Let φ : A × B → G be the homomorphism

defined in Lemma 3.59. Since C = {(c, c−1) | c ∈ A ∩ B} = {e} × {e}, by the same Lemma

we have that G ' (A×B)/C = A×B.

Let π : G → G/N be the natural quotient mapping. If (π ◦ φ)(a, b) = ê ∈ G/N then

φ(a, b) ∈ N ⇒ ab ∈ N ⇒ a ∈ Nb−1 ⊂ B ⇒ a = e ⇒ b ∈ N ⇒ ker(π ◦ φ) = {e} × N ⇒
(A×B)/({e} ×N) ' G/N . From Lemma 3.60 it follows that A× (B/N) ' G/N . ¤

Lemma 3.62. R/Z ' R⊕ R/Z as abstract groups.

Proof. Consider R as a vector space over Q. Choose {1} ∪ {rα | α ∈ A}, a Hamel basis

for R. Then R is the weak direct sum of the vector spaces spanned by each element of the

base, i.e. R = Q⊕ (⊕α∈AQrα). It follows from Lemma 3.61 that R/Z ' Q/Z⊕ (⊕α∈AQrα).

Since |A| = c, there exist B, C ⊂ A such that B ∪ C = A, B ∩ C = ∅, |B| = |C| = c and
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⊕α∈AQrα = (⊕β∈BQrβ) ⊕ (⊕γ∈CQrγ) ⇒ R = Q ⊕ (⊕β∈BQrβ) ⊕ (⊕γ∈CQrγ). Using Lemma

3.61 again, we have that R/Z ' (Q/Z)⊕ (⊕β∈BQrβ)⊕ (⊕γ∈CQrγ) ⇒ R/Z ' (R/Z)⊕R. ¤

Proposition 3.63. If H is a n-dimensional Hilbert space, then U(H) ' R×U(H) as abstract

groups.

Proof. Let T = {λI | |λ| = 1}. Then T ' R/Z, T and SU(H) commute and U(H) =

T · SU(H). Since T ∩ SU(H) = {λI | λn = 1} ' Zn, using Lemma 3.59 we have that

U(H) ' (T ×SU(H))/Zn ' ((R/Z)×SU(H))/Zn. Since R/Z ' R× (R/Z) by Lemma 3.62

and using Lemma 3.61 we have that U(H) ' (R × (R/Z) × SU(H))/Zn ' R × ((R/Z) ×
SU(H))/Zn ' R× U(H). ¤

Corollary 3.64. F If H is an n-dimensional Hilbert space, there is no unique Polish

topological group topology on U(H).

Proof. According to Proposition 3.63, U(H) is algebraically isomorphic to R×U(H). If T is

the standard Polish topological group topology on U(H) and Rstd is the usual topology on

R, then the product topology on R× U(H) is a Polish topological group topology and it is

different than T and hence T is not unique. ¤
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CHAPTER 4

THE PROJECTIVE GROUP

Throughout this section H is considered to be a separable infinite dimensional complex

Hilbert space.

4.1. The Topology on PU(H)

Definition 4.1. If H is a Hilbert space, the projective unitary group is the group PU(H) =

U(H)/Z(U(H)). If π : U(H) → PU(H) is the natural quotient mapping and if S ⊂ U(H)

then π(S) = {U · Z(U(H)) | U ∈ S} and π−1(π(S)) = {λU | |λ| = 1 and U ∈ S}.

Proposition 4.2. If N is a normal subgroup of a topological group G, then G/N is a

topological group.

Proof. Let aN, bN ∈ G/N and let U ⊂ G/N be an open neighborhood of aN · bN = abN .

Then π−1(U) ⊂ G is open and contains ab. Let a ∈ V ⊂ G and b ∈ W ⊂ G be open and

such that V ·W ⊂ π−1(U). Then π(V ) and π(W ) are open neighborhoods of aN and bN

respectively, in G/N and π(V )π(W ) = π(V W ) ⊂ π(π−1(U)) = U ⇒ the multiplication in

G/N is continuous. Let U ⊂ G/N be open. Then π−1(U) is open in G and (π−1(U))−1 is

open since inversion in G is continuous. Since x ∈ (π−1(U))−1 ⇔ x−1 ∈ π−1(U) ⇔ π(x−1) =

(π(x))−1 ∈ U ⇔ π(x) ∈ U−1 ⇔ x ∈ π−1(U−1) we have that (π−1(U))−1 = π−1(U−1) and

hence π((π−1(U))−1) = π(π−1(U−1)) = U−1 is open ⇒ the inversion in G/N is continuous.

¤

Corollary 4.3. PU(H) is a topological group.

Proof. Z(U(H)) is a normal subgroup of U(H) and use Proposition 4.2. ¤

Theorem 4.4. Let G be a metrizable topological group and H ⊂ G a closed subgroup. Then

G/H is metrizable.
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Proof. Let d be a compatible right invariant metric on G and let D(xH, yH) = inf{d(x, yh) | h ∈
H}. It is clear that D(xH, yH) ≥ 0 for every x, y ∈ G. If xH = yH then y−1x ∈ H ⇒
D(xH, yH) = inf{d(x, yh) | h ∈ H} = d(x, y(y−1x)) = 0. If D(xH, yH) = 0 ⇒ there

exists a sequence {hn}n≥1 ⊂ H such that yhn → x ⇒ hn → y−1x ⇒ y−1x ∈ H ⇒
xH = yH. Hence D(xH, yH) = 0 ⇔ xH = yH. D(xH, yH) = inf{d(x, yh) | h ∈
H} = inf{d(xh−1, y) | h ∈ H} = inf{d(y, xh−1) | h ∈ H} = D(yH, xH). If x, y, z ∈ G

and h1, h2 ∈ H, then D(xH, yH) ≤ d(x, yh2h
−1
1 ) = d(xh1, yh2) ≤ d(z, xh1) + d(z, yh2) ⇒

D(xH, yH) ≤ inf{d(z, xh1) | h1 ∈ H}+ inf{d(z, yh2) | h2 ∈ H} = D(zH, xH) + D(zH, yH)

and hence D is a metric.

To prove that the metric D is compatible with the topology on G/H it is enough to

show that π(Bd(a, δ)) = BD(π(a), δ), where π : G → G/H is the natural quotient mapping,

a ∈ G and δ > 0. Let b ∈ Bd(a, δ). Then d(b, a) < δ ⇒ D(aH, bH) = D(π(a), π(b)) <

δ ⇒ π(b) ∈ BD(π(a), δ) and so π(Bd(a, δ)) ⊂ BD(π(a), δ). Conversely, choose b ∈ G such

that π(b) ∈ BD(π(a), δ). Then D(π(b), π(a)) < δ and hence there exists h ∈ H such that

d(a, bh) < δ ⇒ bh ∈ Bd(a, δ) ⇒ π(bh) = π(b) ∈ π(Bd(a, δ)) ⇒ BD(π(a), δ) ⊂ π(Bd(a, δ)). ¤

Proposition 4.5. If G is a separable topological group and H a subgroup, the G/H is

separable.

Proof. Let D ⊂ G be a countable dense subset. Then π(D) is countable and, since π is

continuous, we have that G/H = π(G) = π(clG(D)) ⊂ clG/H(π(D)) ⇒ π(D) is dense in G.

¤

Corollary 4.6. F If H is separable, PU(H) is a Polish topological group.

Proof. PU(H) is metrizable by Theorem 4.4. If H is separable, then Hom(H1), the homeo-

morphism group of the unit ball, is completely metrizable by Corollary 2.25 and since U(H)

is a closed subgroup of Hom(H1) by Theorem 3.7, we have that U(H) is completely metriz-

able. Since the mapping π is continuous and onto, using a theorem of Hausdorff [8] we have

that PU(H) is completely metrizable. PU(H) is separable by Proposition 4.5. ¤
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4.2. The Subsets π(U(M)), π(SU(M)) and π(S) of PU(H)

Theorem 4.7. F Let M be a closed subspace of the Hilbert space H and let W ∈ U(H)

be such that WUW ∗U∗ ∈ Z(U(H)) for every U ∈ U(M). Then WU = UW for every

U ∈ U(M).

Proof. Let W ∈ U(H) be such that WUW ∗U∗ ∈ Z(U(H)) for every U ∈ U(M). Then

there exists λ = λ(U), with |λ| = 1, such that WU = λ(U)UW . If U1, U2 ∈ U(M), then

λ(U1U2)U1U2W = WU1U2 = λ(U1)U1WU2 = λ(U1)λ(U2)U1U2W ⇒ λ(U1U1) = λ(U1)λ(U2) ⇒
the mapping λ : U(M) → T = {λ ∈ C | |λ| = 1} is a homomorphism of groups. If U ∈ U(M)

then U∗ ∈ U(M) and 1 = λ(I) = λ(U∗U) = λ(U∗)λ(U) ⇒ λ(U∗) = (λ(U))−1 = λ(U). If

{Uj}j∈J ⊂ U(M) and U ∈ U(M) are such that Uj
wo−→ U , then λ(Uj) = WUjW

∗U∗
j

wo−→
WUW ∗U∗ = λ(U) ⇒ λ is continuous.

If M is infinite dimensional and if U ∈ U(M), according to [7], page 134, problem 191,

there exist P, Q ∈ U(M) such that U = PQP ∗Q∗ and then λ(U) = λ(P )λ(Q)λ(P )−1λ(Q)−1 =

1 for every U ∈ U(M) ⇒ WUW ∗U∗ = 1 ⇒ WU = UW for every U ∈ U(M).

Suppose first that M is one-dimensional, that M = span({e1}) and that {el}l≥1 is

an orthonormal basis for H. Note that in this case U(M) = T , the circle group, and

hence U(M) is connected. Let U ∈ U(M). Then Ue1 = eiαe1, Uel = el for every l ≥ 2

and U∗e1 = e−iαe1 and U∗el = el for every l ≥ 2. If 〈Wei, ej〉 6= 0 for some i, j ≥ 2

then, since WU = λ(U)UW , we have that 〈Wei, ej〉 = 〈WUei, ej〉 = λ(U)〈UWei, ej〉 =

λ(U)〈Wei, U
∗ej〉 = λ(U)〈Wei, ej〉 ⇒ λ(U) = 1.

Otherwise, 〈Wei, ej〉 = 0 for every i, j ≥ 2. In addition, if 〈We1, e1〉 6= 0 then eiα〈We1, e1〉 =

〈WUe1, e1〉 = λ(U)〈UWe1, e1〉 = λ(U)〈We1, U
∗e1〉 = λ(U)eiα〈We1, e1〉 ⇒ λ(U) = 1.

Otherwise, if 〈We1, e1〉 = 0 and 〈Wei, ej〉 = 0 for all i, j ≥ 2, then for every l ≥ 2 we have

that 〈Wel, e1〉 = 〈WUel, e1〉 = λ(U)〈UWel, e1〉 = λ(U)〈Wel, U
∗e1〉 = λ(U)eiα〈Wel, e1〉. If

〈Wel, e1〉 = 0 for all l ≥ 2 then 〈Wel, e1〉 = 0 for all l ≥ 1 ⇒ 〈Wx, e1〉 = 0 for all

x ∈ H ⇒ W ∗e1 = 0 ⇒ e1 = WW ∗e1 = W (0) = 0, a contradiction. Thus, there exists l ≥ 2

such that 〈Wel, e1〉 6= 0 ⇒ λ(U)eiα = 1 ⇒ λ(U) = e−iα. We also have that eiα〈We1, el〉 =

47



〈WUe1, el〉 = λ(U)〈UWe1, el〉 = λ(U)〈We1, U
∗el〉 = λ(U)〈We1, el〉 for l ≥ 2. If 〈We1, el〉 =

0 for all l ≥ 2 then 〈We1, el〉 = 0 for all l ≥ 1 ⇒ 〈We1, x〉 = 0 for all x ∈ H ⇒ We1 =

0 ⇒ e1 = W ∗We1 = W ∗(0) = 0, a contradiction. Thus, there exists l ≥ 2 such that

〈We1, el〉 6= 0 ⇒ eiα = λ(U) ⇒ λ(U)2 = 1 ⇒ λ(U) = ±1. Since U(M) is connected, λ is

continuous and λ(I) = 1 ⇒ λ(U) = 1 ⇒ WU = UW for every U ∈ U(M).

Suppose now that M = span({e1, ..., en}) is n-dimensional where {el}l≥1 is an or-

thonormal basis for H. If U ∈ U(M) then, according with the spectral theorem, we

have that there exists V ∈ U(M) such that V UV ∗el = eiαlel for every 1 ≤ l ≤ n and

V UV ∗el = el for every l > n. If for every 1 ≤ l ≤ n we define Ul|span({el})el = eiαlel and

Ul|(span({el}))⊥ = I then V UV ∗ = U1U2...Un and hence U = V ∗U1U2...UnV . If we denote

Ml = span({el}), then each Ml is one-dimensional, each Ul ∈ U(Ml) and U(Ml) ⊂ U(M).

Thus WUl = λ(Ul)UlW for every l ≥ 1 and by the previous paragraph we have that λ(Ul) = 1

for every 1 ≤ l ≤ n ⇒ λ(U) = λ(V ∗)λ(U1)λ(U2)...λ(Un)λ(V ) = λ(V )λ(V ) = 1 and hence

WU = UW for every U ∈ U(M). ¤

Theorem 4.8. F Let M be a closed subspace of the Hilbert space H, G a Polish topological

group and φ : G → PU(H) an algebraic isomorphism. Then φ−1(π(U(M))) is closed in G,

where π : U(H) → PU(H) is the natural quotient mapping.

Proof. We will prove that π(U(M)) = {Ŵ ∈ PU(H) | Ŵ V̂ = V̂ Ŵ for all V̂ ∈ π(U(M⊥))}.
This will imply that φ−1(π(U(M))) = {φ−1(Ŵ ) | φ−1(Ŵ )φ−1(V̂ ) = φ−1(V̂ )φ−1(Ŵ ) ∀ φ−1(V̂ ) ∈
φ−1(π(U(M⊥)))} and then, according with the Proposition 3.26 we will have that φ−1(π(U(M)))

is closed in G. Note that if S ⊂ U(H) and Û ∈ π(S) then there exists U ∈ S such that

π(U) = Û .

Let Û ∈ π(U(M)) and V̂ ∈ π(U(M⊥)). Let U ∈ U(M) be such that π(U) = Û and V ∈
U(M⊥) be such that π(V ) = V̂ . According with Theorem 3.28 we have that UV = V U ⇒
π(U)π(V ) = π(V )π(U) ⇒ Û V̂ = V̂ Û ⇒ π(U(M))π(U(M⊥)) = π(U(M⊥))π(U(M)) ⇒
π(U(M)) ⊂ {Ŵ ∈ PU(H) | Ŵ V̂ = V̂ Ŵ for all V̂ ∈ π(U(M⊥))}.
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Let Ŵ ∈ PU(H) be such that Ŵ V̂ = V̂ Ŵ for all V̂ ∈ π(U(M⊥)). Let W ∈ U(H) be such

that π(W ) = Ŵ and, for every V̂ ∈ π(U(M⊥)), let V ∈ U(M⊥) be such that π(V ) = V̂ .

Then π(W )π(V ) = π(V )π(W ) ⇒ π(WV ) = π(V W ) ⇒ WV W ∗V ∗ ∈ Z(U(H)) ⇒ WV =

V W by Theorem 4.7. Using Theorem 3.28 we have that W ∈ Z(U(H)) ·U(M) ⇒ there exist

λ with |λ| = 1 and U ∈ U(M) such that W = λU ⇒ π(W ) = π(U) ⇒ Ŵ ∈ π(U(M)) ⇒
{Ŵ ∈ PU(H) | Ŵ V̂ = V̂ Ŵ for all V̂ ∈ π(U(M⊥))} ⊂ π(U(M)). ¤

Proposition 4.9. If M⊂ H is a finite dimensional subspace, then

π(U(M)) = π(Z(U(M)))π(SU(M))

Proof. Since Z(U(M)), SU(M) ⊂ U(M) and U(M) is a subgroup we have that

Z(U(M))SU(M) ⊂ U(M) ⇒ π(Z(U(M)))π(SU(M)) ⊂ π(U(M)).

Let Û ∈ π(U(M)). Then there exists U ∈ U(M) such that π(U) = Û and by Proposition

3.47 we have that there exist V ∈ Z(U(M)) and W ∈ SU(M) such that U = V W ⇒ π(U) =

π(V W ) = π(V )π(W ) ⊂ π(Z(U(M)))π(SU(M)) ⇒ π(M) ⊂ π(Z(U(M)))π(SU(M)). ¤

Proposition 4.10. F Let G be a Polish topological space, M ⊂ H a finite dimensional

closed subspace and φ : G → PU(H) an algebraic isomorphism. Then φ−1(π(SU(M))) is

an analytic subset of G.

Proof. Since φ−1(π(U(M))) is closed in G by Theorem 4.8, φ−1(π(U(M)))× φ−1(π(U(M)))

is closed in G × G. Let [·, ·] : φ−1(π(U(M))) × φ−1(π(U(M))) → G be defined as [a, b] =

aba−1b−1. Since the group operations are continuous, [·, ·] is continuous. If a, b ∈ φ−1(π(U(M)))

then φ(a), φ(b) ∈ π(U(M)) ⇒ there exist U, V ∈ U(M) such that φ(a) = π(U), φ(b) = π(V )

and (φ(a))−1 = (π(U))−1 = π(U∗) and similarly (φ(b))−1 = π(V ∗). Since φ([a, b]) =

φ(aba−1b−1) = φ(a)φ(b)(φ(a))−1(φ(b))−1 = π(U)π(V )π(U∗)π(V ∗) = π(UV U∗V ∗) ∈ π(U(M))

and since det(UV U∗V ∗) = det(U) det(V )det(U) det(V ) = 1, we have that φ([a, b]) ∈
π(SU(M)) ⇒ [a, b] ∈ φ−1(π(SU(M))). This proves that [·, ·] takes its values in φ−1(π(SU(M))).

Let y ∈ φ−1(π(SU(M))). Then φ(y) ∈ π(SU(M)) ⇒ there exists W ∈ SU(M) such

that φ(y) = π(W ). By Lemma 3.45 we have that there exist U, V ∈ SU(M) such that W =
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UV U∗V ∗. Let a = φ−1(π(U)) ∈ φ−1(π(SU(M))) ⊂ φ−1(π(U(M))) and b = φ−1(π(V )) ∈
φ−1(π(SU(M))) ⊂ φ−1(π(U(M))). Then y = φ−1(π(W )) = φ−1(π(UV U∗V ∗)) = φ−1(π(U))

φ−1(π(V ))(φ−1(π(U)))−1(φ−1(π(V )))−1 = aba−1b−1 = [a, b] ⇒ [·, ·] is onto φ−1(π(SU(M))).

Since [·, ·] is continuous, it follows that φ−1(π(SU(M))) is the continuous image of φ−1(π(U(M)))×
φ−1(π(U(M))), a closed subset of a Polish space, and therefore φ−1(π(SU(M))) is an ana-

lytic subset of G. ¤

Lemma 4.11. F IfM⊂ H is a finite dimensional subspace, then π(Z(U(M))) = Z(π(U(M))).

Proof. Let Û ∈ π(Z(U(M))). Then there exists U ∈ Z(U(M)) such that π(U) = Û . Let

V̂ ∈ π(U(M)) and V ∈ U(M) be such that π(V ) = V̂ . Then, since U and V commute, we

have that Û V̂ = π(U)π(V ) = π(UV ) = π(V U) = π(V )π(U) = V̂ Û ⇒ Û ∈ Z(π(U(M))) ⇒
π(Z(U(M))) ⊂ Z(π(U(M))).

Let Û ∈ Z(π(U(M))) and let U ∈ U(H) be such that π(U) = Û . We will show that

U ∈ Z(U(M)). This will imply that Û ∈ π(Z(U(M))) and therefore that Z(π(U(M))) ⊂
π(Z(U(M))). Let V ∈ U(M). Then π(V ) ∈ π(U(M)) and hence Ûπ(V ) = π(V )Û ⇒
π(U)π(V ) = π(V )π(U) ⇒ π(UV U∗V ∗) = Id ∈ PU(H) ⇒ UV U∗V ∗ ∈ Z(U(H)) ⇒ from

Theorem 4.7 that UV = V U ⇒ U ∈ Z(U(M)). ¤

Corollary 4.12. F Let G be a Polish topological space, M⊂ H a finite dimensional closed

subspace and φ : G → PU(H) an algebraic isomorphism. Then φ−1(π(SU(M))) is closed in

G.

Proof. From Corollary 4.8 we have that φ−1(π(U(M))) is closed in G and hence Polish.

From Proposition 4.9 we have that φ−1(π(Z(U(M))))φ−1(π(SU(M))) = φ−1(π(U(M))). By

Lemma 4.11 we have that π(Z(U(M))) = Z(π(U(M))) and, since φ is an isomorphism, it fol-

lows that φ−1(π(Z(U(M)))) is the center of φ−1(π(U(M))) and therefore φ−1(π(Z(U(M))))

is closed in φ−1(π(U(M))). φ−1(π(SU(M))) is an analytic subgroup of G by Proposition

4.10, and hence analytic subgroup of φ−1(π(U(M))). Let C = π(Z(U(M)))∩π(SU(M)) and

let Û ∈ C. Then there exist U ∈ Z(U(M)) and V ∈ SU(M) such that π(U) = Û = π(V ) ⇒
π(UV ∗) = Id ∈ PU(H) ⇒ UV ∗ ∈ Z(U(H)) ⇒ UV ∗ = λI ⇒ U = λV . Since U |M⊥ = I
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and V |M⊥ = I we have that λ = 1 ⇒ U = V ⇒ C = {π(U) | U ∈ Z(U(M)) ∩ SU(M)} =

{π(U) | U |M = µI, U |M⊥ = I, µn = 1}, where n = dim(M) ⇒ C is finite. Since φ is an

isomorphism we have that φ−1(C) is finite and hence closed in φ−1(π(U(M))). It follows

from Corollary 3.39 that φ−1(π(SU(M))) is closed in φ−1(π(U(M))) and hence closed in G.

¤

Proposition 4.13. F Let G be a Polish topological group, let H be a separable Hilbert space

and let e ∈ H be such that ‖e‖ = 1. Let S = {U ∈ U(H)) | ‖e − Ue‖ < ε} ⊂ U(H) and let

φ : G → PU(H) be an algebraic isomorphism. Then φ−1(π(S)) is analytic in G.

Proof. Note first that the quotient mapping π : U(H) → PU(H) is open and contin-

uous. Let M ⊂ H be a three dimensional subspace as in Lemma 3.51 so that S =

U({e}⊥) · [SU(M)∩S] · U({e}⊥). Then π(S) = π(U({e}⊥))π[SU(M)∩S]π(U({e}⊥)). Since

SU(M) is a connected compact metric group with a totally disconnected center (Chapter

I, Section 14, [19]), then π(SU(M)) is a connected compact metric group. A proof simi-

lar to the proof of Proposition 4.11 shows that Z(π(SU(M))) = π(Z(SU(M))) and hence

the center of π(SU(M)) is finite. Using the result from [14] we have that φ|φ−1(π(SU(M))) :

φ−1(π(SU(M))) → π(SU(M)) is a homeomorphism. SU(M)∩S is a relatively open subset

of SU(M) and hence Borel⇒ π[SU(M)∩S] is analytic in π(SU(M)) ⇒ φ−1(π[SU(M)∩S])

is analytic in φ−1(π(SU(M))). Since φ−1(π(U({e}⊥))) is closed in G by Theorem 4.8 and

therefore analytic, it follows from Lemma 3.53 that φ−1(π(S)) = φ−1(π(U({e}⊥))π[SU(M)∩
S]π(U({e}⊥))) = φ−1(π(U({e}⊥)))φ−1(π[SU(M) ∩ S])φ−1(π(U({e}⊥))) is analytic. ¤

4.3. Main Result

Proposition 4.14. F Let {em}m≥1 be an orthonormal basis for the separable infinite di-

mensional Hilbert space H. For every m,n ≥ 1 let Um,n = {U ∈ U(H) | ‖em − Uem‖ < 1
n
}.

