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CHAPTER 1

INTRODUCTION

One of the general problems of topological algebra is to determine restrictions on the
set of possible topological group topologies that are definable on a given abstract group
(G. This entails finding restrictions on the set of possible topologies on the abstract group
G for which the group operations are continuous. There are many special known results
related with this problem. Some of the most illustrious mathematicians of the twentieth
century