Let π : U(H) → PU(H) be the natural quotient mapping. Then

⋂
m,n≥1

π−1(π(Um,n)) = {W ∈ U(H) | Wem = λmem for every m ≥ 1 with |λm| = 1}
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Proof. Note first that π−1(π(Um,n)) = Z(U(H)) · Um,n for every m,n ≥ 1. Let W ∈ U(H)

be such that Wem = λmem for every m ≥ 1 and |λm| = 1. Then (λ1W )e1 = λ1λ1e1 =

e1 ⇒ ‖e1 − (λ1W )e1‖ = 0 < 1
n

for every n ≥ 1 ⇒ λ1W ∈ U1,n for every n ≥ 1 ⇒ W ∈
Z(U(H)) · U1,n for every n ≥ 1. Similarly we have that W ∈ Z(U(H)) · Um,n for every

m,n ≥ 1 ⇒ W ∈ ∩m,n≥1Z(U(H)) · Um,n = ∩m,n≥1π
−1(π(Um,n)).

Let W ∈ ∩m,n≥1π
−1(π(Um,n)) = ∩m,n≥1Z(U(H)) · Um,n. Then for every m,n ≥ 1 there

exist λm,n with |λm,n| = 1 and Wm,n ∈ Um,n such that W = λm,nWm,n and ‖em−Wm,nem‖ < 1
n

for every m,n ≥ 1. Fix m and let p, q ≥ 1. Then |λm,p − λm,q| = ‖λm,pem − λm,qem‖ ≤
‖λm,pem − λm,pWm,pem‖ + ‖λm,pWm,pem − λm,qWm,qem‖ + ‖λm,qWm,qem − λm,qem‖ = ‖em −
Wm,pem‖+‖Wem−Wem‖+‖em−Wm,qem‖ < 1

p
+ 1

q
→ 0 as p, q →∞⇒ {λm,n}n≥1 is Cauchy

⇒ λm,n → λm as n →∞, with |λm| = 1. Thus ‖Wem − λmem‖ = ‖λm,nWm,nem − λmem‖ ≤
‖λm,nWm,nem−λmWm,nem‖+‖λmWm,nem−λmem‖ = |λm,n−λm|·‖Wm,nem‖+|λm|·‖Wm,nem−
em‖ < |λm,n − λm|+ 1

n
→ 0 as n →∞⇒ Wem = λmem. ¤

Corollary 4.15. F Let H be a separable infinite dimensional Hilbert space and π : U(H) →
PU(H) be the natural quotient mapping. Then there exists {Sl}l≥1 ⊂ U(H) a sequence of

subbasic open neighborhoods of I such that ∩l≥1π
−1(π(Sl)) = Z(U(H)).

Proof. Let {em}m≥1 be an orthonormal basis for H. Let f1 =
√

6
π

∑
m≥1

em

m
. Then ‖f1‖2 =

6
π2

∑
m≥1

1
m2 = 1 and expand {f1} to an orthonormal basis {fm}m≥1. Let Um,n = {U ∈

U(H) | ‖em − Uem‖ < 1
n
} and let Vm,n = {U ∈ U(H) | ‖fm − Ufm‖ < 1

n
}. Let {Sl}l≥1 =

{Um,n,Vm,n | m,n ≥ 1}. According with the Proposition 3.11 {Sl}l≥1 is a sequence of

subbasic open neighborhoods of I in U(H).

Let W ∈ ∩l≥1π
−1(π(Sl)) = [∩m,n≥1π

−1(π(Um,n))] ∩ [∩m,n≥1π
−1(π(Vm,n))]. Then, accord-

ing with the Proposition 4.14 we have that Wem = λmem and Wfm = µmfm, with |λm| =

|µm| = 1 for every m ≥ 1. But Wf1 = W
(√

6
π

∑
m≥1

em

m

)
=

√
6

π

∑
m≥1

Wem

m
=

√
6

π

∑
m≥1

λmem

m

and also Wf1 = µ1f1 = µ1

(√
6

π

∑
m≥1

em

m

)
=

(√
6

π

∑
m≥1

µ1em

m

)
⇒ λm = µ1 for every m ≥

1 ⇒ Wem = µ1em for every m ≥ 1 ⇒ W = µ1I ∈ Z(U(H)) ⇒ ∩l≥1π
−1(π(Sl)) ⊂ Z(U(H)).
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If W ∈ Z(U(H)) then W = λI for some |λ| = 1 and since I ∈ Um,n and I ∈ Vm,n for every

m,n ≥ 1 ⇒ W ∈ Z(U(H)) · Um,n = π−1(π(Um,n)) and W ∈ Z(U(H)) · Vm,n = π−1(π(Vm,n))

for every m,n ≥ 1 ⇒ W ∈ ∩l≥1π
−1(π(Sl)). ¤

Theorem 4.16. F Let G and H be two Polish topological groups and φ : G → H an

algebraic isomorphism. Suppose that there exists a sequence of open subsets of H, {Un}n≥1,

such that ∩n≥1Un = {e}, Un = U−1
n for every n ≥ 1, for every n0 there exists n1 such that

U2
n1
⊂ Un0 and φ−1(Un) is a set with the Baire property in G for every n ≥ 1. Then φ is a

topological isomorphism.

Proof. Let {am}m≥1 be a countable dense subset of H. We will prove that the sequence

{amUn}m≥1, n≥1 separate points in H. Then, according to a theorem of Mackey (Theorem

3.3, [22]) we have that {amUn}m≥1, n≥1 generates the Borel structure of H. Since φ−1(Un) is

a set with the Baire property and since the sets with the Baire property are invariant under

left translations, we have that φ−1(amUn) = φ−1(am)φ−1(Un) is a set with the Baire property

in G. Since {amUn}m≥1, n≥1 generates the Borel structure of H we have that φ−1(B) is a set

with the Baire property in G for every B Borel subset of H and hence φ is measurable with

respect to the sets with the Baire property. Then, since G is Baire and H is separable, it

follows from a well-known theorem of Banach, Kuratowski and Pettis (Theorem 9.10, page

61, [18]) that φ is continuous. From Lusin-Souslin Theorem (page 89, [18]) we have that

φ−1 is Borel measurable, and hence it is measurable with respect to the sets with the Baire

property. From the same result of Banach-Kuratowski-Pettis it follows that φ−1 is continuous

and hence φ is a topological isomorphism.

To show that {amUn}m≥1, n≥1 separates points in H, let x, y ∈ H be such that x 6= y.

Then x−1y 6= e ⇒ x−1y /∈ ∩n≥1Un ⇒ there exists n0 such that x−1y /∈ Un0 . Let n1 be

such that U2
n1
⊂ Un0 . Then x−1y /∈ U2

n1
. The set xUn1 is open and since {am}m≥1 is

dense, there exists m0 such that am0 ∈ xUn1 ⇒ x−1am0 ∈ Un1 ⇒ x−1 ∈ Un1a
−1
m0

⇒ x ∈
am0U

−1
n1

= am0Un1 . If y ∈ am0Un1 then a−1
m0

y ∈ Un1 and since x−1am0 ∈ Un1 we have that

53



x−1y = (x−1am0)(a
−1
m0

y) ∈ U2
n1
⊂ Un0 , a contradiction. Thus y /∈ am0Un1 and x ∈ am0Un1 ⇒

the collection {amUn}m≥1, n≥1 separates points in H. ¤

Lemma 4.17. Let f : X → Y be onto and let {Aγ}γ∈Γ be a collection of subsets of Y . Then

f(∩γ∈Γf−1(Aγ)) = ∩γ∈ΓAγ.

Proof. Let y ∈ f(∩γ∈Γf−1(Aγ)). Then there exists x ∈ ∩γ∈Γf−1(Aγ) such that y = f(x) ⇒
x ∈ f−1(Aγ) for every γ ∈ Γ ⇒ f(x) ∈ Aγ for every γ ∈ Γ ⇒ y = f(x) ∈ ∩γ∈ΓAγ ⇒
f(∩γ∈Γf−1(Aγ)) ⊂ ∩γ∈ΓAγ.

Let y ∈ ∩γ∈ΓAγ. Then there exists x ∈ X such that f(x) = y ⇒ f(x) ∈ Aγ for every γ ∈
Γ ⇒ x ∈ f−1(Aγ) for every γ ∈ Γ ⇒ x ∈ ∩γ∈Γf−1(Aγ) ⇒ y = f(x) ∈ f(∩γ∈Γf−1(Aγ)) ⇒
∩γ∈ΓAγ ⊂ f(∩γ∈Γf−1(Aγ)). ¤

Theorem 4.18. F Let H be a separable infinite dimensional Hilbert space, let G be a Polish

topological group and φ : G → PU(H) be an algebraic isomorphism. Then φ is a topological

isomorphism.

Proof. Let π : U(H) → PU(H) be the natural quotient mapping. Let {Sl}l≥1 be the

sequence defined in Proposition 4.15, {Sl}l≥1 = {Um,n,Vm,n | m,n ≥ 1}, where Um,n = {U ∈
U(H) | ‖em − Uem‖ < 1

n
}, Vm,n = {U ∈ U(H) | ‖fm − Ufm‖ < 1

n
} and {em}m≥1, {fm}m≥1

are two orthonormal bases for H. We will prove that the sequence {π(Sl)}l≥1 of subsets

of PU(H) satisfy the hypothesis of Theorem 4.16 and the conclusion will follow from the

same theorem. Since the projection mapping is open we have that π(Sl) is open for every

l ≥ 1. Also note that each φ−1(π(Sl)) is analytic in G by Proposition 4.13 and hence each

φ−1(π(Sl)) is a set with the Baire property.

Since ‖em−U∗em‖ = ‖U∗(Uem− em)‖ = ‖Uem− em‖ we have that U∗ ∈ Um,n whenever

U ∈ Um,n. Let Û ∈ π(Um,n) and U ∈ Um,n be such that π(U) = Û . Then U∗ ∈ Um,n ⇒
Û−1 = (π(U))−1 = π(U∗) ∈ π(Um,n) ⇒ (π(Um,n))−1 ⊂ π(Um,n). By replacing Um,n with U−1

m,n

we have that (π(U−1
m,n))−1 ⊂ π(U−1

m,n) ⇒ π(Um,n) ⊂ (π(Um,n))−1 ⇒ (π(Um,n))−1 = π(Um,n) for

every m,n ≥ 1. Similarly (π(Vm,n))−1 = π(Vm,n) for every m,n ≥ 1 ⇒ (π(Sl))
−1 = π(Sl) for

every l ≥ 1.
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Let U, V ∈ Um,2n. Then ‖em−Uem‖ < 1
2n

and ‖em−V em‖ < 1
2n

and hence ‖em−UV em‖ ≤
‖em−Uem‖+‖Uem−UV em‖ < 1

2n
+ 1

2n
= 1

n
⇒ UV ∈ Um,n ⇒ U2

m,2n ⊂ Um,n ⇒ (π(Um,2n))2 =

π(U2
m,2n) ⊂ π(Um,n) and hence for every m0, n0 ≥ 1 there exists m1 = m0 and n1 = 2n0 such

that (π(Um1,n1))
2 ⊂ π(Um0,n0). Similarly for every m0, n0 ≥ 1 there exists m1 = m0 and

n1 = 2n0 such that (π(Vm1,n1))
2 ⊂ π(Vm0,n0) and therefore for every l0 ≥ 1 there exists l1

such that (π(Sl1)
2 ⊂ π(Sl0).

From Corollary 4.15 we have that ∩l≥1π
−1(π(Sl)) = Z(U(H)). From Lemma 4.17 we have

that π(∩l≥1π
−1(π(Sl))) = ∩l≥1π(π−1(π(Sl))) = ∩l≥1π(Sl) ⇒ ∩l≥1π(Sl) = π(Z(U(H))) =

Z(U(H)) and hence ∩l≥1π(Sl) is the identity in PU(H). ¤
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CHAPTER 5

THE GROUP OF ∗−AUTOMORPHISMS

Throughout this section H is considered to be a separable complex Hilbert space.

5.1. The Topology on Hom(L(H)1)

Theorem 5.1. Let H be a separable Hilbert space and {el}l≥1 be a maximal orthonormal

subset. Then

d(S, T ) =
∑

m,n≥1

1

2m+n
|〈(S − T )em, en〉|

is a metric on L(H)1 compatible with the weak operator topology.

Proof. Since |〈(S − T )em, en〉| ≤ ‖S − T‖, the series
∑

m,n≥1
1

2m+n |〈(S − T )em, en〉| con-

verges. Clearly d(S, T ) ≥ 0, d(S, T ) = d(T, S) and d(S, S) = 0. If d(S, T ) = 0 then

〈(S − T )em, en〉 = 0 for all m,n ≥ 1. Since (S − T )en =
∑

m≥1〈(S − T )en, em〉em for ev-

ery n ≥ 1 we have that ‖(S − T )en‖2 =
∑

m≥1 |〈(S − T )en, em〉|2 = 0 ⇒ (S − T )en = 0

for all n ≥ 1 ⇒ S = T . Finally, d(S, T ) =
∑

m,n≥1
1

2m+n |〈(S −R + R− T )em, en〉| ≤
∑

m,n≥1
1

2m+n |〈(S −R)em, en〉|+
∑

m,n≥1
1

2m+n |〈(R− T )em, en〉| = d(S, R)+d(R, T ) and hence

d is a metric.

Let U ⊂ L(H)1 be an open set with respect to the topology compatible with the metric

d. Let S0 ∈ U and let ε > 0 so that Bd(S0, ε) ⊂ U . Choose k such that 1
k

+ 1
2k−2 < ε. Let

V = {S ∈ L(H)1 | |〈(S − S0)em, en〉| < 1
k
, 1 ≤ m,n ≤ k} be a basic weak operator open

neighborhood of S0. If S ∈ V then

d(S, S0) =
k∑

m,n=1

1

2m+n
|〈(S − S0)em, en〉|+ 2

∑

m≥k+1

∑
n≥1

1

2m+n
|〈(S − S0)em, en〉| ≤

k∑
m,n=1

1

2m+n

1

k
+2

∑

m≥k+1

∑
n≥1

1

2m+n
(‖S‖+‖S0‖) ≤ 1

k

(
k∑

m=1

1

2m

) (
k∑

n=1

1

2n

)
+2

∑

m≥k+1

∑
n≥1

2

2m+n
≤
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1

k
+ 2

∑

m≥k+1

2

2m

∑
n≥1

1

2n
=

1

k
+ 2

∑

m≥k

1

2m
=

1

k
+ 2

1

2k−1
=

1

k
+

1

2k−2
< ε

This implies that V ⊂ Bd(S0, ε) ⊂ U and hence the metric topology is weaker than the weak

operator topology.

Let V ⊂ L(H) be an open set with respect to the weak operator topology and let S0 ∈ V .

Let ε > 0 and k ≥ 1 so that {S ∈ L(H) | |〈(S − S0)em, en〉| < ε, 1 ≤ m,n ≤ k} ⊂ V . Let

U = {S ∈ L(H) | d(S, S0) < ε
22k }. If S ∈ U then for every 1 ≤ m,n ≤ k we have that

|〈(S − S0)em, en〉| ≤ 22k

k∑
m,n=1

1

2m+n
|〈(S − S0)em, en〉| ≤

22k
∑

m,n≥1

1

2m+n
|〈(S − S0)em, en〉| = 22kd(S, S0) < 22k ε

22k
= ε

This implies that U ⊂ V and hence the weak operator topology is weaker than the metric

topology on L(H)1. ¤

Corollary 5.2.

ρ(f, g) = sup
T∈L(H)1

d(f(T ), g(T )) + sup
T∈L(H)1

d(f−1(T ), g−1(T ))

where d is the metric on L(H)1 defined in Theorem 5.1, defines a metric on Hom(L(H)1).

Hom(L(H)1) is a complete separable metric topological group with the topology compatible

with this metric.

Proof. L(H)1 is weak operator compact by Theorem 5.1.3, page 306, [10]. From Theorem

5.1 we have that L(H)1 is a metric space. The conclusion follows from Theorem 2.24. ¤

5.2. The Subgroup S

Definition 5.3. We say that T ∈ L(H) is positive if 〈Tx, x〉 ≥ 0 for every x ∈ H. If

M ⊂ L(H), M+ will denote the set of all positive elements of M. If T, S are two self-

adjoint operators, we say that S ≤ T if T − S ∈ L(H)+.

Proposition 5.4. If T ∈ L(H) is a bounded linear operator, then T is self-adjoint if and

only if 〈Tx, x〉 is real for each x ∈ H. In particular, positive operators are self-adjoint.
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Proof. For every x ∈ H we have that 〈Tx, x〉 − 〈T ∗x, x〉 = 〈Tx, x〉 − 〈x, Tx〉 = 〈Tx, x〉 −
〈Tx, x〉 = 2iIm(〈Tx, x〉). Hence 〈Tx, x〉 is real if and only if 〈Tx, x〉 = 〈T ∗x, x〉 for every

x ∈ H. It follows from Proposition 2.19 that T is real if and only if T ∗ = T . ¤

Remark 5.5. According to the Proposition 5.4, if T ∈ L(H)+ then T is self-adjoint. If

S ≤ T and T ≤ S then T − S ∈ L(H)+ and −(T − S) ∈ L(H)+ ⇒ 〈(T − S)x, x〉 = 0 for

every x ∈ H ⇒ T − S = 0 by Proposition 2.19. This implies that T = S and hence ≤ is a

partial order on the set of self-adjoint operators.

Lemma 5.6. If T ∈ L(H) is a self-adjoint, bounded linear operator then

‖T‖ = sup{|〈Tx, x〉| | ‖x‖ = 1}

In particular, if T ∈ L(H)+, then ‖T‖ = sup{〈Tx, x〉 | ‖x‖ = 1}.
Proof. Let a = sup{|〈Tx, x〉| | ‖x‖ = 1}. Since {|〈Tx, x〉| | ‖x‖ = 1} ⊂ {|〈Tx, y〉| | ‖x‖ ≤
1, ‖y‖ ≤ 1} we have that a = sup{|〈Tx, x〉| | ‖x‖ = 1} ≤ sup{|〈Tx, y〉| | ‖x‖ ≤ 1, ‖y‖ ≤
1} = ‖T‖.

From Proposition 2.18 we have that 〈Tx, y〉 = 1
4
〈T (x + y), x + y〉 − 1

4
〈T (x− y), x− y〉+

1
4
i〈T (x + iy), x + iy〉 − 1

4
i〈T (x− iy), x− iy〉 and, since by Proposition 5.4 〈Tx, x〉 is real for

each x ∈ H, it follows that Re〈Tx, y〉 = 1
4
〈T (x + y), x + y〉 − 1

4
〈T (x− y), x− y〉 ⇒

|Re〈Tx, y〉| ≤ 1

4
|〈T (x + y), x + y〉|+ 1

4
|〈T (x− y), x− y〉| =

1

4
‖x + y‖2

∣∣∣∣〈T
x + y

‖x + y‖ ,
x + y

‖x + y‖〉
∣∣∣∣ +

1

4
‖x− y‖2

∣∣∣∣〈T
x− y

‖x− y‖ ,
x− y

‖x− y‖〉
∣∣∣∣ ≤

1

4
a(‖x + y‖2 + ‖x− y‖2) =

1

4
a(2‖x‖2 + 2‖y‖2) ≤ a

for every x, y ∈ H with ‖x‖ ≤ 1, ‖y‖ ≤ 1. Here we are also using the Paralelogram Law,

Proposition 2.7.

Let x, y ∈ H such that ‖x‖ = ‖y‖ = 1 and let c = Re〈Tx,y〉−iIm〈Tx,y〉
|〈Tx,y〉| ∈ C. Then

|c| =
√

(Re〈Tx,y〉)2
|〈Tx,y〉|2 + (Im〈Tx,y〉)2

|〈Tx,y〉|2 = 1 ⇒ ‖cx‖ = |c| ‖x‖ = 1 and 〈T (cx), y〉 = c〈Tx, y〉 =

Re〈Tx,y〉−iIm〈Tx,y〉
|〈Tx,y〉| (Re〈Tx, y〉 + iIm〈Tx, y〉) = (Re〈Tx,y〉)2+(Im〈Tx,y〉)2

|〈Tx,y〉| = |〈Tx, y〉|. It follows that
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〈T (cx), y〉 is real and positive and, using the previous inequality, we have that |〈Tx, y〉| =

〈T (cx), y〉 = |Re〈T (cx), y〉| ≤ a for every x, y ∈ H with ‖x‖ = ‖y‖ = 1. This implies that

‖T‖ = sup{|〈Tx, y〉| | ‖x‖ ≤ 1, ‖y‖ ≤ 1} ≤ a = sup{|〈Tx, x〉| | ‖x‖ = 1} and hence

‖T‖ = sup{|〈Tx, x〉| | ‖x‖ = 1}. ¤

Corollary 5.7. If S, T ∈ L(H) and S − T ≥ 0, then ‖S‖ ≥ ‖T‖.
Proof. S ≥ T ≥ 0 ⇒ 〈Sx, x〉 ≥ 〈Tx, x〉 for every x ∈ H. It follows from Lemma 5.6 that

‖S‖ = sup{〈Sx, x〉 | ‖x‖ = 1} ≥ ‖T‖ = sup{〈Tx, x〉 | ‖x‖ = 1}. ¤

Definition 5.8. If (Tj)j∈J is a net of self-adjoint operators, we say that (Tj)j∈J is bounded

above if there exists S a self-adjoint operator such that Tj ≤ S for every j ∈ J . The least

such S, if exists, is denoted supj∈J{Tj}.

Definition 5.9. A ∗−subalgebra of L(H) is a subalgebra of L(H) which is stable with

respect to the adjoint operation.

Definition 5.10. Let M ⊂ L(H). The commutant M′ of M is the set the set defined

as M′ = {T ∈ L(H) | TS = ST for every S ∈ L(H)}. The bicommutant M′′ of M is

M′′ = (M′)′.

Definition 5.11. A von Neumann algebra in H is a ∗−subalgebra A of L(H) such that

A = A′′. The algebra L(H) is a von Neumann algebra.

Definition 5.12. Let A and B be von Neumann algebras. A linear mapping φ : A → B
is said to be positive if φ(A+) ⊂ B+. We say that φ is normal positive if, further, for every

increasing net {Tj}j∈J ⊂ A+ with supremum T ∈ A+, the net {φ(Tj)}j∈J has supremum

φ(T ).

Proposition 5.13. Let A be a von Neumann algebra and T ∈ A. Then T ∈ A+ if and only

if T = S∗S for some S ∈ A.
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Proof. If T = S∗S, then T is self adjoint and 〈Tx, x〉 = 〈S∗Sx, x〉 = 〈Sx, Sx〉 = ‖Sx‖ ≥ 0 ⇒
T ≥ 0.

If T ∈ A+, then T
1
2 ∈ A+ and T = T

1
2 T

1
2 = (T

1
2 )∗T

1
2 . ¤

Definition 5.14. A ∗−automorphism acting on L(H) is a bijective mapping ϕ : L(H) →
L(H) satisfying, for every S, T ∈ L(H) and every λ ∈ C the following:

1) ϕ(ST ) = ϕ(S)ϕ(T );

2) ϕ(S + T ) = ϕ(S) + ϕ(T );

3) ϕ(λT ) = λϕ(T );

4) ϕ(T ∗) = (ϕ(T ))∗.

We denote with Aut(L(H)) the set of all ∗−automorphisms acting on L(H).

A ∗−anti-automorphism on L(H) is a bijective mapping ϕ′ : L(H) → L(H) satisfying,

for every S, T ∈ L(H) and every λ ∈ C, ϕ′(ST ) = ϕ′(T )ϕ′(S) and the conditions 2)-4)

above.

Remark 5.15. Aut(L(H)) is a group under composition.

Proposition 5.16. If S is the group generated by the ∗−automorphisms and the ∗−anti-

automorphisms and if ϕ′ is any fixed ∗−anti-automorphism on L(H) then S = Aut(L(H))∪
ϕ′Aut(L(H)).

Proof. If ϕ ∈ Aut(L(H)) then ϕ′ϕ is a ∗−anti-automorphism and hence Aut(L(H)) ∪
ϕ′Aut(L(H)) ⊂ S.

If ψ is any ∗−anti-automorphism, let ϕ = ϕ′−1ψ. Then ϕ is linear, ϕ(T ∗) = (ϕ(T ))∗ for

every T ∈ L(H) and since ϕ(ST ) = (ϕ′−1ψ)(ST ) = ϕ′−1(ψ(T )ψ(S)) = ϕ′−1(ψ(S))ϕ′−1(ψ(T )) =

ϕ(S)ϕ(T ) ⇒ ϕ ∈ Aut(L(H)) ⇒ ψ = ϕ′ϕ ∈ ϕ′Aut(L(H)) and hence S ⊂ Aut(L(H)) ∪
ϕ′Aut(L(H)). ¤

Proposition 5.17. Let ϕ ∈ Aut(L(H)). If S, T ∈ L(H) are self-adjoint such that S ≤ T

then ϕ(S), ϕ(T ) are self-adjoint and ϕ(S) ≤ ϕ(T ).
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Proof. Let ϕ ∈ Aut(L(H)) and let S, T ∈ L(H) be self-adjoint. Then S∗ = S ⇒ (ϕ(S))∗ =

ϕ(S∗) = ϕ(S). Similarly (ϕ(T ))∗ = ϕ(T ).

If S ≤ T then T −S ≥ 0 ⇒ there exists R ∈ L(H) such that T −S = R∗R ⇒ ϕ(T −S) =

ϕ(R∗)ϕ(R) = (ϕ(R))∗ϕ(R) ≥ 0 ⇒ ϕ(T ) ≥ ϕ(S). ¤

Proposition 5.18. Let A ⊂ L(H) be a von Neumann algebra. Then every element of A is

a linear combination of unitary elements of A.

Proof. Since every T ∈ A can be uniquely expressed in the form T = T1 + iT2, where

T1 = 1
2
(T + T ∗) and T2 = i

2
(T ∗ − T ) are self-adjoint elements of A, it is enough to consider

the case of a self-adjoint operator T ∈ A. We may also assume that ‖T‖ ≤ 1 by replacing

T with T
‖T‖ . But then ‖Tx‖ ≤ ‖x‖ ⇒ 〈Tx, Tx〉 ≤ 〈x, x〉 ⇒ I − T 2 ≥ 0 ⇒ (I − T 2)

1
2

exists and it’s positive. Let U = T + i(I − T 2)
1
2 . Then U ∈ A and U∗ = T − i(I − T 2)

1
2 .

Since I − T 2 commutes with T , (I − T 2)
1
2 commutes with T and hence U∗U = UU∗ =

(T − i(I − T 2)
1
2 )(T + i(I − T 2)

1
2 ) = T 2 + I − T 2 = I. Moreover, T = 1

2
(U + U∗). ¤

Corollary 5.19. Let A ⊂ L(H) be a von Neumann algebra and T ∈ L(H). Then T ∈ A
if and only if UT = TU for every unitary operator U ∈ A′.

Proof. If T ∈ A = A′′ then T commutes with every operator of A′, hence with every unitary

operator U ∈ A′.

If UT = TU for every unitary operator U ∈ A′ then, since by Proposition 5.18 every

operator S ∈ A′ is a linear combination of unitary operators of A′, we have that T commutes

with every operator of A, and hence T ∈ A′′ = A. ¤

Theorem 5.20. If (Tj)j∈J is a net of self-adjoint operators on a Hilbert space H, which is

increasing and bounded above, then there exists T ∈ L(H) self-adjoint, such that Tj
so−→ T .

Moreover, T = supj∈J{Tj}.
Proof. Let (Tj)j∈J be an increasing, bounded above net of self-adjoint operators acting on

the Hilbert space H. By assumption, there exists S a self-adjoint operator such that S ≥ Tj

for every j ∈ J . We may assume that Tj ∈ L(H)+, by considering the net Tj − Tj0 for
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j ≥ j0 if necessary, where Tj0 is some fixed element of the original net. If M = ‖S‖ then

by Corollary 5.7 we have that ‖Tj‖ ≤ M for all j ∈ J . This implies that |〈Tjx, x〉| ≤
‖Tjx‖ ‖x‖ ≤ ‖Tj‖ ‖x‖2 ≤ M‖x‖2 ⇒ 〈Tjx, x〉 is an increasing net, bounded above, and

hence convergent. It follows from the polarization identity (Corollary 2.18) that 〈Tjx, y〉 is

convergent for all x, y ∈ H. If u : H × H → C is defined as u(x, y) = limj〈Tjx, y〉 then,

since u(x, y) = limj〈Tjx, y〉 = limj 〈Tjy, x〉 = u(y, x), u is a bilinear form on H ×H. Since

|u(x, y)| = limj |〈Tjx, y〉| ≤ M ‖x‖ ‖y‖, we have that u is bounded. Hence, there exists

T ∈ L(H) such that u(x, y) = 〈Tx, y〉. Since 〈Tx, y〉 = u(x, y) = u(y, x) = 〈Ty, x〉 =

〈x, Ty〉, we have that T is self-adjoint. Clearly 〈Tx, x〉 = u(x, x) ≥ 〈Tjx, x〉 ⇒ T ≥ Tj

for every j ∈ J and ‖T‖ = sup‖x‖≤1, ‖y‖≤1〈Tx, y〉 = sup‖x‖≤1, ‖y‖≤1 |u(x, y)| ≤ M . Since

‖(T − Tj)x‖2 = ‖(T − Tj)
1
2 (T − Tj)

1
2 x‖2 ≤ ‖T − Tj‖ ‖(T − Tj)

1
2 x‖2 ≤ 2M〈(T − Tj)x, x〉 =

2M(〈Tx, x〉 − 〈Tjx, x〉) = 2M(u(x, x)− 〈Tjx, x〉) → 0, it follows that Tj
so−→ T .

Let S be self-adjoint and such that Tj ≤ S for every j ∈ J . Then 〈Tjx, x〉 ≤ 〈Sx, x〉
for every x ∈ H. Since Tj

so−→ T we have that Tj
wo−→ T and hence 〈Tx, x〉 ≤ 〈Sx, x〉 for

every x ∈ H ⇒ 〈(S − T )x, x〉 ≥ 0 for every x ∈ H ⇒ S − T ≥ 0 ⇒ S ≥ T and hence

T = supj∈J{Tj}. ¤

Corollary 5.21. If {Aj} ⊂ A+ is an increasing net, bounded above with supremum A,

then A ∈ A+.

Proof. Let U ∈ A′ be unitary. Then UAU∗ = supj{UAjU
∗} = supj{Aj} = A, and hence

A commutes with every unitary operator in A′. According with the Corollary 5.19, A ∈ A.

Since A is the supremum of positive operators, A is also positive. ¤

Corollary 5.22. Every ∗−automorphism acting on L(H) is a normal positive mapping.

Proof. Let ϕ ∈ Aut(L(H)). By Lemma 5.17 we have that ϕ preserves order and hence

ϕ(L(H)+) ⊂ L(H)+. Let {Tj}j∈J ⊂ L(H)+ be a net with T = supj∈J{Tj} ∈ L(H)+. Since

ϕ preserves order we have that {ϕ(Tj)}j∈J is increasing and bounded above by ϕ(T ). Let

S = supj∈J ϕ(Tj). Then ϕ(Tj) ≤ S ≤ ϕ(T ) for every j ∈ J ⇒ Tj ≤ ϕ−1(S) ≤ T for every

j ∈ J ⇒ ϕ−1(S) = T ⇒ S = ϕ(T ). ¤
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Proposition 5.23. If ϕ is a ∗−automorphism acting on L(H) then ϕ(T ) ∈ L(H)1 for every

T ∈ L(H)1.

Proof. If T ∈ L(H) and ϕ ∈ Aut(L(H)) then 〈T ∗Tx, x〉 = 〈Tx, Tx〉 ≤ ‖T‖2〈x, x〉 ⇒ T ∗T ≤
‖T‖2I ⇒ (ϕ(T ))∗ϕ(T ) = ϕ(T ∗)ϕ(T ) = ϕ(T ∗T ) ≤ ‖T‖2ϕ(I) = ‖T‖2I ⇒ ‖ϕ(T )‖2 ≤ ‖T‖2 ⇒
if ‖T‖ ≤ 1 then ‖ϕ(T )‖ ≤ 1 and hence ϕ(T ) ∈ L(H)1 for every T ∈ L(H)1. ¤

Proposition 5.24. F If S is the group defined in Proposition 5.16 then S ⊂ Hom(L(H)1).

Proof. If ϕ ∈ Aut(L(H)) then ϕ|L(H)1
: L(H)1 → L(H)1 by Proposition 5.23 and it is normal

by Corollary 5.22. According to Theorem 2, page 59 [3] we have that ϕ|L(H)1
is continuous

with respect to the weak operator topology. Similarly ϕ−1|L(H)1
is weak operator continuous

and hence Aut(L(H)) ⊂ Hom(L(H)1). Since S = Aut(L(H))∪ϕ′Aut(L(H)) where ϕ′ is any

fixed ∗−anti-automorphism, it remains to show that there exists ϕ′ a ∗−anti-automorphism

such that ϕ′|L(H)1
is continuous with respect to the weak operator topology.

Let {el}l≥1 be an orthonormal basis forH. If x =
∑

l≥1 alel, let V x =
∑

l≥1 alel. Then V :

H → H, V (λx+µy) = λV x+µV y for every x, y ∈ H and λ, µ ∈ C and, if x =
∑

l≥1 alel ∈ H
and y =

∑
l≥1 blel ∈ H, then 〈V x, V y〉 = 〈∑l≥1 alel,

∑
l≥1 blel〉 =

∑
l≥1 albl = 〈y, x〉. Also

note that V 2 = I and hence V −1 = V and that ‖V x‖2 = |〈V x, V x〉| = |〈x, x〉| = ‖x‖2.

Let ϕ′ : L(H) → L(H) be defined as ϕ′(T ) = V T ∗V −1. Let T ∈ L(H), x, y ∈ H
and λ, µ ∈ C. Then ϕ(T )(λx + µy) = V TV −1(λx + µy) = V T (λV −1x + µV −1y) =

V (λTV −1x + µTV −1y) = λV TV −1x + µV TV −1y = λϕ′(T )x + µϕ′(T )y ⇒ ϕ′(T ) is lin-

ear. Since ‖ϕ′(T )x‖ = ‖V TV −1x‖ = ‖TV −1x‖ ≤ ‖T‖ · ‖V −1x‖ = ‖T‖ · ‖x‖ we have that

ϕ′(T ) is bounded. Thus ϕ′(T ) ∈ L(H) for every T ∈ L(H). We will show that ϕ′ is a

∗−anti-automorphism and that ϕ′|L(H)1
is continuous with respect to the weak operator

topology.

If S, T ∈ L(H) and if λ ∈ C we have that ϕ′(S + T ) = V (S + T )∗V −1 = V S∗V −1 +

V T ∗V −1 = ϕ′(S) + ϕ′(T ); ϕ′(λT ) = V (λT )∗V −1 = V (λT ∗)V −1 = λV T ∗V −1 = λϕ′(T )

and ϕ′(ST ) = V (ST )∗V −1 = V T ∗S∗V −1 = V T ∗V −1V S∗V −1 = ϕ′(T )ϕ′(S). If T ∈ L(H),
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since 〈ϕ′(T )∗x, y〉 = 〈x, ϕ′(T )y〉 = 〈x, V T ∗V −1y〉 = 〈T ∗V −1y, V −1x〉 = 〈V −1y, TV −1x〉 =

〈V TV −1x, y〉 = 〈ϕ(T ∗)x, y〉 for every x, y ∈ H, we have that ϕ′(T )∗ = ϕ′(T ∗).

Let ψ : L(H) → L(H) be defined as ψ(T ) = V −1T ∗V . Same arguments as before

shows that ψ(T ) ∈ L(H) and that ψ(T ∗) = ψ(T )∗. Since ϕ′(ψ(T )) = V ψ(T )∗V −1 =

V ψ(T ∗)V −1 = V V −1(T ∗)∗V V −1 = T and since ψ(ϕ′(T )) = V −1ϕ′(T )∗V = V −1ϕ′(T ∗)V =

V −1V (T ∗)∗V −1V = T for every T ∈ L(H) ⇒ ϕ′ and ψ are inverses of each other and hence

bijections.

To show continuity, let {Tj}j∈J ⊂ L(H) be such that Tj
wo−→ T ∈ L(H). Then T ∗

j
wo−→

T ∗ ⇒ 〈T ∗
j x, y〉 → 〈T ∗x, y〉 for every x, y ∈ H. In particular, if we replace x with V −1x and y

with V −1y, then 〈T ∗
j V −1x, V −1y〉 → 〈T ∗V −1x, V −1y〉 ⇒ 〈y, V T ∗

j V −1x〉 → 〈y, V T ∗V −1x〉 ⇒
〈y, ϕ′(Tj)x〉 → 〈y, ϕ′(T )x〉 ⇒ ϕ′(Tj)

wo−→ ϕ′(T ) and hence ϕ′ is continuous with respect to

the weak operator topology. ¤

Definition 5.25. If ρ : L(H) → L(H) is a linear bijection and ‖ρ(T )‖ = ‖T‖ for every

T ∈ L(H) we say that ρ is a linear bijective isometry. We denote with LBIG the set of all

linear bijective isometries on L(H).

Proposition 5.26. LBIG is a group under composition.

Proof. Let ρ, η ∈ LBIG and let T ∈ L(H). Obviously ρη is linear, bijective and ‖ρη(T )‖ =

‖η(T )‖ = ‖T‖ and hence ρη ∈ LBIG. The identity mapping id : L(H) → L(H) is the

identity element of the group LBIG.

If ρ ∈ LBIG then ρ−1 is bijective. If S, T ∈ L(H) and λ ∈ C then ρ−1(αT + S) =

ρ−1(αρ[ρ−1(T )]+ρ[ρ−1(S)]) = ρ−1(ρ[αρ−1(T )+ρ−1(S)]) = αρ−1(T )+ρ−1(S) and hence ρ−1 is

linear. Since ‖T‖ = ‖ρ(ρ−1(T ))‖ = ‖ρ−1(T )‖ we have that ρ−1 is an isometry ⇒ ρ−1 ∈ LBIG

and hence LBIG is a group. ¤

Theorem 5.27. F If S is the group defined in Proposition 5.16 then clHom(L(H)1)(Aut(L(H))) ⊂
S. Here, the topology on Hom(L(H)1) is the topology compatible with the metric ρ defined

in Corollary 5.2.
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Proof. Let f ∈ clHom(L(H)1)(Aut(L(H))). Let {ϕj}j∈J ⊂ Aut(L(H)) be such that ϕj|L(H)1

ρ−→
f ∈ Hom(L(H)1). Since ρ(ϕj, f) = supT∈L(H)1

d(ϕj(T ), f(T ))+supT∈L(H)1
d(ϕ−1

j (T ), f−1(T ))

we have that d(ϕj(T ), f(T )) → 0 and d(ϕ−1
j (T ), f−1(T )) → 0 for every T ∈ L(H)1 and, since

the weak operator topology and the d-metric topology on L(H)1 are equivalent, we have that

〈ϕj(T )x, y〉 → 〈f(T )x, y〉 and 〈ϕ−1
j (T )x, y〉 → 〈f−1(T )x, y〉 for every T ∈ L(H)1 and every

x, y ∈ H.

Define ϕ : L(H) → L(H) as ϕ(T ) = ‖T‖f
(

T
‖T‖

)
if T 6= 0 and ϕ(0) = 0. Note that since

0 = 〈0x, y〉 = 〈ϕj(0)x, y〉 → 〈f(0)x, y〉 for every x, y ∈ H we have that f(0) = 0 = ϕ(0). If

0 6= T ∈ L(H)1, then 〈ϕj(T )x, y〉 = ‖T‖〈ϕj

(
T
‖T‖

)
x, y〉 → ‖T‖〈f

(
T
‖T‖

)
x, y〉 = 〈ϕ(T )x, y〉

for every x, y ∈ H and since 〈ϕj(T )x, y〉 → 〈f(T )x, y〉 for every x, y ∈ H we have that

ϕ(T ) = f(T ) for every T ∈ L(H)1 and hence ϕ|L(H)1
= f . We also have that 〈x, y〉 =

〈ϕj(I)x, y〉 → 〈f(I)x, y〉 = 〈ϕ(I)x, y〉 ⇒ ϕ(I) = f(I) = I.

Let S ∈ L(H) and λ ∈ C. If S = 0 or λ = 0 then λS = 0 ⇒ ϕ(λS) = 0 = λϕ(S). If S 6= 0

and λ 6= 0 then 〈ϕj(λS)x, y〉 = λ‖S‖〈ϕj

(
S
‖S‖

)
x, y〉 → λ‖S‖〈f

(
S
‖S‖

)
x, y〉 = 〈λϕ(S)x, y〉

and 〈ϕj(λS)x, y〉 = ‖λS‖〈ϕj

(
λS
‖λS‖

)
x, y〉 → ‖λS‖〈f

(
λS
‖λS‖

)
x, y〉 = 〈ϕ(λS)x, y〉 for every

x, y ∈ H and hence λϕ(S) = ϕ(λS).

Let S, T ∈ L(H). If S = 0 then ϕ(S + T ) = ϕ(T ) = ϕ(S) + ϕ(T ). Similarly if T = 0. If

S + T = 0 then −S = T ⇒ ϕ(S + T ) = 0 = ϕ(S)− ϕ(S) = ϕ(S) + ϕ(−S) = ϕ(S) + ϕ(T ).

If S 6= 0, T 6= 0 and S + T 6= 0 then 〈ϕj(S)x, y〉 + 〈ϕj(T )x, y〉 = 〈ϕj(S + T )x, y〉 =

‖S + T‖〈ϕj

(
S+T
‖S+T‖

)
x, y〉 → ‖S + T‖〈f

(
S+T
‖S+T‖

)
x, y〉 = 〈ϕ(S + T )x, y〉 for every x, y ∈ H.

Similarly 〈ϕj(S)x, y〉 → 〈ϕ(S)x, y〉 and 〈ϕj(T )x, y〉 → 〈ϕ(T )x, y〉 for every x, y ∈ H. Hence

〈ϕ(S + T )x, y〉 = 〈ϕ(S)x, y〉+ 〈ϕ(T )x, y〉 for every x, y ∈ H ⇒ ϕ(S + T ) = ϕ(S) + ϕ(T ).

Define ψ : L(H) → L(H) as ψ(T ) = ‖T‖f−1
(

T
‖T‖

)
if T 6= 0 and ψ(0) = 0. By the same

reasoning as before we have that ψ|L(H)1
= f−1 and ψ is linear. If 0 6= T ∈ L(H)1 then

ϕ(ψ(T )) = f(f−1(T )) = T and ψ(ϕ(T )) = f−1(f(T )) = T . If 0 6= T ∈ L(H), let λ > 0 be

such that ‖λT‖ ≤ 1. Then ϕ(ψ(T )) = 1
λ
ϕ(ψ(λT )) = 1

λ
f(f−1(λT )) = 1

λ
λT = T and similarly
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ψ(ϕ(T )) = T . If T = 0 then ϕ(ψ(0)) = 0 and ψ(ϕ(0)) = 0. Thus ϕ and ψ are inverses of

each other and hence ϕ is a bijection and ϕ−1 = ψ.

Let T ∈ L(H). Since 〈x, ϕj(T )y〉 = 〈(ϕj(T ))∗x, y〉 = 〈ϕj(T
∗)x, y〉 → 〈ϕ(T ∗)x, y〉 for

every x, y ∈ H and since 〈x, ϕj(T )y〉 → 〈x, ϕ(T )y〉 for every x, y ∈ H, we have that

〈ϕ(T ∗)x, y〉 = 〈x, ϕ(T )y〉 for every x, y ∈ H ⇒ ϕ(T ∗) = (ϕ(T ))∗ for every T ∈ L(H).

If T ∈ L(H)1 then ‖ϕ(T )‖ = ‖f(T )‖ ≤ 1 ⇒ ‖ϕ‖ = supT∈L(H)1
‖ϕ(T )‖ ≤ 1. Let

T ∈ L(H). Then ‖ϕ(T )‖ ≤ ‖ϕ‖ · ‖T‖ ≤ ‖T‖. Similarly ‖ϕ−1‖ = supT∈L(H)1
‖ϕ−1(T )‖ ≤ 1

and hence ‖ϕ−1(T )‖ ≤ ‖T‖. Replace T with ϕ(T ) in the last inequality and get ‖T‖ =

‖ϕ−1(ϕ(T ))‖ ≤ ‖ϕ(T )‖ and hence ‖ϕ(T )‖ = ‖T‖.
Thus ϕ ∈ LBIG. Since ϕ(I) = I, according to Theorem 7 and Corollary 11 of [9] we have

that ϕ is either a ∗−automorphism or a ∗−anti-automorphism. It follows from the definition

of S that ϕ ∈ S and hence clHom(L(H)1)(Aut(L(H))) ⊂ S. ¤

Corollary 5.28. F S is a closed subgroup of Hom(L(H)1).

Proof. S ⊂ Hom(L(H)1) by Proposition 5.24. Let ϕ′ be any ∗−anti-automorphism of L(H).

Since S = Aut(L(H))∪ϕ′Aut(L(H)) by Proposition 5.16 and since clHom(L(H)1)
(Aut(L(H))) ⊂

S by Theorem 5.27, we have that clHom(L(H)1)(S) = clHom(L(H)1)(Aut(L(H))∪ϕ′Aut(L(H))) =

clHom(L(H)1)(Aut(L(H)))∪ϕ′clHom(L(H)1)(Aut(L(H))) ⊂ S∪ϕ′S = S∪S = S ⇒ S is a closed

subgroup of Hom(L(H)1. ¤

5.3. The Surjection

Definition 5.29. Let H be a Hilbert space of dimension n. A family (Ui,j)1≤i,j≤n of oper-

ators in L(H) is called a self-adjoint system of n × n matrix units if Ui,jUk,l = 0 for j 6= k,

Ui,jUj,k = Ui,k,
∑

1≤i≤n Ui,i = I and U∗
i,j = Uj,i.

If H is infinite dimensional, a family (Ui,j)1≤i,j≤n of operators in L(H) is called a self-

adjoint system of operator units if Ui,jUk,l = 0 for j 6= k, Ui,jUj,k = Ui,k, U∗
i,j = Uj,i and

∑
i≥1 Ui,i = I, with convergence of

∑
i≥1 Ui,i in the strong operator topology.
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Proposition 5.30. The system of n × n matrix units in finite dimensional Hilbert space

and the system of operator units in infinite dimensional Hilbert space as in Definition 5.29

exist.

Proof. In finite dimensional case Ui,j corresponds to the matrix with all entries 0 except in

position (i, j), where the entry is 1.

In the infinite dimensional case, let {el}l∈L be an orthonormal basis for H, and define

Ui,j for every el as

Ui,j(el) =





0 if j 6= l

ei if j = l

It is obvious that Ui,j’s are linear operators. We need to show that Ui,jUk,l = 0 if j 6= k,

Ui,jUj,k = Ui,k,
∑

i≥1 Ui,i = I and U∗
i,j = Uj,i. Let x =

∑
l∈L alel ∈ H.

If j 6= k then Ui,jUk,m(x) = Ui,jUk,m(
∑

l∈L alel) = Ui,j(
∑

l∈L alUk,m(el)) = Ui,j(amUk,m(em)) =

amUi,j(ek) = 0.

Ui,jUj,k(x) = Ui,jUj,k(
∑

l∈L alel) = Ui,j(
∑

l∈L alUj,k(el)) = Ui,j(akUj,k(ek)) = akUi,j(ej) =

akei. On the other hand, Ui,k(x) = Ui,k(
∑

l∈L alel) =
∑

l∈L alUi,k(el) = akUi,k(ek) = akei,

and hence Ui,jUj,k = Ui,k.

If y =
∑

l∈L blel ∈ H, then

〈Ui,j(x), y〉 = 〈Ui,j(
∑

l∈L

alel),
∑

l∈L

blel〉 = 〈
∑

l∈L

alUi,j(el),
∑

l∈L

blel〉 = 〈ajUi,j(ej),
∑

l∈L

blel〉 =

= aj〈ei,
∑

l∈L

blel〉 = ajbi

On the other hand,

〈x, Uj,i(y)〉 = 〈
∑

l∈L

alel, Uj,i(
∑

l∈L

blel)〉 = 〈
∑

l∈L

alel,
∑

l∈L

blUj,i(el)〉 = 〈
∑

l∈L

alel, biUj,i(ei)〉 =

= bi〈
∑

l∈L

alel, ej〉 = biaj

and hence U∗
i,j = Uj,i.
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Since ‖∑
1≤i≤n Ui,i(x)−x‖2 = ‖∑

i>n aiei‖2 =
∑

i>n |ai|2 → 0 as n →∞ for every x ∈ H
we have that

∑
i≥1 Ui,i converges in the strong operator topology to I. ¤

Proposition 5.31. If H is finite dimensional, then for every ∗−automorphism ϕ acting on

L(H) there is an unitary operator W such that ϕ(T ) = WTW ∗ for every T ∈ L(H).

Proof. Let n = dim(H) and let ϕ be a ∗−automorphism on L(H). If P is an orthogonal

projection, then (ϕ(P ))2 = ϕ(P )ϕ(P ) = ϕ(P 2) = ϕ(P ) and (ϕ(P ))∗ = ϕ(P ∗) = ϕ(P ), and

hence ϕ(P ) is an orthogonal projection. If P1 and P2 are two orthogonal projections such

that P1 ≥ P2, then P1−P2 is an orthogonal projection, and ϕ(P1−P2) = ϕ(P1)−ϕ(P2) is an

orthogonal projection, and then ϕ(P1) ≥ ϕ(P2). Hence ϕ preserves the order of projections

and sends minimal nonzero projections into minimal nonzero projections. If U is a partial

isometry, then (ϕ(U))∗ϕ(U) = ϕ(U∗)ϕ(U) = ϕ(U∗U) is an orthogonal projection, since U∗U

is, and hence ϕ(U) is a partial isometry.

Let (Ui,j)1≤i,j≤n be a self-adjoint system of n×n matrix units as in Definition 5.29. Note

that since U2
i,i = Ui,i, U∗

i,i = Ui,i and Ui,iUj,j = 0 for i 6= j, then Ui,i is a family of nonzero

orthogonal projections with sum I. Also note that since Ui,jU
∗
i,j = Ui,jUj,i = Ui,i is an

orthogonal projection, then each Ui,j is a partial isometry. Since Ui,i is a minimal nonzero

projection, we have that Ui,i(H) is 1-dimensional for every 1 ≤ i ≤ n. Since ϕ(Ui,i) is also a

minimal nonzero projection, we have that ϕ(Ui,i)(H) is 1-dimensional.

Let e1 ∈ U1,1(H) and f1 ∈ ϕ(U1,1)(H) be such that ‖e1‖ = 1 and ‖f1‖ = 1. For every

l ≥ 1 let el = Ul,1(e1) and fl = ϕ(Ul,1)(f1). If i 6= j, then 〈ei, ej〉 = 〈Ui,1(e1), Uj,1(e1)〉 =

〈U1,jUi,1(e1), e1〉 = 〈0(e1), e1〉 = 0 and 〈ei, ei〉 = 〈Ui,1(e1), Ui,1(e1)〉 = 〈e1, U1,iUi,1(e1)〉 =

〈e1, U1,1(e1)〉 = 〈e1, e1〉 = 1. Hence, {ei}1≤i≤n is orthonormal and therefore an orthonormal

basis since any orthonormal set is independent and its size equals the dimension of the space.

A similar argument shows that {fi}1≤i≤n is also orthonormal basis.

Define W : H → H by W (el) = fl for every 1 ≤ l ≤ n. It is clear that W is an invertible

operator. If x =
∑

aiei, then ‖W (x)‖2 = ‖W (
∑

aiei)‖2 = ‖∑
aifi‖2 =

∑ |ai|2 = ‖x‖2.
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Hence, W is an isometry and, since it is surjective, W is unitary. Next we will show that

ϕ(Ui,j) = WUi,jW
∗.

Note first that WUl,1(e1) = W (el) = fl = ϕ(Ul,1)(f1) = ϕ(U1,l)W (e1). If l 6= 1, then

WUl,1(el) = WUl,1Ul,1(e1) = W0(e1) = 0 and ϕ(Ul,1)W (el) = ϕ(Ul,1)(fl) = ϕ(Ul,1)ϕ(Ul,1)(f1) =

ϕ(Ul,1Ul,1)(f1) = ϕ(0)(f1) = 0(f1) = 0. Since {ei}1≤i≤n and {fi}1≤i≤n are orthonormal bases,

we have that ϕ(Ul,1)W = WUl,1 ⇒ ϕ(Ul,1) = WUl,1W
∗ for every 1 ≤ l ≤ n.

For every 1 ≤ i, j ≤ n we have that ϕ(Ui,j) = ϕ(Ui,1U1,j) = ϕ(Ui,1)ϕ(U1,j) = ϕ(Ui,1)ϕ(U∗
j,1) =

ϕ(Ui,1)(ϕ(Uj,1))
∗ = (WUi,1W

∗)(WUj,1W
∗)∗ = WUi,1W

∗WU∗
j,1W

∗ = WUi,1U1,jW
∗ = WUi,jW

∗.

The system (Ui,j)1≤i,j≤n is linearly independent and the dimension of the linear span(Ui,j)

is n2. Since the dimension of L(H) is n2, we have that L(H) = span(Ui,j). Hence, for every

T ∈ L(H), T =
∑

i,j aijUi,j. This implies that ϕ(T ) = ϕ(
∑

i,j aijUi,j) =
∑

i,j aijϕ(Ui,j) =
∑

i,j aijWUi,jW
∗ = W

∑
i,j aijUi,jW

∗ = WTW ∗. ¤

Proposition 5.32. If H is a separable Hilbert space, then for every ∗−automorphism ϕ

acting on L(H) there is an unitary operator W such that ϕ(T ) = WTW ∗ for every T ∈ L(H).

Proof. Let ϕ be a ∗−automorphism on L(H). If P is an orthogonal projection, then

(ϕ(P ))2 = ϕ(P )ϕ(P ) = ϕ(P 2) = ϕ(P ) and (ϕ(P ))∗ = ϕ(P ∗) = ϕ(P ), and hence ϕ(P )

is an orthogonal projection. If P1 and P2 are two orthogonal projections such that P1 ≥ P2,

then P1 − P2 is an orthogonal projection, and ϕ(P1 − P2) = ϕ(P1)− ϕ(P2) is an orthogonal

projection, and then ϕ(P1) ≥ ϕ(P2). Hence ϕ preserves the order of projections and sends

minimal nonzero projections into minimal nonzero projections. If U is a partial isometry,

then (ϕ(U))∗ϕ(U) = ϕ(U∗)ϕ(U) = ϕ(U∗U) is an orthogonal projection, since U∗U is, and

hence ϕ(U) is a partial isometry.

Let (Ui,j)i,j∈I be a self-adjoint system of operator units, as in Definition 5.29. Note that

since U2
i,i = Ui,i, U∗

i,i = Ui,i and Ui,iUj,j = 0 for i 6= j, then Ui,i is a family of nonzero

orthogonal projections. Also note that since Ui,jU
∗
i,j = Ui,jUj,i = Ui,i is an orthogonal

projection, then each Ui,j is a partial isometry. Since Ui,i is a minimal nonzero projection,
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we have that Ui,i(H) is 1-dimensional for every i ∈ I. Since ϕ(Ui,i) is also a minimal nonzero

projection, we have that ϕ(Ui,i)(H) is 1-dimensional.

Let e1 ∈ U1,1(H) and f1 ∈ ϕ(U1,1)(H) be such that ‖e1‖ = 1 and ‖f1‖ = 1. For every

l ≥ 1 let el = Ul,1(e1) and fl = ϕ(Ul,1)(f1). If i 6= j, then 〈ei, ej〉 = 〈Ui,1(e1), Uj,1(e1)〉 =

〈U1,jUi,1(e1), e1〉 = 〈0(e1), e1〉 = 0 and 〈ei, ei〉 = 〈Ui,1(e1), Ui,1(e1)〉 = 〈e1, U1,iUi,1(e1)〉 =

〈e1, U1,1(e1)〉 = 〈e1, e1〉 = 1. Hence {el}l≥1 is orthonormal. Let x ∈ H such that 〈x, el〉 = 0

for every l ≥ 1. Then 〈Ul,l(x), el〉 = 〈x, Ul,l(el)〉 = 〈x, el〉 = 0, and hence Ul,l(x) = 0 for every

l ≥ 1. Since ‖∑
l≥1 Ul,l(x)‖ ≤ ∑

l≥1 ‖Ul,l(x)‖ = 0 and ‖∑
l≥1 Ul,l(x)‖ → ‖x‖, we have that

x = 0 and therefore that {el}l≥1 is an orthonormal basis. A similar argument shows that

{fl}l≥1 is also an orthonormal basis.

Define W : H → H by W (el) = fl for every l ∈ I. It is clear that W is an invertible

operator. If x =
∑

aiei, then ‖W (x)‖2 = ‖W (
∑

aiei)‖2 = ‖∑
aifi‖2 =

∑ |ai|2 = ‖x‖2.

Hence, W is an isometry and, since it is surjective, W is unitary. Next we will show that

ϕ(Ui,j) = WUi,jW
∗.

Note first that WUl,1(e1) = W (el) = fl = ϕ(Ul,1)(f1) = ϕ(U1,l)W (e1). If l 6= 1, then

WUl,1(el) = WUl,1Ul,1(e1) = W0(e1) = 0 and ϕ(Ul,1)W (el) = ϕ(Ul,1)(fl) = ϕ(Ul,1)ϕ(Ul,1)(f1) =

ϕ(Ul,1Ul,1)(f1) = ϕ(0)(f1) = 0(f1) = 0. Since {ei}i∈I and {fi}i∈I are orthonormal bases, we

have that ϕ(Ul,1)W = WUl,1 ⇒ ϕ(Ul,1) = WUl,1W
∗ for every l ∈ I. For every i, j ∈ I

we have that ϕ(Ui,j) = ϕ(Ui,1U1,j) = ϕ(Ui,1)ϕ(U1,j) = ϕ(Ui,1)ϕ(U∗
j,1) = ϕ(Ui,1)(ϕ(Uj,1))

∗ =

(WUi,1W
∗)(WUj,1W

∗)∗ = WUi,1W
∗WU∗

j,1W
∗ = WUi,1U1,jW

∗ = WUi,jW
∗. So the family

Ui,j satisfy the conclusion of the theorem.

Let T ∈ L(H) and let x =
∑

l≥1 alel ∈ H. Then T (x) =
∑

l≥1 blel ∈ H and

(
∑
i,j≥1

Ui,iTUj,j)(x) = (
∑
i≥1

Ui,iT
∑
j≥1

Uj,j)(
∑

l≥1

alel) = (
∑
i≥1

Ui,iT )(
∑
j≥1

ajej) = (
∑
i≥1

Ui,iT )(x) =

= (
∑
i≥1

Ui,i)(
∑

l≥1

blel) =
∑
i≥1

biei = T (x)

Hence
∑

i,j≥1 Ui,iTUj,j = T for every T ∈ L(H). If x =
∑

l≥1 alel and if for every j ≥ 1

we let T (ej) =
∑

l≥1 αj
l el, then (Ui,iTUj,j)(x) = (Ui,iTUj,j)(

∑
l≥1 alel) = (Ui,iT )(ajej) =
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ajUi,iT (ej) = ajUi,i(
∑

l≥1 αj
l el) = ajα

j
iei = αj

iajei for every i, j ≥ 1. But Ui,j(x) =

Ui,j(
∑

l≥1 alel) =
∑

l≥1 alUi,jel =
∑

l≥1 alUi,jUl,1(e1) = ajUi,jUj,1(e1) = ajUi,1(e1) = ajei

for every i, j ≥ 1, and hence Ui,iTUj,j = αj
iUi,j for every i, j ≥ 1. Therefore for every

T ∈ L(H) we have that T =
∑

i,j≥1 αj
iUi,j.

For every T ∈ L(H) we have that ϕ(T ) = ϕ(
∑

i,j≥1 αj
iUi,j) =

∑
i,j≥1 αj

iϕ(Ui,j) =
∑

i,j≥1 αj
iWUi,jW

∗ = W (
∑

i,j≥1 αj
iUi,j)W

∗ = WTW ∗. ¤

5.4. Main Result

Lemma 5.33. Let G be a Polish topological group, H ⊂ G a subgroup such that H ∈ BP and

G/H is countable. Then H is open in G and therefore closed in G.

Proof. If H is meager in G, then each coset of G/H is meager in G and then G is meager

since G/H is countable. This contradicts the fact that G is Polish. Thus H is nonmeager.

By the Theorem of Pettis (Theorem 9.9, page 61, [18]) we have that H−1H = H contains

an open neighborhood V of e ∈ G and since H = ∪x∈HxV we have that H is open.

Let x ∈ clGH. Then xH is an open neighborhood of x ⇒ xH ∩H 6= ∅ ⇒ x ∈ H ⇒ H is

closed ⇒ H is a Polish topological group. ¤

Lemma 5.34. F Aut(L(H)) = {α2 | α ∈ S}, where S is the group defined in Proposition

5.16.

Proof. If α ∈ S, since the square of a ∗−anti-automorphism is a ∗−automorphism, then α2

is a ∗−automorphism ⇒ {α2 | α ∈ S} ⊂ Aut(L(H)).

Let ϕ ∈ Aut(L(H)). Then by Proposition 5.32 we have that there exists U ∈ U(H)

such that ϕ = ϕU , where ϕU(T ) = UTU∗ for every T ∈ L(H). Choose V ∈ U(H) such

that V 2 = U . Such a V exists by the Spectral Theorem. Note that if ϕV (T ) = V TV ∗ then

ϕV ∈ Aut(L(H)). Since ϕ(T ) = ϕU(T ) = UTU∗ = V (V TV ∗)V ∗ = (ϕV )2(T ) we have that

ϕ ∈ {α2 | α ∈ S} ⇒ Aut(L(H)) ⊂ {α2 | α ∈ S}. ¤

Theorem 5.35. F If H is a separable Hilbert space, then Aut(L(H)) is a closed subgroup

of Hom(L(H)1) and therefore is a Polish topological group.
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Proof. We will prove that Aut(L(H)) is closed in S and hence Polish. Then, since Hom(L(H)1)

is a Polish topological group by Corollary 5.2 and since S is closed in Hom(L(H)1) by Corol-

lary 5.28, we will have that Aut(L(H)) is closed in Hom(L(H)1) and hence Polish.

The mapping ψ 7→ ψ2 from S to Aut(L(H)) is onto by Lemma 5.34 and continuous since

multiplication in Hom(L(H)1) is continuous. Since S is Polish, we have that Aut(L(H)) is

analytic, and hence Aut(L(H)) has the Baire property. Aut(L(H)) is a normal subgroup of

S and |S/Aut(L(H))| = 2 by Proposition 5.16. From Lemma 5.33 it follows that Aut(L(H))

is open in S and hence closed in S. ¤

Theorem 5.36. F If H is a complex separable Hilbert space, then PU(H) and Aut(L(H))

are topologicallly isomorphic.

Proof. Let f : U(H) → Aut(L(H)) be defined as f(U) = ϕU , where ϕU : L(H) → L(H) is

defined as ϕU(T ) = UTU∗. We will first show that if U ∈ U(H), then f(U) ∈ Aut(L(H)).

Let U ∈ U(H), and S, T ∈ L(H) be such that ϕU(S) = ϕU(T ). Then USU∗ = UTU∗ ⇒
S = T ⇒ ϕU is one-to-one. If S ∈ L(H) let T = U∗SU ∈ L(H). Then ϕU(T ) = UTU∗ =

UU∗SUU∗ = S ⇒ ϕU is onto and hence ϕU is a bijection. Let S, T ∈ L(H) and let

λ ∈ C. Then ϕU(ST ) = USTU∗ = USU∗UTU∗ = ϕU(S)ϕU(T ); ϕU(S + T ) = U(S +

T )U∗ = USU∗ + UTU∗ = ϕU(S) + ϕU(T ); ϕU(λT ) = U(λT )U∗ = λUTU∗ = λϕU(T ) and

ϕU(T ∗) = UT ∗U∗ = (UTU∗)∗ = (ϕU(T ))∗ ⇒ f(U) = ϕU ∈ Aut(L(H)) and hence f is well

defined.

Let U, V ∈ U(H) and let T ∈ L(H). Then f(UV )(T ) = ϕUV (T ) = UV T (UV )∗ =

UV TV ∗U = UϕV (T )U∗ = ϕUϕV (T ) = f(U)f(V )(T ) ⇒ f is a homomorphism.

Let id : L(H) → L(H) be the identity on L(H). Let U ∈ U(H) be such that f(U) = id.

Then ϕU(T ) = T for every T ∈ L(H) ⇒ UTU∗ = T for every T ∈ L(H) ⇒ UT = TU for

every T ∈ L(H) ⇒ UW = WU for every W ∈ U(H) ⇒ U ∈ Z(U(H)) ⇒ ker(f) = Z(U(H)).

Let {Uj}j∈J ⊂ U(H) be such that Uj
wo−→ U ∈ U(H). Then U∗

j
wo−→ U∗ by Lemma 3.4

and hence Uj
so−→ U and U∗

j
so−→ U∗ by Proposition 3.3. Thus, for every T ∈ L(H)1 and every
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x, y ∈ H we have the following

|〈UjTU∗
j x, y〉 − 〈UTU∗x, y〉| = |〈U∗

j x, T ∗U∗
j y〉 − 〈TU∗x, U∗y〉| ≤

|〈U∗
j x, T ∗U∗

j y〉 − 〈U∗x, T ∗U∗
j y〉|+ |〈TU∗x, U∗

j y〉 − 〈TU∗x, U∗y〉| =

|〈(U∗
j − U∗)x, T ∗U∗

j y〉|+ |〈TU∗x, (U∗
j − U∗)y〉| ≤

‖(U∗
j − U∗)x‖ · ‖T ∗‖ · ‖U∗

j y‖+ ‖T‖ · ‖U∗x‖ · ‖(U∗
j − U∗)y‖ ≤

‖(U∗
j − U∗)x‖ · ‖y‖+ ‖x‖ · ‖(U∗

j − U∗)y‖ → 0

This implies that |〈ϕUj
(T )x, y〉 − 〈ϕU(T )x, y〉| → 0 uniformly in T ∈ L(H)1 for every x, y ∈

H ⇒ d(ϕUj
(T ), ϕU(T )) → 0 uniformly for every T ∈ L(H)1 ⇒ supT∈L(H)1

d(ϕUj
(T ), ϕU(T )) →

0. Similarly we have that supT∈L(H)1
d(ϕ−1

Uj
(T ), ϕ−1

U (T )) → 0 and hence ρ(ϕUj
, ϕU) → 0 ⇒

f(Uj) = ϕUj

ρ−→ ϕU = f(U) ⇒ f is continuous. We also have from Proposition 5.32 that the

mapping f is onto. Thus f : U(H) → Aut(L(H)) is a continuous onto homomorphism and

ker(f) = Z(U(H)).

Let π : U(H) → U(H)/ ker(f) = PU(H) be the natural quotient mapping and let

ψ : PU(H) → Aut(L(H)) be the natural group isomorphism so that f = ψ ◦ π. If U ⊂
Aut(L(H)) is open, then f−1(U) ⊂ U(H) is open, since f is continuous. But f−1(U) =

π−1(ψ−1(U)) ⇒ ψ−1(U) = π(f−1(U)) is open in PU(H) since π, being the quotient mapping,

is open. This implies that ψ is continuous. Thus ψ : PU(H) → Aut(L(H)) is a continuous

isomorphism between two Polish topological groups. From Lusin-Souslin Theorem (page 89,

[18]) we have that ψ−1 is Borel measurable, and hence it is measurable with respect to the

sets with the Baire property. From the result of Banach-Kuratowski-Pettis (Theorem 9.10,

page 61, [18]) it follows that ψ−1 is continuous and hence ψ is a topological isomorphism. ¤

Corollary 5.37. F Let H be a separable infinite dimensional Hilbert space, let G be a

Polish topological group and φ : G → Aut(L(H)) be an algebraic isomorphism. Then φ is a

topological isomorphism.
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Proof. From Theorem 5.36 we have that PU(H) and Aut(L(H)) are topologically isomorphic.

From Theorem 4.18 we have that if φ : G → PU(H) is an algebraic isomorphism, then φ is

a topological isomorphism. The conclusion follows. ¤
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CHAPTER 6

THE ORTHOGONAL GROUP

Throughout this section H is assumed to be a separable real Hilbert space.

Definition 6.1. If H is a real Hilbert space a unitary operator acting on H is called

an orthogonal operator, the set of orthogonal operators is denoted by O(H) and is called

the orthogonal group of H. If H is n-dimensional, O(H) is sometimes denoted by O(n).

If U ∈ O(H), the adjoint operation U∗ on O(H) is denoted with UT and on the finite

dimensional case is equivalent to taking transposes of matrices. The center of O(H) is

denoted by Z(O(H)). If H is finite dimensional, the special orthogonal group is the set

SO(H) = {U ∈ O(H) | det(U) = 1}. SO(H) is sometimes denoted SO(n), where n is the

dimension of H.

Remark 6.2. If M is a closed subspace of the Hilbert space H and if OM = {U ∈
O(H) | U |M⊥ = I} then, as in Proposition 3.14, OM may be identified with O(M), and we

can consider O(M) to be a closed subgroup of O(H).

Remark 6.3. The proofs of Proposition 3.3 and Proposition 3.6 can be easily adapted to

O(H) ifH is a separable real Hilbert space and we can conclude that weak operator topology,

the strong operator topology and the relative topology given by Hom(H1) coincide on O(H).

Theorem 6.4. F O(H) is a Polish topological group.

Proof. If H is a real separable Hilbert space, in the view of Comment 6.3 we can prove

a theorem similar to the Theorem 3.7 to prove that O(H) is closed in Hom(H1). Since

Hom(H1) is a Polish topological group by Theorem 2.24, the conclusion follows. ¤

Proposition 6.5. If H is a real Hilbert space, then Z(O(H)) = {±I}.
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Proof. It is clear that I,−I ∈ Z(O(H)). Let U ∈ Z(O(H)). Let {el}l≥1 be an orthonormal

basis and let R : H → H be defined as Re1 = −e2, Re2 = e1 and Rel = el for every

l ≥ 3. If x =
∑

l≥1 alel ∈ H then ‖Rx‖2 = ‖∑
l≥1 alRel‖2 = |a1|2‖ − e2‖2 + |a2|2‖e1‖2 +

∑
l≥3 |al|2‖el‖2 =

∑
l≥1 |al|2 = ‖x‖2 ⇒ R is an isometry. If y =

∑
l≥1 alel ∈ H, let x =

−a2e1 + a1e2 +
∑

l≥3 alel. Then Rx = a2e2 + a1e1 +
∑

l≥3 alel =
∑

l≥1 alel = y ⇒ R is onto,

and hence R ∈ O(H). We also have that RT e1 =
∑

l≥1〈RT e1, el〉el =
∑

l≥1〈e1, Rel〉el = e2.

Thus, since UR = RU we have that −〈Ue2, e1〉 = 〈U(−e2), e1〉 = 〈URe1, e1〉 = 〈RUe1, e1〉 =

〈Ue1, R
T e1〉 = 〈Ue1, e2〉 and 〈Ue1, e1〉 = 〈URe2, e1〉 = 〈RUe2, e1〉 = 〈Ue2, R

T e1〉 = 〈Ue2, e2〉.
Let V be defined as V e1 = −e1 and V el = el for every l ≥ 2. V is obviously an orthogonal

operator and V T el = el for every l ≥ 2. Since UV = V U we have that −〈Ue1, e2〉 =

〈UV e1, e2〉 = 〈V Ue1, e2〉 = 〈Ue1, V
T e2〉 = 〈Ue1, e2〉 ⇒ 〈Ue1, e2〉 = 0 and since 〈Ue1, e2〉 =

−〈Ue2, e1〉 ⇒ 〈Ue2, e1〉 = 0.

Using similar arguments we can show that 〈Uei, ej〉 = 0 for every i 6= j and that

〈Uei, ei〉 = 〈Uej, ej〉 for every i, j ≥ 1 and hence there exists λ ∈ R such that 〈Uel, el〉 = λ

for every l ≥ 1 ⇒ U = λI. This implies that UT = U ⇒ I = UUT = U2 = λ2I ⇒ λ2 = 1 ⇒
λ = ±1 and and hence U = ±I. ¤

6.1. The Orthogonal Group O(n)

Proposition 6.6. Let G1, G2 be two topological groups and φ : G1 → G2 be a homomor-

phism. If φ is continuous at the origin e1 ∈ G1 then φ is continuous.

Proof. Let x ∈ H1 and φ(x) ∈ U ⊂ G2 be open. Then e2 ∈ [φ(x)]−1U and since φ is

continuous at the origin there exists V ⊂ G1 open such that e1 ∈ V and φ(V ) ⊂ [φ(x)]−1U .

Then xV is open, x ∈ xV and if y ∈ xV then φ(y) ∈ φ(x)φ(V ) ⊂ φ(x)[φ(x)]−1U = U ⇒
φ(xV ) ⊂ U ⇒ φ is continuous at x ⇒ φ is continuous. ¤

Lemma 6.7. Let G1, G2 be two Polish topological groups, let φ : G1 → G2 be an algebraic

isomorphism, let H2 ⊂ G2 be a subgroup with the Baire property and let H1 = φ−1(H2) ⊂ G1.

If G2/H2 is countable, H1 is a set with the Baire property and φ|H1 : H1 → H2 is measurable

with respect to the sets with the Baire property, then φ is a topological isomorphism.
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Proof. From Lemma 5.33 we have that H2 is open and closed in G2 and hence H2 is a Polish

topological group. Since G1/H1 is also countable, we have by the same lemma that H1 is

open and closed in G1 and hence H1 is a Polish topological group. Since φ|H1 : H1 → H2 is

Baire measurable we have by Theorem 9.10, page 61, [18] that φ|H1 is continuous, and hence

φ|H1 is continuous at e ⇒ φ is continuous by Proposition 6.6. The conclusion follows from

Lemma 3.57. ¤

Theorem 6.8. F Let G be a Polish topological group, H a n-dimensional real Hilbert space,

with n ≥ 3, O(n) the orthogonal group acting on H and φ : G → O(n) an algebraic isomor-

phism. Then φ is a topological isomorphism.

Proof. SO(n) ⊂ O(n) is a subgroup. Using the result from Chapter I, Section 14, [19], we

have that O(n) = SO(n) ∪ O0 · SO(n), where O0 ∈ O(n) and det(O0) = −1, and hence the

cardinality |O(n)/SO(n)| = 2. Since φ−1(SO(n)) is closed in G by Corollary 6.36 and hence

it has the Baire property and since the restriction φ|φ−1(SO(n)) : φ−1(SO(n)) → SO(n) is

continuous for n ≥ 3 by the result from [14], it follows from Lemma 6.7 that φ is continuous.

¤

6.2. The Complexification of H

Definition 6.9. Suppose that H is a real Hilbert space and let K be the set of all ordered

pairs (x, y) with both x, y ∈ H. Define the sum of two elements of K by (x, y) + (u, v) =

(x+u, y+v) and the product of an element of K by a complex number a+ib by (a+ib)·(x, y) =

(ax− by, bx + ay).

Proposition 6.10. The set K in the previous definition is a complex vector space.

Proof. [(x1, y1)+(x2, y2)]+(x3, y3) = (x1+x2, y1+y2)+(x3, y3) = (x1+x2+x3, y1+y2+y3) =

(x1, y1) + (x2 + x3, y2 + y3) = (x1, y1) + [(x2, y2) + (x3, y3)].

(x, y) + (0, 0) = (x, y) = (0, 0) + (x, y).

(x, y) + (−x,−y) = (0, 0) = (−x,−y) + (x, y).

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) = (x2, y2) + (x1, y1).
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(a+ ib)[(x1, y1)+ (x2, y2)] = (a+ ib)(x1 +x2, y1 + y2) = (ax1 +ax2− by1− by2, bx1 + bx2 +

ay1 + ay2) = (ax1− by1, bx1 + ay1) + (ax2− by2, bx2 + ay2) = (a + ib)(x, y) + (a + ib)(x2, y2).

[(a+ib)+(c+id)](x, y) = [(a+c)+i(b+d)](x, y) = (ax+cx−by−dy, bx+dx+ay+cy) =

(ax− by, bx + ay) + (cx− dy, dx + cy) = (a + ib)(x, y) + (c + id)(x, y).

[(a+ ib)(c+ id)](x, y) = [(ac− bd)+ i(bc+ad)](x, y) = (acx− bdx− bcy−ady, bcx+adx+

acy− bdy) = [a(cx− dy)− b(dx + cy), b(cx− dy) + a(dx + cy)] = (a + ib)(cx− dy, dx + cy) =

(a + ib)[(c + id)(x, y)].

1(x, y) = (x− 0y, 0x + y) = (x, y). ¤

Definition 6.11. We call the space K from the previous proposition the complexification

of the space H and denote its elements by x + iy.

Proposition 6.12. If H is a real inner product space and if K is its complexification, then

the following

〈x + iy, u + iv〉 = 〈x, u〉+ 〈y, v〉 − i(〈x, v〉 − 〈y, u〉)

defines an inner product on K. If H is a Hilbert space, then K, together with this inner

product is a Hilbert space.

Proof.

〈(a + ib)(x + iy) + (c + id)(z + iw), u + iv〉 = 〈(ax− by + cz − dw) + i(bx + ay + dz + cw), u + iv〉 =

〈ax− by + cz − dw, u〉+〈bx + ay + dz + cw, v〉−i(〈ax− by + cz − dw, v〉−〈bx + ay + dz + cw, u〉) =

a〈x, u〉− b〈y, u〉+ c〈z, u〉− d〈w, u〉+ b〈x, v〉+ a〈y, v〉+ d〈z, v〉+ c〈w, v〉− ia〈x, v〉+ ib〈y, v〉−
ic〈z, v〉+id〈w, v〉+ib〈x, u〉+ia〈y, u〉+id〈z, u〉+ic〈w, u〉 = a(〈x, u〉+〈y, v〉−i〈x, v〉+i〈y, u〉)+
ib(i〈y, u〉− i〈x, v〉+ 〈y, v〉+ 〈x, u〉)+c(〈z, u〉+ 〈w, v〉− i〈z, v〉+ i〈w, u〉)+ id(i〈w, u〉− i〈z, v〉+
〈w, v〉+ 〈z, u〉) = (a+ ib)(〈x, u〉+ 〈y, v〉− i〈x, v〉+ i〈y, u〉)+ (c+ id)(〈z, u〉+ 〈w, v〉− i〈z, v〉+
i〈w, u〉) = (a + ib)〈x + iy, u + iv〉+ (c + id)〈z + iw, u + iv〉.

〈x + iy, u + iv〉 = 〈x, u〉+ 〈y, v〉 − i(〈x, v〉 − 〈y, u〉) = 〈u, x〉+ 〈v, y〉 − i(〈v, x〉 − 〈u, y〉) =

〈u, x〉+ 〈v, y〉 − i(〈u, y〉 − 〈v, x〉) = 〈u + iv, x + iy〉.
〈x + iy, x + iy〉 = 〈x, x〉+ 〈y, y〉 − i(〈x, y〉 − 〈y, x〉) = 〈x, x〉+ 〈y, y〉 ≥ 0.
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If 〈x + iy, x + iy〉 = 0 then 〈x, x〉 + 〈y, y〉 = 0 ⇒ 〈x, x〉 = 0 and 〈y, y〉 = 0 ⇒ x = 0 and

y = 0. ¤

Proposition 6.13. Let H be a real Hilbert space and K its complexification. If A ∈ L(H)

define Ã : K → K to be Ã(x + iy) = Ax + iAy. Then Ã ∈ L(K) and ‖A‖ = ‖Ã‖.
Proof. Ã[(x+iy)+(u+iv)] = Ã[(x+u)+i(y+v)] = A(x+u)+iA(y+v) = Ax+Au+iAy+iAv =

Ax + iAy + Au + iAv = Ã(x + iy) + Ã(u + iv).

Ã[(a+ ib)(x+ iy)] = Ã[(ax− by)+ i(bx+ay)] = A(ax− by)+ iA(bx+ay) = aAx− bAy +

i(bAx + aAy) = (a + ib)(Ax + iAy) = (a + ib)Ã(x + iy).

‖Ã(x+iy)‖2 = ‖Ax+iAy‖2 = 〈Ax + iAy,Ax + iAy〉 = 〈Ax,Ax〉+〈Ay, Ay〉−i(〈Ax,Ay〉−
〈Ay, Ax〉) = ‖Ax‖2 + ‖Ay‖2 ≤ ‖A‖2(‖x‖2 + ‖y‖2) = ‖A‖2‖x + iy‖2 ⇒ ‖Ã‖ ≤ ‖A‖.

Note that if x ∈ H then ‖x‖2
K = 〈x + i0, x + i0〉 = 〈x, x〉 = ‖x‖2

H. It follows that

‖Ax‖ = ‖Ãx‖ ≤ ‖Ã‖ · ‖x‖ and hence ‖A‖ ≤ ‖Ã‖ ¤

Proposition 6.14. Let H be a real Hilbert space and K its complexification. If A ∈ L(H),

then (Ã)∗ = ÃT

Proof. 〈x + iy, (Ã)∗(u + iv)〉 = 〈Ã(x + iy), u + iv〉 = 〈Ax + iAy, u + iv〉 = 〈Ax, u〉+〈Ay, v〉−
i(〈Ax, v〉−〈Ay, u〉) = 〈x, AT u〉+〈y, AT v〉− i(〈x,AT v〉−〈y, AT u〉) = 〈x + iy, AT u + iAT v〉 =

〈x + iy, ÃT (u + iv)〉. ¤

Proposition 6.15. Let H be a real Hilbert space and K its complexification. Define J :

K → K as J(x + iy) = x− iy. Then J2 = I, J is a real linear isometry, J(λz) = λJ(z) for

every λ ∈ C and z ∈ K and 〈Jw, Jz〉 = 〈z, w〉 for every w, z ∈ K.

Proof. J2(x + iy) = J(x− iy) = x + iy for every x + iy ∈ K ⇒ J2 = I.

J [(x + iy) + (u + iv)] = J [(x + u) + i(y + v)] = (x + u)− i(y + v) = (x− iy) + (u− iv) =

J(x+ iy)+J(u+ iv) and J [a(x+ iy)] = J(ax+ iay) = ax− iay = a(x− iy) = aJ(x+ iy) for

every a ∈ R and every x+ iy, u+ iv ∈ K ⇒ J is real linear. ‖J(x+ iy)‖2 = 〈x− iy, x− iy〉 =

〈x, x〉+ 〈−y,−y〉− i(〈x,−y〉−〈−y, x〉) = 〈x, x〉+ 〈y, y〉− i(〈y, x〉−〈x, y〉) = 〈x, x〉+ 〈y, y〉−
i(〈x, y〉 − 〈y, x〉) = 〈x + iy, x + iy〉 = ‖x + iy‖2 and hence J is an isometry.
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J [(a + ib)(x + iy)] = J [(ax− by) + i(bx + ay)] = ax− by− i(bx + ay) = ax− (−b)(−y) +

i[(−b)x + a(−y)] = (a − ib)(x − iy) = (a − ib)J(x + iy) for every a + ib ∈ C and every

x + iy ∈ K.

〈J(x + iy), J(u + iv)〉 = 〈x− iy, u− iv〉 = 〈x, u〉 + 〈−y,−v〉 − i(〈x,−v〉 − 〈−y, u〉) =

〈u, x〉+ 〈v, y〉 − i(〈u, y〉 − 〈v, x〉) = 〈u + iv, x + iy〉. ¤

Proposition 6.16. F If T ∈ L(K) and J is the mapping defined in Proposition 6.15, then

JTJ ∈ L(K), ‖JTJ‖ = ‖T‖ and (JTJ)∗ = JT ∗J .

Proof. Let z, w ∈ K and λ ∈ C. Then JTJ(z + w) = JT (Jz + Jw) = J(TJz + TJw) =

JTJz + JTJw, JTJ(λz) = JT (λJz) = J(λTJz) = λJTJz and ‖JTJz‖ = ‖TJz‖ ≤
‖T‖ · ‖Jz‖ = ‖T‖ · ‖z‖ ⇒ ‖JTJ‖ ≤ ‖T‖ and hence JTJ ∈ L(K). By replacing T with

JTJ in the last inequality we obtain that ‖T‖ ≤ ‖JTJ‖ and hence ‖T‖ = ‖JTJ‖ for every

T ∈ L(K).

Since 〈JTJz, w〉 = 〈JTJz, J2w〉 = 〈Jw, TJz〉 = 〈T ∗Jw, Jz〉 = 〈J2T ∗Jw, Jz〉 = 〈z, JT ∗Jw〉
for every w, z ∈ K we have that (JTJ)∗ = JT ∗J . ¤

Proposition 6.17. F If E(·) is a spectral measure on (X, Σ) with values in K, then JE(·)J
is also a spectral measure.

Proof. JE(X)J(x + iy) = JE(X)(x − iy) = J(x − iy) = x + iy for every x + iy ∈ K ⇒
JE(X)J = I.

JE(∪l≥1Ml)J(x+iy) = J [
∑

l≥1 E(Ml)J(x+iy)] =
∑

l≥1 JE(Ml)J(x+iy) =
∑

l≥1[JE(Ml)J ](x+

iy). Thus JE(·)J is countably additive.

[JE(M)J ]∗ = J [E(M)]∗J = JE(M)J and [JE(M)J ]2 = JE(M)J2E(M)J = JE(M)J

for every M ∈ Σ and hence JE(·)J is an orthogonal projection. ¤

Proposition 6.18. F If T ∈ L(K) is self-adjoint, E(·) is its associated spectral measure,

then JTJ is self adjoint and JE(·)J is its associated spectral measure.

Proof. If T ∗ = T then (JTJ)∗ = JT ∗J = JTJ and hence JTJ is self-adjoint. From

the Proposition 6.17 we have that JE(·)J is a spectral measure. Since T is self adjoint
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then for every x, y ∈ K there exists µx,y a complex-valued measure on (X, Σ) such that

〈Tx, y〉 =
∫

λdµx,y, where µx,y(B) = 〈E(B)x, y〉 for every B ∈ Σ and every x, y ∈ K.

Since 〈JTJx, y〉 = 〈Jy, TJx〉 = 〈T ∗Jy, Jx〉 = 〈TJy, Jx〉 =
∫

λdµJy,Jx and since µJy,Jx(B) =

〈E(B)Jy, Jx〉 = 〈x, JE(B)Jy〉 = 〈[JE(B)J ]∗x, y〉 = 〈JE(B)Jx, y〉 for every B ∈ Σ we have

that JE(·)J is the spectral measure associated with JTJ . ¤

Corollary 6.19. F If T ∈ L(K) is self-adjoint, E(·) is its associated spectral measure and

T = JTJ , then E(B) = JE(B)J for every B ∈ Σ.

Proof. From Proposition 6.18 we have that JE(·)J is the spectral measure associated with

JTJ = T . Since spectral measure associated with T is unique, it follows that JE(B)J =

E(B) for every B ∈ Σ. ¤

Lemma 6.20. F Let H be a real Hilbert space, K its complexification, let J be the mapping

defined in Proposition 6.15 and let z ∈ K. Then z ∈ H ⇔ Jz = z.

Proof. If z ∈ H then Jz = z by the definition of J . Let z = x + iy ∈ K be such that Jz = z.

Then x + iy = z = Jz = x− iy ⇒ y = 0 ⇒ z = x ∈ H. ¤

Lemma 6.21. F If P is an orthogonal projection on K such that JPJ = P then P (H) ⊂ H
and P (K) = P (H) + iP (H). Therefore, P (K) is the complexification of P (H).

Proof. If x ∈ H then Px = JPJx = JPx ⇒ Px ∈ H by Lemma 6.20 ⇒ P (H) ⊂ H. If

z = x + iy ∈ K then P (z) = P (x + iy) = Px + iPy ∈ P (H) + iP (H) ⊂ H + iH ⇒ P (K) =

(P (K) ∩H) + i(P (K) ∩H) = P (H) + iP (H). ¤

Lemma 6.22. Let S, T ∈ L(K) be such that ST = TS, T = T ∗ and let E(·) be the spectral

measure on the measurable space (X, Σ) associated with T . Then SE(B) = E(B)S for every

B ∈ Σ.

Proof. Let P be any polynomial with complex coefficients. Then for every x, y ∈ K we

have that 〈P (T )x, y〉 =
∫

P (λ)dµx,y, where µx,y(B) = 〈E(B)x, y〉 for every B ∈ Σ. Thus

〈P (T )Sx, y〉 =
∫

P (λ)dµSx,y and 〈P (T )x, S∗y〉 =
∫

P (λ)dµx,S∗y. Since S commutes with

T , S commutes with P (T ) and hence 〈P (T )Sx, y〉 = 〈SP (T )x, y〉 = 〈P (T )x, S∗y〉 ⇒
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∫
P (λ)dµSx,y =

∫
P (λ)dµx,S∗y. This implies that µSx,y(B) = µx,S∗y(B) for every B ∈ Σ ⇒

〈E(B)Sx, y〉 = 〈E(B)x, S∗y〉 = 〈SE(B)x, y〉 ⇒ E(B)S = SE(B) for every B ∈ Σ. ¤

Definition 6.23. Let H be a complex or a real Hilbert space. A subspace M ⊂ H is

invariant under an operator A if A(M) ⊂M. A subspace M⊂ H reduces an operator A if

both M and M⊥ are invariant under A.

Proposition 6.24. Let H be a complex or a real Hilbert space. If M ⊂ H is a subspace

and P is the orthogonal projection on M, then M reduces an operator A if and only if

AP = PA.

Proof. Suppose that PA = AP . Then PAP = AP and PA = PAP ⇒ PA∗P = PA∗

and A∗P = PA∗P . If x ∈ M and y ∈ M⊥ then Ax = APx = PAPx ∈ M ⇒ M is

invariant under A. Also A∗x = A∗Px = PA∗Px ∈ M ⇒ M is invariant under A∗. Since

〈Ay, x〉 = 〈y, A∗x〉 = 0 ⇒ Ay ∈ M⊥ ⇒M⊥ is invariant under A. Since both M and M⊥

are invariant under A, we have that M reduces A.

Suppose now that M reduces A. Then M is invariant under A and M⊥ is invariant

under A. Since Px ∈ M for every x ∈ H then APx ∈ M ⇒ PAPx = APx for every

x ∈ H ⇒ PAP = AP . Let y ∈ M and let z ∈ M⊥. Since M⊥ is invariant under A then

0 = 〈y, Az〉 = 〈A∗y, z〉 ⇒ A∗y ∈ M ⇒ M is invariant under A∗ ⇒ A∗Px ∈ M for every

x ∈ H ⇒ PA∗Px = A∗Px for every x ∈ H ⇒ PA∗P = A∗P ⇒ PAP = PA and hence

AP = PA. ¤

Lemma 6.25. Let K be a complex Hilbert space and let E : Σ → L(K) be a spectral measure

on the measurable space (X, Σ), where X ⊂ R and Σ is the family of Borel subsets of X.

If B ∈ Σ is such that {0} 6= E(B)(K) is finite dimensional, then there exists at least one

λ ∈ B such that dim(E({λ})(K)) 6= 0.

Proof. We will construct a sequence {Bn}n≥0 of Borel subsets of B such that Bn ⊃ Bn+1

for every n ≥ 0 and dim(E(Bn)(K)) > 0. Choose B0 = B and then cover B0 with a

sequence {In} of disjoint intervals of length ≤ 1. There is at least one interval In1 such that
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E(B0 ∩ In1)(K) has positive dimension since otherwise, if dim(E(B ∩ In)(K)) = 0 for every

n, then E(B) = E(∪n(B ∩ In)) =
∑

n E(B ∩ In) = 0 ⇒ dim(E(B)(K)) = 0, a contradiction.

Choose B1 = B0 ∩ In1 . Cover B1 with disjoint intervals In of length ≤ 1
2
. By the same

reason as before there is at least one interval In2 such that E(B1 ∩ In2)(K) has positive

dimension. Choose B2 = B1∩ In2 and continue inductively. Since B0 ⊃ B1 ⊃ . . . ⊃ Bn ⊃ . . .

we have that E(B0) ≥ E(B1) ≥ . . . ≥ E(Bn) ≥ . . . > 0 and hence dim(E(B0)(K)) ≥
dim(E(B1)(K)) ≥ . . . ≥ dim(E(Bn)(K)) ≥ . . . > 0. Then there exists N ≥ 0 such that

dim(E(Bn)(K)) = C for every n ≥ N , where C > 0 is an integer and hence E(Bn) = E(BN)

for all n ≥ N . Since |In| ≤ 1
n

we have that the intersection ∩n≥1Bn is at most one point.

Since E(Bn)
so−→ E(∩n≥1Bn) we have that E(∩n≥1Bn) = E(BN) 6= 0. Hence, there is a λ ∈ B

such that ∩n≥1Bn = {λ} and E({λ}) = E(BN) 6= 0. ¤

Theorem 6.26. F Let H be a real separable infinite dimensional Hilbert space and let

O ∈ O(H). Then there exists M⊂ H a reducing subspace for O such that both M and M⊥

are infinite dimensional.

Proof. Let O ∈ O(H) and let A = O+OT

2
. We will first show that if K is the complexification

of H and if Ã, Õ are the extensions to K of A, respectively O, then Ã is self-adjoint and that

Ã commutes with Õ. Since AT =
(

O+OT

2

)T

= OT +O
2

= A we have using Proposition 6.14

that (Ã)∗ = ÃT = Ã and hence Ã is self-adjoint. Since OA = OO+OT

2
= O2+OOT

2
= O2+OT O

2
=

O+OT

2
O = AO we have that ÕÃ(x + iy) = Õ(Ax + iAy) = OAx + iOAy = AOx + iAOy =

Ã(Ox + iOy) = ÃÕ(x + iy) for every x + iy ∈ K and hence Ã and Õ commute. Also note

that JÃJ(x + iy) = JÃ(x− iy) = J(Ax− iAy) = Ax + iAy = Ã(x + iy) for every x, y ∈ H
and hence JÃJ = Ã.

Let E(·) be the spectral measure defined on the measurable space (X, Σ) associated with

Ã. Since Ã is self-adjoint, by the spectral theorem we have that X = [−‖Ã‖, ‖Ã‖] ⊂ R

and Σ is the collection of Borel subsets of [−‖Ã‖, ‖Ã‖]. Since JÃJ = Ã, we have by

Corollary 6.19 that JE(B)J = E(B) for every B ∈ Σ and hence by Lemma 6.21 that

E(B)(H) ⊂ H for every B ∈ Σ. Since Õ commutes with Ã, it follows from Lemma 6.22
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that ÕE(B) = E(B)Õ for every B ∈ Σ. Thus, if x ∈ H, using the fact that E(B)(H) ⊂ H
we have that E(B)Ox = E(B)Õx = ÕE(B)x = OE(B)x for every B ∈ Σ. It follows

from Proposition 6.24 that E(B)(H) reduces O for every B ∈ Σ. If, for some B ∈ Σ, both

E(B)(H) and [I − E(B)](H) = E(BC)(H) are infinite dimensional we are done. We will

show that such a B exists.

Let D = {λ ∈ X | E({λ})(H) has positive dimension}. Since H is separable, the set D is

countable. If |D| = ∞, let D = F ∪G, where F, G are disjoint, infinite sets. Let B = F ⊂ Σ.

Then G ⊂ BC , and hence both E(B)(H) and E(BC)(H) have infinite dimension and are

invariant under O.

Suppose that |D| < ∞ and there exists λ ∈ D so that dim(E({λ})(H)) = ∞. Then

Ã(z) = λz for every z ∈ E({λ})(K), where λ ∈ R since Ã is self-adjoint and 0 < |λ| ≤
‖Ã‖ ≤ 1. This implies that Õ+ÕT

2
= λI ⇒ Õz + ÕT z = 2λz for every z ∈ E({λ})(K).

Let z = x + iy, with x, y ∈ E({λ})(H). Then Õ(x + iy) + ÕT (x + iy) = 2λ(x + iy) ⇒
Ox + iOy + OT x + iOT y = 2λx + i2λy ⇒ Ox + OT x = 2λx ⇒ O2x + x = 2λOx for

every x ∈ H. Fix 0 6= x1 ∈ H and let S1 ⊂ H be the subspace spanned by x1 and

Ox1. If y ∈ S1 then there exist a, b ∈ R such that y = ax1 + bOx1 ⇒ Oy = aOx1 +

bO2x1 = aOx1 + b(2λOx1 − x1) = −bx1 + (a + 2bλ)Ox1 ∈ S1 ⇒ S1 is invariant under

O. Also OT y = aOT x1 + bx1 = a(2λx1 − Ox1) + bx1 = (2aλ + b)x1 − Ox1 ∈ S1 ⇒ S1

is invariant under OT ⇒ S⊥1 is invariant under O ⇒ S1 reduces O. Fix 0 6= x2 ∈ S⊥1
and let S2 be the subspace spanned by x2 and Ox2. We show as before that S2 reduces

O. Continue inductively and get an infinite sequence {Sn} of subspaces of H, mutually

orthogonal, each of which 1 or 2-dimensional and all reduce O. Split this sequence into two

infinite subsequences {S ′n} and {S ′′n} and let M = ⊕nS ′n. Then M reduces O and both M
and M⊥ = (⊕nS ′′n)⊕ E(X \ {λ})(H) are infinite dimensional.

Finally, suppose that |D| < ∞ and for every λ ∈ D, dim(E({λ})(H)) < ∞. Then

E(D)(H) is finite dimensional. Let C = R \ D. Then for every λ ∈ C we have that

E({λ}) = 0 and, since H = E(D)(H) ∪ E(C)(H) we have that dim(E(C)(H)) = ∞. Cover
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X with intervals
[

k
21 ,

k+1
21

)
, where k ∈ Z and let Ik

1 = C ∩ [
k
21 ,

k+1
21

)
. If there is only one

k1 ∈ Z such that E(Ik1
1 ) 6= 0, then E(Ik1

1 ) = E(C). Cover Ik1
1 with intervals

[
k
22 ,

k+1
22

)
, where

k ∈ Z and let Ik
2 = Ik1

1 ∩ [
k
22 ,

k+1
22

)
. If there is only one k2 ∈ Z such that E(Ik2

2 ) 6= 0, then

E(Ik2
2 ) = E(C). Cover Ik2

2 with intervals
[

k
23 ,

k+1
23

)
, where k ∈ Z and let Ik

3 = Ik2
2 ∩ [

k
23 ,

k+1
23

)
.

If it is possible to continue this way, we get a sequence Ik1
1 ⊃ . . . ⊃ Ikn

n ⊃ I
kn+1

n+1 ⊃ . . .

such that E(Ikn
n ) = E(C) and the length |Ikn

n | ≤ 1
2n for every n ≥ 1. This implies that

E(∩n≥1I
kn
n ) = E(C) 6= 0 ⇒ ∩n≥1I

kn
n 6= ∅ consists of at most one point ⇒ there exists

λ ∈ C such that ∩n≥1I
kn
n = {λ}. But then 0 6= E(C) = E({λ}) = 0, a contradiction.

Thus, there exists n ≥ 1 and k, l ∈ Z such that k 6= l and both dim(E(Ik
n)(H)) > 0 and

dim(E(I l
n)(H)) > 0. If E(Ik

n)(H) is finite dimensional then E(Ik
n)(K) is finite dimensional,

whereK is the complexification ofH and then, according with Lemma 6.25 we have that there

exists λ ∈ Ik
n such that dim(E({λ})(K)) > 0 ⇒ by Lemma 6.21 that dim(E({λ})(H)) > 0, a

contradiction with λ ∈ C. Hence E(Ik
n)(H) is infinite dimensional and by similar reasoning

we have that E(I l
n)(H) is infinite dimensional. If we let B = Ik

n, then I l
n ⊂ BC and hence

both E(B)(H) and E(BC)(H) are infinite dimensional and invariant under O. ¤

Corollary 6.27. F Let H be a real separable infinite dimensional Hilbert space and let

O ∈ O(H). Then H is the direct sum of an infinite sequence of infinite dimensional subspaces

that reduce O.

Proof. According with Theorem 6.26, there exists H1 ⊂ H a reducing subspace for O such

that bothH1 andH⊥
1 are infinite dimensional. Using the same theorem again forH⊥

1 we have

that there exists H2 ⊂ H⊥
1 a reducing subspace for O such that both H2 and H⊥

1 ∩ H⊥
2 are

infinite dimensional. Proceed inductively to obtain an infinite sequence {Hn} of mutually

orthogonal infinite dimensional reducing subspaces. If the intersection ∩n≥1H⊥
n 6= {0}, adjoin

it to H1. ¤

Proposition 6.28. F Let H be a real separable infinite dimensional Hilbert space and let

O ∈ O(H). Then there exists A,B ∈ O(H) such that O = ABAT BT .
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Proof. Let H = ⊕n∈ZHn, where each Hn is a separable infinite dimensional Hilbert space

that reduces O, as in Corollary 6.27. Since all Hn’s are separable and have the same infinite

dimension, they all are isomorphic to a fixed separable infinite dimensional Hilbert space H′

and hence for every n ∈ Z there exists Wn : Hn → H′ a norm preserving isomorphism. Note

that each Wn is orthogonal and that W T
n = W−1

n . Let W = ⊕n∈ZWn : ⊕n∈ZHn → ⊕n∈ZH′.

Note that W is a norm preserving isomorphism of H onto ⊕n∈ZH′ ⇒ W is orthogonal and

W−1 = W T . If O ∈ O(H) then O′ = WOW T : ⊕n∈ZH′ → ⊕n∈ZH′ is a norm preserving

surjection and hence O′ ∈ O(⊕n∈ZH′). If H′ is the n-th Hilbert space in ⊕n∈ZH′ and

if x ∈ H′ then W T
n x ∈ Hn ⇒ OW T

n x ∈ Hn since Hn is invariant under O ⇒ O′x =

WnOW T
n x ∈ H′ ⇒ H′ is invariant under O′ and hence each H′ is invariant under O′.

We will show that the assertion is true for O′, i.e. there exist A′, B′ ∈ O(⊕n∈ZH′) such

that O′ = A′B′A′T B′T . If this is true, then A = W T A′W ∈ O(H), B = W T B′W ∈
O(H) and O = W T O′W = W T A′B′A′T B′T W = W T A′WW T B′WW T A′T WW T B′T W =

(W T A′W )(W T B′W )(W T A′W )T (W T B′W )T = ABAT BT .

For every n ∈ Z let Pn : ⊕n∈ZH′ → H′ be the orthogonal projection of ⊕n∈ZH′ onto the

n-th H′. Let A′ : ⊕n∈ZH′ → ⊕n∈ZH′ be defined as A′x =
∑

n∈ZO′nPnx. Note that PnA
′x =

O′nPnx for every n ∈ Z. If a, b ∈ R and x, y ∈ H then A′(ax + by) =
∑

n∈ZO′nPn(ax +

by) = a
∑

n∈ZO′nPnx + b
∑

n∈ZO′nPny = aA′x + bA′y ⇒ A′ is linear. Since ‖A′x‖2 =
∥∥∑

n∈Z PnA′x
∥∥2

=
∑

n∈Z ‖PnA
′x‖2 =

∑
n∈Z ‖O′nPnx‖2 =

∑
n∈Z ‖Pnx‖2 =

∥∥∑
n∈Z Pnx

∥∥2
=

‖x‖2 ⇒ A′ is an isometry. Let y ∈ ⊕n∈ZH′. For every n ∈ Z let xn = (O′T )nPny ∈
H′ and let x =

∑
n∈Z xn. Since

∑
n∈Z ‖xn‖2 =

∑
n∈Z ‖(O′T )nPny‖2 =

∑
n∈Z ‖Pny‖2 =

∥∥∑
n∈Z Pny

∥∥2
= ‖y‖2 < ∞, x is well defined. Note that Pnx = xn for every n ∈ Z.

Then A′x =
∑

n∈ZO′nPnx =
∑

n∈ZO′nxn =
∑

n∈ZO′n(O′T )nPny =
∑

n∈Z Pny = y ⇒ A′

is surjective ⇒ A′ ∈ O(⊕n∈ZH′). Since PnA′ = O′nPn for every n ∈ Z we have that

Pn = O′nPnA′T ⇒ (O′T )nPn = PnA
′T for every n ∈ Z.

For every x ∈ ⊕n∈ZH′ let B′x = y, where y is such that Pny = Pn−1x. Then B′ :

⊕n∈ZH′ → ⊕n∈ZH′ is a well defined mapping and PnB
′x = Pn−1x for every x ∈ ⊕n∈ZH′. If
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a, b ∈ R and x, y ∈ ⊕n∈ZH′ then B′(ax+by) =
∑

n∈Z PnB
′(ax+by) =

∑
n∈Z Pn−1(ax+by) =

a
∑

n∈Z Pn−1x + b
∑

n∈Z Pn−1y = a
∑

n∈Z PnB′x + b
∑

n∈Z PnB
′y ⇒ B′ is linear. Since

‖B′x‖2 =
∥∥∑

n∈Z PnB′x
∥∥2

=
∑

n∈Z ‖PnB′x‖2 =
∑

n∈Z ‖Pn−1x‖2 =
∥∥∑

n∈Z Pn−1x
∥∥2

=

‖x‖2 ⇒ B′ is an isometry. Let y ∈ ⊕n∈ZH′. For every n ∈ Z let xn = Pn+1y and let

x =
∑

n∈Z xn. Since
∑

n∈Z ‖xn‖2 =
∑

n∈Z ‖Pn+1y‖2 =
∥∥∑

n∈Z Pn+1y
∥∥2

= ‖y‖2 < ∞, x is well

defined. Then B′x =
∑

n∈Z PnB′x =
∑

n∈Z Pn−1x =
∑

n∈Z xn−1 =
∑

n∈Z Pny = y ⇒ B′

is surjective ⇒ B′ ∈ O(⊕n∈ZH′). Since PnB
′ = Pn−1 for every n ∈ Z we have that

Pn = Pn−1B
′T for every n ∈ Z.

A′B′A′T B′T x =
∑

n∈Z PnA′B′A′T B′T x =
∑

n∈ZO′nPnB
′A′T B′T x =

∑
n∈ZO′nPn−1A

′T B′T x =
∑

n∈ZO′n(O′T )n−1Pn−1B
′T x =

∑
n∈ZO′Pnx =

∑
n∈Z PnO

′x = O′x for every x ∈ H ⇒ O′ =

A′B′A′T B′T . ¤

6.3. The Subsets O(M) and SO(M) of O(H)

Proposition 6.29. F Let G be a Polish topological group, M a closed subspace of the real

Hilbert space H and φ : G → O(H) an algebraic isomorphism. Then φ−1(Z(O(H))O(M))

is closed in G.

Proof. If dim(H) = 1 then M = H ⇒ Z(O(H)) = O(M) = {±I} ⇒ φ−1(ZOH) is closed.

Suppose that dim(H) ≥ 2.

We will prove that Z(O(H))O(M) = {W ∈ O(H) | WV = V W ∀V ∈ O(M⊥)}. This

will imply that φ−1(Z(O(H))O(M)) = φ−1({W ∈ O(H) | WV = V W ∀V ∈ O(M⊥)}) =

{φ−1(W ) | φ−1(W )φ−1(V ) = φ−1(V )φ−1(W ) ∀φ−1(V ) ∈ φ−1(O(M⊥))} and then, according

with the Proposition 3.26 we will have that φ−1(Z(O(H))O(M)) is closed in G. Note that

by Proposition 6.5 we have that Z(O(H))O(M) = {±U | U ∈ O(M)}.
Let U ∈ O(M), let V ∈ O(M⊥) and let x = x1 + x2 ∈ H, with x1 ∈ M and x2 ∈ M⊥.

Then Ux2 = x2, V x1 = x1 and, by Proposition 3.14, Ux1 ∈ M and V x2 ∈ M⊥ and hence

V Ux1 = Ux1 and UV x2 = V x2. It follows that λUV x = λUV (x1 + x2) = λ(UV x1 +

UV x2) = λ(Ux1 + V x2) = λ(V Ux1 + V Ux2) = λV Ux = V λUx ⇒ λUV = V λU for every

V ∈ O(M⊥) ⇒ Z(O(H))O(M) ⊂ {W ∈ O(H) | WV = V W ∀V ∈ O(M⊥)}.
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Let W ∈ O(H) be such that WV = V W for every V ∈ O(M⊥). Let U : M⊥ → M⊥

be orthogonal, and let V : H → H be defined as V x = x1 + Ux2 for every x = x1 + x2 ∈ H,

where x1 ∈ M and x2 ∈ M⊥. V is orthogonal since it is an isometry from H onto H, and

V |M = I. Thus V ∈ O(M⊥), and hence V W = WV . Let x1 ∈ M and x2 ∈ M⊥. Then,

by Lemma 3.27 Wx1 ∈ M and Wx2 ∈ M⊥, and hence Wx1 + UWx2 = V Wx1 + V Wx2 =

V W (x1 + x2) = WV (x1 + x2) = W (x1 + Ux2) = Wx1 + WUx2 ⇒ UWx2 = WUx2 for

every x2 ∈ M⊥ ⇒ UW |M⊥ = W |M⊥U . Hence W |M⊥ is in the center of O(M⊥) and by

Proposition 6.5 it follows that W |M⊥ = ±I.If W |M⊥ = I ⇒ W ∈ O(M) ⇒ W = IW ∈
Z(O(H))O(M). If W |M⊥ = −I ⇒ −W ∈ O(M) ⇒ W = −(−W ) ∈ Z(O(H))O(M). This

implies that {W ∈ O(H) | WV = V W ∀V ∈ O(M⊥)} ⊂ Z(O(H))O(M). ¤

Proposition 6.30. F Let G be a Polish topological group, M an infinite dimensional closed

subspace of the real Hilbert space H and φ : G → O(H) an algebraic isomorphism. Then

φ−1(O(M)) is an analytic subset of G.

Proof. Let [·, ·] : G × G → G be defined as [a, b] = aba−1b−1. Since the group opera-

tions are continuous, [·, ·] is continuous. If a, b ∈ φ−1(Z(O(H))O(M)) ⊂ G then φ(a), φ(b) ∈
Z(O(H))O(M) ⇒ there exist U, V ∈ O(M) such that φ(a) = ±U and φ(b) = ±V . But then

[a, b] = φ−1(±U)φ−1(±V )φ−1((±U)−1)φ−1((±V )−1) = φ−1(UV U−1V −1) ∈ φ−1(O(M)).

This proves that [·, ·]|φ−1(Z(O(H))O(M))×φ−1(Z(O(H))O(M)) takes its values in φ−1(O(M)). Let

T ∈ O(M) and denote T |M = W . Since M is infinite dimensional and since W is orthogo-

nal on M, we have by Proposition 6.28 that there exist orthogonals U ′, V ′ : M→M such

that W = U ′V ′U ′−1V ′−1. If U, V : H → H are such that U |M = U ′, U |M⊥ = I, V |M =

V ′ and V |M⊥ = I then U, V ∈ Z(O(H))O(M) and [φ−1(U), φ−1(V )] = φ−1(UV U−1V −1) =

φ−1(T ) and hence [·, ·]|φ−1(Z(O(H))O(M))×φ−1(Z(O(H))O(M)) is onto φ−1(O(M)). Since G is a

Polish topological group, G×G is a Polish topological group and since φ−1(Z(O(H))O(M))

is closed in G by Theorem 6.29, we have that φ−1(Z(O(H))O(M))× φ−1(Z(O(H))O(M))

is closed in G × G. Since [·, ·] is continuous, it follows that φ−1(O(M)) is the continuous
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image of a closed subset of a Polish topological group, and therefore an analytic subset of

G. ¤

Proposition 6.31. F Let G be a Polish topological group, M a closed subspace of the real

infinite dimensional Hilbert space H and φ : G → O(H) an algebraic isomorphism. Then

φ−1(O(M)) is closed in G.

Proof. If M = H then O(M) = O(H) and there is nothing to prove, so we may assume

that M 6= H. Suppose first that M is infinite dimensional. By Theorem 6.29 we have that

φ−1(Z(O(H))O(M)) is closed in G and hence Polish. φ−1(Z(O(H))) = Z(G), the center of

G is a closed in G and φ−1(O(M)) is analytic by Proposition 6.30. If U ∈ Z(O(H))∩O(M),

then U = ±I and, since U |M⊥ = I, we have that U = I ⇒ Z(O(H)) ∩ O(M) = {I} ⇒
φ−1(Z(O(H))) ∩ φ−1(O(M)) = φ−1(Z(O(H)) ∩ O(M)) = φ−1(I) = {e} is closed in G.

Using Corollary 3.39 we have that φ−1(O(M)) is closed in φ−1(Z(O(H))O(M)) and since

φ−1(Z(O(H))O(M)) is closed in G it follows that φ−1(O(M)) is closed in G.

Suppose that M is finite dimensional. Let {e1, e2, ..., en} be a orthonormal basis for

M. Extend this to {e1, ..., en, ..., en+l, ...} an orthonormal basis for H. For every l ≥ 1,

let Ml = span({ei}i≥1 \ {en+l}). Each Ml is infinite dimensional. Hence, by the previous

paragraph we have that φ−1(O(Ml)) is closed in G, for every l ≥ 1.

Since U ∈ O(M) ⇔ U |M⊥ = I ⇔ Uen+l = en+l for every l ≥ 1 ⇔ U ∈ O(Ml) for

every l ≥ 1 ⇔ U ∈ ∩l≥1O(Ml) we have that O(M) = ∩l≥1O(Ml) ⇒ φ−1(O(M)) =

φ−1(∩l≥1O(Ml)) = ∩l≥1φ
−1(O(Ml)) ⇒ φ−1(O(M)) is closed in G. ¤

Definition 6.32. Let H be a two dimensional real Hilbert space. An element R ∈ L(H) is

called a rotation if its associated matrix can be written in the form

R = R(θ) =


 cos θ − sin θ

sin θ cos θ




where θ ∈ R is the angle of rotation. If R ∈ L(H) is a rotation, since RT R = RRT = I we

have that R ∈ O(2) and since det(R) = 1 it follows that R ∈ SO(2).
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Lemma 6.33. Let M be a finite dimensional real Hilbert space and let U ∈ SO(M). Then

there exist P, Q ∈ O(M) such that U = PQP−1Q−1.

Proof. If U ∈ SO(M), then U ∈ O(M) and using a result from [6], §81, page 162, we have

that there exists an orthonormal basis for M such that the matrix representation of U is

U =




1

. . .

1

−1

. . .

−1

cos θ1 − sin θ1

sin θ1 cos θ1

. . .

cos θn − sin θn

sin θn cos θn




(here, all the other entries are 0). Since det(U) = 1 and since the determinant of every

rotation is 1 we must have an even number of −1’s on the diagonal of U . Note that every

pair of 1’s is equivalent to a rotation by 0 and every pair of −1’s is equivalent to a rotation

by π. Thus, the matrix representation of U consists of rotations on the diagonal if the

dimension of M is even and a 1 and rotations on the diagonal if the dimension of M is odd.

The conclusion will follow if we prove that for every rotation R there exist P,Q ∈ O(2) such

that R = PQP−1Q−1.

Let R =


 cos θ − sin θ

sin θ cos θ


 be a rotation and let P =


 cos θ

2
sin θ

2

sin θ
2
− cos θ

2


 and Q =


 1 0

0 −1



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It is easy to see that P 2 = I and Q2 = I ⇒ P−1 = P and Q−1 = Q and hence P,Q ∈ O(2).

By computation we have that

PQP−1Q−1 =


 cos θ

2
sin θ

2

sin θ
2
− cos θ

2





 1 0

0 −1





 cos θ

2
sin θ

2

sin θ
2
− cos θ

2





 1 0

0 −1


 =

=


 cos θ

2
− sin θ

2

sin θ
2

cos θ
2





 cos θ

2
− sin θ

2

sin θ
2

cos θ
2


 =


 cos2 θ

2
− sin2 θ

2
−2 sin θ

2
cos θ

2

2 sin θ
2
cos θ

2
cos2 θ

2
− sin2 θ

2


 =

=


 cos θ − sin θ

sin θ cos θ


 = R

which completes the proof. ¤

Proposition 6.34. F Let G be a Polish topological group, M a finite dimensional closed

subspace of the real infinite dimensional Hilbert space H and φ : G → O(H) an algebraic

isomorphism. Then φ−1(SO(M)) is an analytic subset of G.

Proof. Since φ−1(O(M)) is closed in G by Proposition 6.31, φ−1(O(M)) × φ−1(O(M)) is

closed in G× G. Let [·, ·] : φ−1(O(M))× φ−1(O(M)) → G be defined as [a, b] = aba−1b−1.

Since the group operations are continuous, [·, ·] is continuous. If a, b ∈ φ−1(O(M)) then

φ(a), φ(b) ∈ O(M), φ([a, b]) = φ(aba−1b−1) = φ(a)φ(b)(φ(a))−1(φ(b))−1 ∈ O(M) and

det(φ([a, b])) = det(φ(aba−1b−1)) = det(φ(a)) det(φ(b))(det(φ(a)))−1(det(φ(b)))−1 = 1 ⇒
φ([a, b]) ∈ SO(M) ⇒ [a, b] ∈ φ−1(SO(M)). This proves that [·, ·] takes its values in

φ−1(SO(M)). Let y ∈ φ−1(SO(M)). Then φ(y) = W ∈ SO(M). By Lemma 6.33 we have

that there exist U, V ∈ O(M)) such that W = UV U−1V −1. Let a = φ−1(U) ∈ φ−1(O(M))

and b = φ−1(V ) ∈ φ−1(O(M)). a and b exist since φ is an isomorphism. Then y = φ−1(W ) =

φ−1(UV U−1V −1) = φ−1(U)φ−1(V )(φ−1(U))−1(φ−1(V ))−1 = aba−1b−1 = [a, b] ⇒ [·, ·] is onto

φ−1(SO(M)). Since [·, ·] is continuous, it follows that φ−1(SO(M)) is the continuous image

of φ−1(O(M))×φ−1(O(M)), a closed set of a Polish space by Proposition 6.31, and therefore

φ−1(SO(M)) is an analytic subset of G. ¤
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Proposition 6.35. If M is a finite dimensional real Hilbert space, then

O(M) = Z(O(M))SO(M)

Proof. Since Z(O(M)), SO(M) ⊂ O(M) and O(M) is a subgroup it follows that

Z(O(M))SO(M) ⊂ O(M).

Let U ∈ O(M). Since 1 = det(I) = det(UUT ) = det(U) det(UT ) = det(U)2 ⇒ det(U) =

±1. If det(U) = 1 then U ∈ SO(M) ⇒ U = IU ∈ Z(O(M))SO(M).

If det(U) = −1, consider the matrix representation of U as in Lemma 6.33. Since the

determinant of every rotation is 1 and every rotation is a transformation on a two-dimensional

Hilbert space, we must have that the dimension of M, n is odd. Let e be a unit vector such

that e ⊥M and letH = span({e}∪M). Let V : H → H be defined as V |M = −I, V |{e} = I

and W : H → H be defined as W |M = −U, W |{e} = I. Then V ∈ Z(O(M)) by Proposition

6.5. Since

W =


 1 0

0 −U


 =


 1 0

0 −I





 1 0

0 U




we have that det(W ) = det(−I) det(U), where I is the identity in U(M). Since n = dim(M)

is odd, we have that det(−I) = (−1)n = −1 ⇒ det(W ) = 1 and hence W ∈ SO(M). Since

U = (−I)(−U) = V |MW |M and since U |{e} = I = V |{e}W |{e} we have that U = V W ∈
Z(O(M))SO(M) and hence O(M) ⊂ Z(O(M))SO(M). ¤

Corollary 6.36. F Let G be a Polish topological group, M a finite dimensional closed

subspace of the real infinite dimensional Hilbert space H and φ : G → O(H) an algebraic

isomorphism. Then φ−1(SO(M)) is closed in G.

Proof. From Corollary 6.31 we have that φ−1(O(M)) is closed in G and hence Polish. From

Proposition 6.35 we have that Z(O(M)) SO(M) = O(M) ⇒ φ−1(Z(O(M)))φ−1(SO(M)) =

φ−1(O(M)). φ−1(Z(O(M))) = Z(φ−1(O(M))), the center of φ−1(O(M)) is a closed sub-

group of φ−1(O(M)) and φ−1(SO(M)) is an analytic subgroup of φ−1(O(M)) by Proposition

6.34. Let C = Z(O(M))∩SO(M). Then C = {U ∈ O(M) | U |M = ±I, U |M⊥ = I} ⇒ C is

finite and since φ is an isomorphism, we have that φ−1(C) is finite and hence φ−1(Z(O(M)))∩
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φ−1(SO(M)) = φ−1(Z(O(M))∩SO(M)) = φ−1(C) is closed in φ−1(O(M)). It follows from

Corollary 3.39 that φ−1(SO(M)) is closed in φ−1(O(M)) and hence closed in G. ¤

6.4. Main Result

Lemma 6.37. F Let H be a separable infinite dimensional real Hilbert space, let {el}l≥1 ⊂ H
be an orthonormal basis for H and let P be the orthogonal projection on span({e1}). Then

there exists M a three dimensional subspace of H such that for every U ∈ O(H) there exists

U0 ∈ SO(M) such that PU0e1 = PUe1.

Proof. Let M = span({e1, e2, e3}), a three dimensional subspace of H. Note that since P

is the orthogonal projection on span({e1}), then PUe1 = λe1 and since |λ|2 = |λ|2‖e1‖2 =

‖λe1‖2 = ‖PUe1‖2 ≤ ‖PUe1‖2 +‖(I−P )Ue1‖2 = ‖Ue1‖2 = ‖e1‖2 = 1 we have that |λ| ≤ 1.

Let θ be such that cos θ = λ and let

U0 =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1




Then we have that

UT
0 =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1




and hence U0U
T
0 = I and UT

0 U0 = I. We also have that det(U0) = 1 and hence U0 ∈ SO(M).

Since U0e1 = cos θe1 + sin θe2 it follows that PU0e1 = cos θe1 = λe1 = PUe1. ¤

Lemma 6.38. F Let H be a separable infinite dimensional real Hilbert space, let e ∈ H be

such that ‖e‖ = 1 and let S = {O ∈ O(H) | ‖e − Oe‖ < ε}. Then there exists M ⊂ H a

three dimensional subspace such that S = O({e}⊥) [SO(M) ∩ S] O({e}⊥).

Proof. Note that if W ∈ O({e}⊥) and if O ∈ S then ‖e − OWe‖ = ‖e − Oe‖ < ε ⇒
OW ∈ S ⇒ S O({e}⊥) ⊂ S ⇒ S O({e}⊥) = S and ‖e − WOe‖ = ‖We − WOe‖ =

‖W (e− Oe)‖ = ‖e− Oe‖ < ε ⇒ WO ∈ S ⇒ O({e}⊥) S ⊂ S ⇒ O({e}⊥) S = S and hence

O({e}⊥) S O({e}⊥) = S.
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Let U ∈ S. Let P be the orthogonal projection on span({e}) and let Q = I − P . By

Lemma 6.37 we have that there exists M a three dimensional subspace and U0 ∈ SO(M)

such that PU0e = PUe. Since ‖PUe‖2 + ‖QUe‖2 = ‖Ue‖2 = 1 = ‖U0e‖2 = ‖PU0e‖2 +

‖QU0e‖2 we have that ‖QUe‖2 = ‖QU0e‖2. Since QUe ∈ {e}⊥ and QU0e ∈ {e}⊥ there exists

W ∈ O({e}⊥) such that WQU0e = QUe. Since by Lemma 3.50 W commutes with P and

with Q we have that WU0e = PWU0e + QWU0e = WPU0e + WQU0e = PU0e + QUe =

PUe + QUe = Ue ⇒ UT
0 W T Ue = e ⇒ UT

0 W T U = V ∈ O({e}⊥) ⇒ U = WU0V . We also

have that ‖e−U0e‖2 = ‖e−PU0e‖2 +‖QU0e‖2 = ‖e−PU0e‖2 +‖WQU0e‖2 = ‖e−PUe‖2 +

‖QUe‖2 = ‖P (e − Ue)‖2 + ‖Q(e − Ue)‖2 = ‖e − Ue‖2 < ε2 ⇒ U0 ∈ S. Thus U = WU0V ,

with W,V ∈ O({e}⊥) and U0 ∈ SO(M) ∩ S. This implies that S ⊂ O({e}⊥) [SO(M) ∩
S] O({e}⊥) ⊂ O({e}⊥) S O({e}⊥) = S ⇒ S = O({e}⊥) [SO(M) ∩ S] O({e}⊥). ¤

Lemma 6.39. F Let G be a Polish topological group, let H be an infinite dimensional sepa-

rable Hilbert space and let e ∈ H be such that ‖e‖ = 1. Let S = {U ∈ O(H) | ‖e− Ue‖ < ε}
and let φ : G → O(H) be an algebraic isomorphism. Then φ−1(S) is analytic in G.

Proof. Let M be as in Lemma 6.37 so that S = O({e}⊥) [SO(M) ∩ S] O({e}⊥). Since

SO(M) is a connected compact metric group with a totally disconnected center (Chapter

I, Section 14, [19]), using the result from [14] we have that φ|φ−1(SO(M)) : φ−1(SO(M)) →
SO(M) is a homeomorphism. S ∩SO(M) is a relatively open subset of SO(M) ⇒ φ−1(S ∩
SO(M)) is relatively open in φ−1(SO(M)). Since φ−1(SO(M)) is closed in G by Corollary

6.36, we have that φ−1(S ∩ SO(M)) is a Borel subset of G. Since φ−1(O({e}⊥)) is closed

in G by Proposition 6.31, it follows from Lemma 3.53 that φ−1(S) = φ−1(O({e}⊥) [S ∩
SO(M)] O({e}⊥)) = φ−1(O({e}⊥))φ−1(S ∩ SO(M))φ−1(O({e}⊥)) is analytic. ¤

Theorem 6.40. F Let H be a separable infinite dimensional real Hilbert space, let G be

a Polish topological group and φ : G → O(H) be an algebraic isomorphism. Then φ is a

topological isomorphism.

Proof. Let {el}l≥1 be an orthonormal basis forH. Let U be a basic neighborhood of I inO(H).

According with Proposition 3.11 U is of the form U = ∩1≤l≤n{U ∈ O(H) | ‖Uel − el‖ < ε}
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for some ε > 0. φ−1(O) is analytic by Lemma 6.39 and, since analytic sets have the Baire

property, φ−1(U) is a set with the Baire property. The conclusion follows from Lemma 3.57.

¤
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CHAPTER 7

THE PROJECTIVE ORTHOGONAL GROUP

Throughout this section H is assumed to be a real Hilbert space.

Definition 7.1. If H is a real Hilbert space, the projective orthogonal group is the group

PO(H) = O(H)/Z(O(H)). If π : O(H) → PO(H) is the natural quotient mapping and if

S ⊂ O(H) then π(S) = {±O | O ∈ S}. Throughout this section H is assumed to be a real

Hilbert space.

Proposition 7.2. PO(H) is a topological group.

Proof. Z(O(H)) is a normal subgroup of O(H) and use Proposition 4.2. ¤

Corollary 7.3. F If H is separable, PO(H) is a Polish topological group.

Proof. PO(H) is metrizable by Theorem 4.4. If H is separable, then Hom(H1), the homeo-

morphism group of the unit ball, is completely metrizable by Corollary 2.25 and since O(H)

is a closed subgroup of Hom(H1) by Theorem 3.7, we have that O(H) is completely metriz-

able. Since the mapping π is continuous and onto, using a theorem of Hausdorff [8] we have

that PO(H) is completely metrizable. PO(H) is separable by Proposition 4.5. ¤

Theorem 7.4. F Let M be a closed subspace of the infinite dimensional Hilbert space H and

let W ∈ O(H) be such that WOW T OT ∈ Z(O(H)) for every O ∈ O(M). Then WO = OW

for every O ∈ O(M).

Proof. Let W ∈ O(H) be such that WOW T OT ∈ Z(O(H)) for every O ∈ O(M). Then

WO = ±OW . For every O ∈ O(H) let λ(O) = ±1 be such that WO = λ(O)OW . If

O1, O2 ∈ O(H) then λ(O1O2)O1O2 = WO1O2 = λ(O1)O1WO2 = λ(O1)λ(O2)O1O2W ⇒
λ(O1O2) = λ(O1)λ(O2) ⇒ λ : O(H) → {±1} is a homomorphism of groups. If O ∈ O(H)

then OT ∈ O(H) and 1 = λ(I) = λ(OT O) = λ(OT )λ(O) ⇒ λ(OT ) = λ(O).

96



If M is infinite dimensional and if O ∈ O(M), according to Proposition 6.28, there exist

P,Q ∈ O(M) such that O = PQP T QT and then λ(O) = λ(P )λ(Q)λ(P )λ(Q) = 1 for every

O ∈ O(M) ⇒ WO = OW for every O ∈ O(M).

Suppose first that M is one-dimensional, that M = span({e1}) and that {el}l≥1 is an

orthonormal basis for H. Let O ∈ O(M). Then Oel = el for every l ≥ 2 and either Oe1 = e1

or Oe1 = −e1. If Oe1 = e1 then O = I ⇒ WO = OW and we are done. So suppose that O is

such that Oe1 = −e1 and Oel = el for every l ≥ 2 and that WO = −OW . Note that in this

case OT = O. Since 〈We1, e1〉 = −〈We1, Oe1〉 = −〈OWe1, e1〉 = 〈WOe1, e1〉 = −〈We1, e1〉
we have that 〈We1, e1〉 = 0. Since for every i, j ≥ 2 we have that 〈Wei, ej〉 = 〈Wei, Oej〉 =

〈OWei, ej〉 = −〈WOei, ej〉 = −〈Wei, ej〉 ⇒ 〈Wei, ej〉 = 0 for every i, j ≥ 2. Thus We2 =
∑

l≥1〈We2, el〉el = 〈We2, e1〉e1 ⇒ W T We2 =
∑

l≥1〈W T We2, el〉el =
∑

l≥1〈We2, Wel〉el =
∑

l≥1〈〈We2, e1〉e1,Wel〉el = 〈We2, e1〉
(∑

l≥1〈e1,Wel〉el

)
= 〈We2, e1〉

(∑
l≥1〈Wel, e1〉el

) ⇒
〈W T We2, e2〉 = 〈We2, e1〉2 and 〈W T We2, e3〉 = 〈We2, e1〉〈We3, e1〉. Similar computation

shows that 〈W T We3, e3〉 = 〈We3, e1〉2. But then, since W T W = I we must have that

〈We2, e1〉2 = 1, 〈We3, e1〉2 = 1 and 〈We2, e1〉〈We3, e1〉 = 0, which is a contradiction.

Suppose now that M is n-dimensional and that O ∈ O(M). Using a result from [6],

§81, page 162, we have that there exists {el}1≤l≤n an orthonormal basis for M such that the
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matrix representation of O is

O =




1

. . .

1

−1

. . .

−1

cos θ1 − sin θ1

sin θ1 cos θ1

. . .

cos θn − sin θn

sin θn cos θn




(here, all the other entries are 0). Since the determinant of every rotation is 1 we must have

that det(O) = ±1. If det(O) = 1 then O ∈ SO(M) ⇒ by Lemma 6.33 that there exists

P,Q ∈ O(M) such that O = PQP T QT ⇒ λ(O) = λ(P )λ(Q)λ(P T )λ(QT ) = λ(P )2λ(Q)2 =

1. If det(O) = −1 then we must have an odd number of −1’s on the diagonal of O. Without

loss of generality we may assume that Oe1 = −e1. If we let V ∈ O(M) to be such that

V e1 = −e1 and V el = el for 2 ≤ l ≤ n, then O = V W , where W ∈ SO(M). But then

λ(W ) = 1 and, by the previous paragraph, λ(V ) = 1 and hence λ(O) = λ(V )λ(W ) = 1. ¤

Theorem 7.5. F Let M be a closed subspace of the Hilbert space H, G a Polish topological

group and φ : G → PO(H) an algebraic isomorphism. Then φ−1(π(O(M))) is closed in G,

where π : O(H) → PO(H) is the natural quotient mapping.

Proof. We will prove that π(O(M)) = {Ŵ ∈ PO(H) | Ŵ V̂ = V̂ Ŵ for all V̂ ∈ π(O(M⊥))}.
This will imply that φ−1(π(O(M))) = {φ−1(Ŵ ) | φ−1(Ŵ )φ−1(V̂ ) = φ−1(V̂ )φ−1(Ŵ ) ∀ φ−1(V̂ ) ∈
φ−1(π(O(M⊥)))} and then, according with the Proposition 3.26 we will have that φ−1(π(O(M)))

is closed in G. Note that if S ⊂ O(H) and Ô ∈ π(S) then there exists O ∈ S such that

π(O) = Ô.
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Let Û ∈ π(O(M)) and V̂ ∈ π(O(M⊥)). Let U ∈ O(M) be such that π(O) = Ô and V ∈
O(M⊥) be such that π(V ) = V̂ . According with Theorem 6.29 we have that UV = V U ⇒
π(U)π(V ) = π(V )π(U) ⇒ Û V̂ = V̂ Û ⇒ π(O(M))π(O(M⊥)) = π(O(M⊥))π(O(M)) ⇒
π(O(M)) ⊂ {Ŵ ∈ PO(H) | Ŵ V̂ = V̂ Ŵ for all V̂ ∈ π(O(M⊥))}.

Let Ŵ ∈ PO(H) be such that Ŵ V̂ = V̂ Ŵ for all V̂ ∈ π(O(M⊥)). Let W ∈ O(H) be

such that π(W ) = Ŵ and, for every V̂ ∈ π(O(M⊥)), let V ∈ O(M⊥) be such that π(V ) = V̂ .

Then π(W )π(V ) = π(V )π(W ) ⇒ π(WV ) = π(V W ) ⇒ WV W T V T ∈ Z(O(H)) ⇒ WV =

V W by Theorem 7.4. Using Theorem 6.29 we have that W ∈ Z(O(H)) · O(M) ⇒ there

exists U ∈ O(M) such that W = ±U ⇒ π(W ) = π(U) ⇒ Ŵ ∈ π(O(M)) ⇒ {Ŵ ∈
PO(H) | Ŵ V̂ = V̂ Ŵ for all V̂ ∈ π(O(M⊥))} ⊂ π(O(M)). ¤

Proposition 7.6. If M⊂ H is a finite dimensional subspace, then

π(O(M)) = π(Z(O(M)))π(SO(M))

Proof. Since Z(O(M)), SO(M) ⊂ O(M) and O(M) is a subgroup we have that

Z(O(M))SO(M) ⊂ O(M) ⇒ π(Z(O(M)))π(SO(M)) ⊂ π(O(M)).

Let Û ∈ π(O(M)). Then there exists U ∈ O(M) such that π(U) = Û and by Proposition

6.35 we have that there exist V ∈ Z(O(M)) and W ∈ SO(M) such that U = V W ⇒ π(U) =

π(V W ) = π(V )π(W ) ⊂ π(Z(O(M)))π(SO(M)) ⇒ π(M) ⊂ π(Z(O(M)))π(SO(M)). ¤

Proposition 7.7. F Let G be a Polish topological space, M ⊂ H a finite dimensional

closed subspace and φ : G → PO(H) an algebraic isomorphism. Then φ−1(π(SO(M))) is

an analytic subset of G.

Proof. Since φ−1(π(O(M))) is closed in G by Theorem 7.5, φ−1(π(O(M)))×φ−1(π(O(M)))

is closed in G × G. Let [·, ·] : φ−1(π(O(M))) × φ−1(π(O(M))) → G be defined as [a, b] =

aba−1b−1. Since the group operations are continuous, [·, ·] is continuous. If a, b ∈ φ−1(π(O(M)))

then φ(a), φ(b) ∈ π(O(M)) ⇒ there exist U, V ∈ O(M) such that φ(a) = π(U), φ(b) = π(V )

and (φ(a))−1 = (π(U))−1 = π(UT ) and similarly (φ(b))−1 = π(V T ). Since φ([a, b]) =

φ(aba−1b−1) = φ(a)φ(b)(φ(a))−1(φ(b))−1 = π(U)π(V )π(UT )π(V T ) = π(UV UT V T ) ∈ π(O(M))
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and since det(UV UT V T ) = det(U)2 det(V )2 = 1, we have that φ([a, b]) ∈ π(SO(M)) ⇒
[a, b] ∈ φ−1(π(SO(M))). This proves that [·, ·] takes its values in φ−1(π(SO(M))).

Let y ∈ φ−1(π(SO(M))). Then φ(y) ∈ π(SO(M)) ⇒ there exists W ∈ SO(M) such

that φ(y) = π(W ). By Lemma 6.33 we have that there exist U, V ∈ O(M)) such that

W = UV UT V T . Let a = φ−1(π(U)) ∈ φ−1(π(O(M))) and b = φ−1(π(V )) ∈ φ−1(π(O(M))).

Then y = φ−1(π(W )) = φ−1(π(UV UT V T )) = φ−1(π(U))

φ−1(π(V ))(φ−1(π(U)))−1(φ−1(π(V )))−1 = aba−1b−1 = [a, b] ⇒ [·, ·] is onto φ−1(π(SO(M))).

Since [·, ·] is continuous, it follows that φ−1(π(SO(M))) is the continuous image of φ−1(π(O(M)))×
φ−1(π(O(M))), a closed subset of a Polish space, and therefore φ−1(π(SO(M))) is an ana-

lytic subset of G. ¤

Lemma 7.8. F IfM⊂ H is a finite dimensional subspace, then π(Z(O(M))) = Z(π(O(M))).

Proof. Let Û ∈ π(Z(O(M))). Then there exists U ∈ Z(O(M)) such that π(U) = Û . Let

V̂ ∈ π(O(M)) and V ∈ O(M) be such that π(V ) = V̂ . Then, since U and V commute, we

have that Û V̂ = π(U)π(V ) = π(UV ) = π(V U) = π(V )π(U) = V̂ Û ⇒ Û ∈ Z(π(O(M))) ⇒
π(Z(O(M))) ⊂ Z(π(O(M))).

Let Û ∈ Z(π(O(M))) and let U ∈ O(H) be such that π(U) = Û . We will show that

U ∈ Z(O(M)). This will imply that Û ∈ π(Z(O(M))) and therefore that Z(π(O(M))) ⊂
π(Z(O(M))). Let V ∈ O(M). Then π(V ) ∈ π(O(M)) and hence Ûπ(V ) = π(V )Û ⇒
π(U)π(V ) = π(V )π(U) ⇒ π(UV UT V T ) = Id ∈ PO(H) ⇒ UV UT V T ∈ Z(O(H)) ⇒ from

Theorem 7.4 that UV = V U ⇒ U ∈ Z(O(M)). ¤

Corollary 7.9. F Let G be a Polish topological space, M⊂ H a finite dimensional closed

subspace and φ : G → PO(H) an algebraic isomorphism. Then φ−1(π(SO(M))) is closed in

G.

Proof. From Corollary 7.5 we have that φ−1(π(O(M))) is closed in G and hence Polish. From

Proposition 7.6 we have that φ−1(π(Z(O(M))))φ−1(π(SO(M))) = φ−1(π(O(M))). By

Lemma 7.8 we have that π(Z(O(M))) = Z(π(O(M))) and, since φ is an isomorphism, it fol-

lows that φ−1(π(Z(O(M)))) is the center of φ−1(π(O(M))) and therefore φ−1(π(Z(O(M))))
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is closed in φ−1(π(O(M))). φ−1(π(SO(M))) is an analytic subgroup of G by Proposition

7.7, and hence analytic subgroup of φ−1(π(O(M))). Let C = π(Z(O(M))) ∩ π(SO(M))

and let Û ∈ C. Then there exist U ∈ Z(O(M)) and V ∈ SO(M) such that π(U) = Û =

π(V ) ⇒ π(UV T ) = Id ∈ PO(H) ⇒ UV T ∈ Z(O(H)) ⇒ UV T = ±I ⇒ U = ±V . Since

U |M⊥ = I and V |M⊥ = I we have that U = V ⇒ C = {π(U) | U ∈ Z(O(M))∩ SO(M)} =

{π(U) | U |M = ±I, U |M⊥ = I} ⇒ C is finite. Since φ is an isomorphism we have that

φ−1(C) is finite and hence closed in φ−1(π(O(M))). It follows from Corollary 3.39 that

φ−1(π(SO(M))) is closed in φ−1(π(O(M))) and hence closed in G. ¤

Proposition 7.10. F Let G be a Polish topological group, let H be a separable real Hilbert

space and let e ∈ H be such that ‖e‖ = 1. Let S = {O ∈ O(H)) | ‖e − Oe‖ < ε} ⊂ O(H)

and let φ : G → PO(H) be an algebraic isomorphism. Then φ−1(π(S)) is analytic in G.

Proof. Note first that the quotient mapping π : O(H) → PO(H) is open and contin-

uous. Let M ⊂ H be a three dimensional subspace as in Lemma 6.38 so that S =

O({e}⊥) · [SO(M)∩S] ·O({e}⊥). Then π(S) = π(O({e}⊥))π[SO(M)∩S]π(O({e}⊥)). Since

SO(M) is a connected compact metric group with a totally disconnected center (Chapter

I, Section 14, [19]), then π(SO(M)) is a connected compact metric group. A proof simi-

lar to the proof of Proposition 7.8 shows that Z(π(SO(M))) = π(Z(SO(M))) and hence

the center of π(SO(M)) is finite. Using the result from [14] we have that φ|φ−1(π(SO(M))) :

φ−1(π(SO(M))) → π(SO(M)) is a homeomorphism. SO(M)∩S is a relatively open subset

of SO(M) and hence Borel⇒ π[SO(M)∩S] is analytic in π(SO(M)) ⇒ φ−1(π[SO(M)∩S])

is analytic in φ−1(π(SO(M))). Since φ−1(π(O({e}⊥))) is closed in G by Theorem 7.5 and

therefore analytic, it follows from Lemma 3.53 that φ−1(π(S)) = φ−1(π(O({e}⊥))π[SO(M)∩
S]π(O({e}⊥))) = φ−1(π(O({e}⊥)))φ−1(π[SO(M) ∩ S])φ−1(π(O({e}⊥))) is analytic. ¤

Proposition 7.11. F Let {em}m≥1 be an orthonormal basis for the separable infinite di-

mensional Hilbert space H. For every m, n ≥ 1 let Om,n = {O ∈ O(H) | ‖em − Oem‖ < 1
n
}.
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Let π : O(H) → PO(H) be the natural quotient mapping. Then

⋂
m,n≥1

π−1(π(Om,n)) = {W ∈ O(H) | Wem = ±em for every m ≥ 1}

Proof. Note first that π−1(π(Om,n)) = Z(O(H)) · Om,n for every m,n ≥ 1. Let W ∈ O(H)

be such that Wem = ±em for every m ≥ 1. Then ‖e1 −We1‖ = 0 < 1
n

for every n ≥ 1 or

‖e1 + We1‖ = 0 < 1
n

for every n ≥ 1 ⇒ W ∈ O1,n for every n ≥ 1 or −W ∈ O1,n for every

n ≥ 1 ⇒ W ∈ Z(O(H)) · O1,n for every n ≥ 1. Similarly we have that W ∈ Z(O(H)) · Om,n

for every m,n ≥ 1 ⇒ W ∈ ∩m,n≥1Z(O(H)) · Om,n = ∩m,n≥1π
−1(π(Om,n)).

Let W ∈ ∩m,n≥1π
−1(π(Om,n)) = ∩m,n≥1Z(O(H)) · Om,n. Then for every m,n ≥ 1

there exists Wm,n ∈ Om,n such that W = ±Wm,n ⇒ Wm,n = ±W . If we fix m, since

‖em−Wm,nem‖ < 1
n

for every m,n ≥ 1, we have that ‖em +Wem‖ < 1
n

or ‖em−Wem‖ < 1
n
.

If both ‖em + Wem‖ < 1
n

and ‖em −Wem‖ < 1
n
, then 2 = 2‖em‖ = ‖2em‖ ≤ ‖em −Wem‖+

‖em + Wem‖ < 2
n
→ 0 as n → ∞, a contradiction. Thus, either ‖em + Wem‖ < 1

n
or

‖em −Wem‖ < 1
n
⇒ Wem = ±em. ¤

Corollary 7.12. F Let H be a separable infinite dimensional real Hilbert space and π :

O(H) → PO(H) be the natural quotient mapping. Then there exists {Sl}l≥1 ⊂ O(H) a

sequence of subbasic open neighborhoods of I such that ∩l≥1π
−1(π(Sl)) = Z(O(H)).

Proof. Let {em}m≥1 be an orthonormal basis for H. Let f1 =
√

6
π

∑
m≥1

em

m
. Then ‖f1‖2 =

6
π2

∑
m≥1

1
m2 = 1 and expand {f1} to an orthonormal basis {fm}m≥1. Let Um,n = {O ∈

O(H) | ‖em − Oem‖ < 1
n
} and let Vm,n = {O ∈ O(H) | ‖fm − Ofm‖ < 1

n
}. Let {Sl}l≥1 =

{Um,n,Vm,n | m,n ≥ 1}. According with the Proposition 3.11 {Sl}l≥1 is a sequence of

subbasic open neighborhoods of I in O(H).

Let W ∈ ∩l≥1π
−1(π(Sl)) = [∩m,n≥1π

−1(π(Um,n))] ∩ [∩m,n≥1π
−1(π(Vm,n))]. Then, ac-

cording with the Proposition 7.11 we have that Wem = ±em and Wfm = ±fm for ev-

ery m ≥ 1. Since Wf1 = W
(√

6
π

∑
m≥1

em

m

)
=

√
6

π

∑
m≥1

Wem

m
and also Wf1 = ±f1 =

±
(√

6
π

∑
m≥1

em

m

)
⇒ either Wem = em for every m ≥ 1 or Wem = −em for every m ≥ 1 ⇒

W = ±I ⇒ W ∈ Z(O(H)) ⇒ ∩l≥1π
−1(π(Sl)) ⊂ Z(O(H)).
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If W ∈ Z(O(H)) then W = ±I and since I ∈ Um,n and I ∈ Vm,n for every m,n ≥ 1 ⇒
W ∈ Z(O(H)) · Um,n = π−1(π(Um,n)) and W ∈ Z(O(H)) · Vm,n = π−1(π(Vm,n)) for every

m,n ≥ 1 ⇒ W ∈ ∩l≥1π
−1(π(Sl)). ¤

Corollary 7.13. F Let H be a separable infinite dimensional real Hilbert space, let G be

a Polish topological group and φ : G → PO(H) be an algebraic isomorphism. Then φ is a

topological isomorphism.

Proof. Let π : O(H) → PO(H) be the natural quotient mapping. Let {Sl}l≥1 be the

sequence defined in Proposition 7.12, {Sl}l≥1 = {Um,n,Vm,n | m,n ≥ 1}, where Um,n = {O ∈
O(H) | ‖em − Oem‖ < 1

n
}, Vm,n = {O ∈ O(H) | ‖fm − Ofm‖ < 1

n
} and {em}m≥1, {fm}m≥1

are two orthonormal bases for H. We will prove that the sequence {π(Sl)}l≥1 of subsets

of PO(H) satisfy the hypothesis of Theorem 4.16 and the conclusion will follow from the

same theorem. Since the projection mapping is open we have that π(Sl) is open for every

l ≥ 1. Also note that each φ−1(π(Sl)) is analytic in G by Proposition 7.10 and hence each

φ−1(π(Sl)) is a set with the Baire property.

Since ‖em−OT em‖ = ‖OT (Oem−em)‖ = ‖Oem−em‖ we have that OT ∈ Um,n whenever

O ∈ Um,n. Let Ô ∈ π(Um,n) and O ∈ Um,n be such that π(O) = Ô. Then OT ∈ Um,n ⇒
Ô−1 = (π(O))−1 = π(OT ) ∈ π(Um,n) ⇒ (π(Um,n))−1 ⊂ π(Um,n). By replacing Um,n with U−1

m,n

we have that (π(U−1
m,n))−1 ⊂ π(U−1

m,n) ⇒ π(Um,n) ⊂ (π(Um,n))−1 ⇒ (π(Um,n))−1 = π(Um,n) for

every m,n ≥ 1. Similarly (π(Vm,n))−1 = π(Vm,n) for every m,n ≥ 1 ⇒ (π(Sl))
−1 = π(Sl) for

every l ≥ 1.

Let U, V ∈ Um,2n. Then ‖em−Uem‖ < 1
2n

and ‖em−V em‖ < 1
2n

and hence ‖em−UV em‖ ≤
‖em−Uem‖+‖Uem−UV em‖ < 1

2n
+ 1

2n
= 1

n
⇒ UV ∈ Um,n ⇒ U2

m,2n ⊂ Um,n ⇒ (π(Um,2n))2 =

π(U2
m,2n) ⊂ π(Um,n) and hence for every m0, n0 ≥ 1 there exists m1 = m0 and n1 = 2n0 such

that (π(Um1,n1))
2 ⊂ π(Um0,n0). Similarly for every m0, n0 ≥ 1 there exists m1 = m0 and

n1 = 2n0 such that (π(Vm1,n1))
2 ⊂ π(Vm0,n0) and therefore for every l0 ≥ 1 there exists l1

such that (π(Sl1)
2 ⊂ π(Sl0).
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From Corollary 7.12 we have that ∩l≥1π
−1(π(Sl)) = Z(O(H)). From Lemma 4.17 we have

that π(∩l≥1π
−1(π(Sl))) = ∩l≥1π(π−1(π(Sl))) = ∩l≥1π(Sl) ⇒ ∩l≥1π(Sl) = π(Z(O(H))) =

Z(O(H)) and hence ∩l≥1π(Sl) is the identity in PO(H). ¤
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CHAPTER 8

THE ISOMETRY GROUP

Definition 8.1. Let H be a complex Hilbert space. For every (U, a) ∈ U(H)×H and every

x ∈ H we define (U, a)(x) = Ux + a. If H is a real Hilbert space and if (O, a) ∈ O(H)×H
we define (O, a)(x) = Ox + a for every x ∈ H.

Proposition 8.2. IfH is a complex Hilbert space, the semidirect product U(H)×αH together

with the operation (U, a)(V, b) = (UV, U(b) + a) is a group. We call this group the complex

isometry group and denote it by IC. If H is real, the real isometry group O(H) ×α H is

defined in a similar way and is denoted IR.

Proof. Let (U, a), (V, b), (W, c) ∈ IC. Then

(U, a)(V, b) = (UV, U(b) + a) ∈ IC;
[(U, a)(V, b)](W, c) = (UV,U(b) + a)(W, c) = (UV W,UV (c) + U(b) + a) = (UV W,U [V (c) +

b] + a) = (U, a)(V W, V (c) + b) = (U, a)[(V, b)(W, c)];

(U, a)(I, 0) = (U, a) = (I, 0)(U, a) and

(U, a)(U∗, U∗(−a)) = (UU∗, UU∗(−a)+a) = (I, 0) = (U∗U,U∗(a)+U∗(−a)) = (U∗, U∗(−a))(U, a).

The proof for the real isometry group is similar. ¤

Lemma 8.3. Let H be a complex Hilbert space. If U(H) is given the weak operator topology

and if H is given the norm topology, then the mapping U(H) × H → H, (U, a) 7→ U(a) is

continuous. Same result holds if H is a real Hilbert space and U(H) is replaced with O(H).

Proof. Let (Uj)j∈J ⊂ U(H) be such that Uj
wo−→ U and (ak)k∈K ⊂ H be such that ak

‖·‖−→ a.

Since the weak operator topology on U(H) and the strong operator topology are equivalent

we have that ‖(Uj − U)(x)‖ → 0 for every x ∈ H. Then ‖Uj(ak) − U(a)‖ ≤ ‖Uj(ak) −
Uj(a)‖+ ‖Uj(a)−U(a)‖ = ‖Uj(ak− a)‖+ ‖(Uj −U)(a)‖ = ‖ak− a‖+ ‖(Uj −U)(a)‖ → 0 ⇒
Uj(ak)

‖·‖−→ U(a) ⇒ the mapping (U, a) 7→ U(a) is continuous.
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If H is a real Hilbert space, the continuity of the mapping O(H) × H → H is proved

similarly. ¤

Proposition 8.4. F Let H be a complex Hilbert space. If U(H) is given the weak operator

topology and if H is given the norm topology, then IC with the product topology is a Polish

topological group. U(H)× {0} is the centralizer of {(−I, 0)} in IC and {I} × H is maximal

abelian and therefore both U(H) × {0} and {(−I, 0)} are closed subgroups of IC. If H is

a real Hilbert space then IR is a Polish topological group. O(H) × {0} is the centralizer of

{(−I, 0)} in IR and {I}×H is maximal abelian and therefore both O(H)×{0} and {(−I, 0)}
are closed subgroups of IR.

Proof. Since both U(H) and H are Polish spaces, IC is a Polish space. To show that IC is a

topological group, let (U, a), (V, b) ∈ IC. Since the mappings U 7→ U∗, (U, V ) 7→ U∗V and

a 7→ −a are continuous, and since the mapping (U, a) 7→ U(a) is continuous by Lemma 8.3

we have that ((U, a), (V, b)) 7→ (U∗V, U∗(b) + U∗(−a)) = (U∗, U∗(−a))(V, b) = (U, a)−1(V, b)

is continuous.

To show directly that U(H)×{0} and {I}×H are closed subgroups of IC, let (Uj)j∈J ⊂
U(H) be such that Uj → U . Then (Uj, 0) → (U, 0) ⇒ U(H) × {0} is closed in IC. If

(aj)j∈J ⊂ H is such that aj → a then (I, aj) → (I, a) ⇒ {I} × H is closed in IC.

If U ∈ U(H) then (U, 0)(−I, 0) = (−U, 0) = (−I, 0)(U, 0). Conversely, if (U, a)(−I, 0) =

(−I, 0)(U, a) then, since (U, a)(−I, 0) = (−U, a) and (−I, 0)(U, a) = (−U,−a), we have that

a = −a ⇒ a = 0 ⇒ (U, a) ∈ U(H)× {0} ⇒ U(H)× {0} is the centralizer of {(−I, 0)},
To show that {I} × H is maximal abelian, let (U, a) ∈ IC be such that (U, a)(I, b) =

(I, b)(U, a) for every b ∈ H. Then (U, a)(I, b) = (U,U(b) + a) and (I, b)(U, a) = (U, a + b) ⇒
U(b) = b for every b ∈ H ⇒ U = I ⇒ (U, a) ∈ {I} ×H ⇒ {I} ×H is maximal abelian.

The proof for IR is similar. ¤

Remark 8.5. Since the mapping U(H) → IC, U 7→ (U, 0) is an isomorphism of topological

groups, we may identify U(H) with U(H)× {0} ⊂ IC and we can consider U(H) as being a

closed subgroup of IC. Similarly, if H is a real Hilbert space then O(H) is a closed subgroup
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of IR. Since the mapping H → IC, x 7→ (I, x) is an isomorphism of topological groups, we

may identify H with {I}×H ⊂ IC and we can consider H as being a closed subgroup of IC.

Similarly, if H is a real Hilbert space then H is a closed subgroup of IR.

Lemma 8.6. F Let G be a Polish topological group and let φ : G → IC be an algebraic

isomorphism. Then φ−1(U(H)) and φ−1(H) are closed in G. If H is a real Hilbert space and

if φ : G → IR is an algebraic isomorphism, then φ−1(O(H)) and φ−1(H) are closed in G.

Proof. Since by Proposition 8.4, U(H) = {(U, a) ∈ IC | (U, a)(−I, 0) = (−I, 0)(U, a)},
we have that φ−1(U(H)) = {φ−1(U) | φ−1(U)φ−1((−I, 0)) = φ−1((−I, 0))φ−1(U)} and the

conclusion will follow from Proposition 3.26.

Since {I} × H is maximal abelian by Proposition 8.4 we have that φ−1(H) is maximal

abelian and therefore closed in G.

The proof in real case is similar. ¤

Lemma 8.7. F Let G be a Polish topological group, let φ : G → IC be an algebraic isomor-

phism and let 0 6= a ∈ H. Then φ−1({(I, b) ∈ IC | ‖b‖ = ‖a‖} is an analytic subset of G.

Same result holds if H is a real Hilbert space and if IC is replaced with IR.

Proof. Let Ta = {(I, b) ∈ IC | ‖b‖ = ‖a‖}. We will prove that Ta = {(U, 0)(I, a)(U, 0)−1 | U ∈
U(H)}. This will imply that φ−1(Ta) = {φ−1((U, 0))φ−1((I, a))φ−1((U, 0)−1) | U ∈ U(H)} =

{Rφ−1((I, a))R−1) | R ∈ φ−1(U(H))} and then, since the multiplication in G is continuous

and since φ−1(U(H)) is closed by Lemma 8.6, the conclusion follows from Lemma 3.53.

Let U ∈ U(H). Then (U, 0)(I, a)(U, 0)−1 = (U, 0)(I, a)(U∗, 0) = (U, 0)(U∗, a) = (UU∗, U(a)) =

(I, U(a)) ∈ Ta since ‖U(a)‖ = ‖a‖ ⇒ {(U, 0)(I, a)(U, 0)−1 | U ∈ U(H)} ⊂ Ta. If (I, b) ∈ Ta

then there exists U ∈ U(H) such that U(a) = b ⇒ (I, b) = (I, U(a)) = (U, 0)(I, a)(U, 0)−1 ⇒
Ta ⊂ {(U, 0)(I, a)(U, 0)−1 | U ∈ U(H)}.

The proof in real case is similar. ¤

Lemma 8.8. F Let H be a complex Hilbert space and let a ∈ H. If b, c ∈ H then {(I, b −
c) | ‖b‖ = ‖c‖ = ‖a‖} = {(I, d) | ‖d‖ ≤ 2‖a‖}.
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Proof. Let b, c ∈ H be such that ‖b‖ = ‖c‖ = ‖a‖ and let d = b− c. Then ‖d‖ = ‖b− c‖ ≤
‖b‖+ ‖c‖ = 2‖a‖ ⇒ {(I, b− c) | ‖b‖ = ‖c‖ = ‖a‖} ⊂ {(I, d) | ‖d‖ ≤ 2‖a‖}.

Let d ∈ H be such that ‖d‖ ≤ 2‖a‖. Let µ : R → H be defined as µ(θ) = eiθa.

Then µ is continuous, µ(0) = a and µ(π) = −a. The mapping θ 7→ ‖a − µ(θ)‖ is also

continuous, ‖a − µ(0)‖ = 0 and ‖a − µ(π)‖ = 2‖a‖. By the intermediate value theorem

we have that there exists θ0 such that ‖a − µ(θ0)‖ = ‖d‖ ⇒ there exists U ∈ U(H) such

that U(a − µ(θ0)) = d. Let b = U(a) and c = U(eiθ0a). Then ‖b‖ = ‖c‖ = ‖a‖ and

d = b− c ⇒ {(I, d) | ‖d‖ ≤ 2‖a‖} ⊂ {(I, b− c) | ‖b‖ = ‖c‖ = ‖a‖}. ¤

Lemma 8.9. F Let G be a Polish topological group, let φ : G → IC be an algebraic isomor-

phism and let 0 6= a ∈ H. Then φ−1({(I, d) ∈ IC | ‖d‖ ≤ 2‖a‖} is an analytic subset of

G.

Proof. Let Ta = {(I, b) ∈ IC | ‖b‖ = ‖a‖} be the set defined in Lemma 8.7. Then Ta ·
T−1

a = {(I, b)(I, c)−1 | ‖b‖ = ‖c‖ = ‖a‖} = {(I, b)(I,−c) | ‖b‖ = ‖c‖ = ‖a‖} = {(I, b −
c) | ‖b‖ = ‖c‖ = ‖a‖} = {(I, d) | ‖d‖ ≤ 2‖a‖} by Lemma 8.8 ⇒ φ−1({(I, d) | d ∈ U}) =

φ−1(Ta)φ
−1(Ta)

−1. Since φ−1(Ta) is an analytic subset of G by Lemma 8.7 we have that

φ−1({(I, d) | d ∈ U}) is analytic. ¤

Theorem 8.10. F Let G be a Polish topological group and let φ : G → IC be an algebraic

isomorphism. Then φ is a topological isomorphism.

Proof. The case when dim(H) = 1 was done by Kallman in [15].

Since φ−1(H) is closed in G by Lemma 8.6, it is Polish and hence φ|φ−1(H) : φ−1(H) → H
is an isomorphism between two Polish topological groups. Let δ > 0 and let U = {x ∈
H | ‖x‖ < δ} be an open neighborhood of 0 in H. Then U = ∪n≥1{x ∈ H | ‖x‖ ≤ δ(n−1)

n
} ⇒

φ−1(U) = ∪n≥1φ
−1({x ∈ H | ‖x‖ ≤ δ(n−1)

n
}) and each of the sets φ−1({x ∈ H | ‖x‖ ≤ δ(n−1)

n
})

is analytic by Lemma 8.9⇒ φ−1(U) is analytic and hence it has the Baire property. It follows

from Lemma 3.57 that φ|φ−1(H) is a topological isomorphism.

Since by Lemma 8.6 φ−1(U(H)) is closed in G and therefore Polish, φ|φ−1(U(H)) : φ−1(U(H)) →
U(H) is an algebraic isomorphism between two Polish topological groups. Let {hn}n≥1 be
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a dense subset of H. Let Ψ : φ−1(U(H)) → ∏
n≥1 φ−1(H) be defined as Ψ(φ−1((U, 0))) =

∏
n≥1 φ−1((U, 0))φ−1((I, hn))φ−1((U, 0))−1 =

∏
n≥1 φ−1((I, U(hn))). If U1, U2 ∈ U(H) are

such that
∏

n≥1 φ−1((I, U1(hn))) =
∏

n≥1 φ−1((I, U2(hn))) then U1(hn) = U2(hn) for ev-

ery n ≥ 1 ⇒ U1 = U2 since {hn}n≥1 is dense ⇒ Ψ is one-to-one. Since the group

operations are continuous in G, Ψ is continuous onto its range. If Φ :
∏

n≥1 φ−1(H) →
∏

n≥1H is the mapping Φ(
∏

n≥1 φ−1((I, xn))) =
∏

n≥1(I, xn), then Φ is continuous since

each φ|φ−1(H) is a topological isomorphism. For each n ≥ 1 let Fn : U(H) → H be de-

fined as Fn((U, 0)) = (U, 0)(I, hn)(U, 0)−1 = (I, U(hn)). Since the group operations are

continuous, each Fn is continuous. Let F : U(H) → ∏
n≥1H be defined as F ((U, 0)) =

∏
n≥1 Fn((U, 0)) =

∏
n≥1(I, U(hn)). Note that the range of F is the same as the range of

Φ ◦ Ψ. If U1, U2 ∈ U(H) are such that F ((U1, 0)) = F ((U2, 0)) then
∏

n≥1(I, U1(hn)) =
∏

n≥1(I, U2(hn)) ⇒ U1(hn) = U2(hn) ⇒ U1 = U2 ⇒ F is one-to-one. F is continuous

onto its range since the group multiplication is continuous. By Lusin-Souslin Theorem

(page 89, [18]) we have that F−1 : F (U(H)) → U(H) defined on the range of Φ ◦ Ψ

is Borel measurable. Thus the mapping F−1 ◦ Φ ◦ Ψ : φ−1(U(H)) → U(H) is Borel

measurable. Since (F−1 ◦ Φ ◦ Ψ)(φ−1((U, 0))) = (U, 0) = φ(φ−1((U, 0))) we have that

φ|φ−1(U(H)) = F−1 ◦Φ◦Ψ ⇒ φ|φ−1(U(H) is Borel measurable. It follows from Lemma 3.57 that

φ|φ−1(U(H)) is a topological isomorphism. Note that if H is infinite dimensional this is true by

Theorem 3.58. However, the proof from this paragraph works independent of the dimension

of H.

Let f : φ−1(H)×φ−1(U(H)) → G be defined as f(φ−1((I, a)), φ−1((U, 0))) = φ−1((I, a)(U, 0)) =

φ−1((U, a)). f is obviously one-to-one. Since the group operations are continuous, f is con-

tinuous onto its range. It follows from Lusin-Souslin Theorem (page 89, [18]) that f−1 : G →
φ−1(H)×φ−1(U(H)) is Borel measurable. The mapping g : φ−1(H)×φ−1(U(H)) → H×U(H)

defined as g(φ−1(I, a), φ−1(U, 0)) = φ(φ−1((I, a)))φ(φ−1((U, 0))) = (U, a) is a topological iso-

morphism since the restrictions of φ to φ−1(H) and φ−1(U(H)) are topological isomorphisms.

The mapping h : H × U(H) → IC defined as h((a, U)) = (U, a) is obviously a topological
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isomorphism. Thus h ◦ g ◦ f−1 is Borel measurable. Since (h ◦ g ◦ f−1)(φ−1((U, a))) =

h(g(φ−1((I, a)), φ−1((U, 0)))) = h((a, U)) = (U, a) = φ(φ−1((U, a))) we have that φ =

h ◦ g ◦ f−1 ⇒ φ is a Borel isomorphism and therefore a topological isomorphism by Lemma

3.57. ¤

Lemma 8.11. F Let H be a real Hilbert space with dim(H) ≥ 2 and let a ∈ H. If b, c ∈ H
then {(I, b− c) | ‖b‖ = ‖c‖ = ‖a‖} = {(I, d) | ‖d‖ ≤ 2‖a‖}.
Proof. Let b, c ∈ H be such that ‖b‖ = ‖c‖ = ‖a‖ and let d = b− c. Then ‖d‖ = ‖b− c‖ ≤
‖b‖+ ‖c‖ = 2‖a‖ ⇒ {(I, b− c) | ‖b‖ = ‖c‖ = ‖a‖} ⊂ {(I, d) | ‖d‖ ≤ 2‖a‖}.

Let d ∈ H be such that ‖d‖ ≤ 2‖a‖. Since dim(H) ≥ 2 there exists at least one e ∈ H
such that ‖e‖ = ‖a‖ and 〈a, e〉 = 0. Let ψ : R→ H be defined as ψ(θ) = (cos θ)a + (sin θ)e.

Then ψ is continuous, ‖ψ(θ)‖ = ‖a‖ for every θ ∈ R, ψ(0) = a and ψ(π) = −a. The

mapping θ 7→ ‖a − ψ(θ)‖ is also continuous, ‖a − ψ(0)‖ = 0 and ‖a − ψ(π)‖ = 2‖a‖. By

the intermediate value theorem we have that there exists θ0 such that ‖a− ψ(θ0)‖ = ‖d‖ ⇒
there exists O ∈ O(H) such that O(a − ψ(θ0)) = d. Let b = O(a) and c = O(ψ(θ0)). Then

‖b‖ = ‖c‖ = ‖a‖ and d = b− c ⇒ {(I, d) | ‖d‖ ≤ 2‖a‖} ⊂ {(I, b− c) | ‖b‖ = ‖c‖ = ‖a‖}. ¤

Lemma 8.12. F Let H be a real Hilbert space with dim(H) ≥ 2, let G be a Polish topological

group, let φ : G → IR be an algebraic isomorphism and let 0 6= a ∈ H. Then φ−1({(I, d) ∈
IC | ‖d‖ ≤ 2‖a‖} is an analytic subset of G.

Proof. The proof is identical with the proof of Lemma 8.9, with the exception that instead

of Lemma 8.8 we use Lemma 8.11. ¤

Theorem 8.13. F Let H be a real Hilbert space with dim(H) ≥ 2, let G be a Polish

topological group and let φ : G → IR be an algebraic isomorphism. Then φ is a topological

isomorphism.

Proof. The proof is identical with the proof of Theorem 8.10 with a few exceptions. In the

second paragraph instead of Lemma 8.9 we use Lemma 8.12. ¤
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Remark 8.14. It follows from [23] that on a real Hilbert space the surjective isometries

coincide with IR.
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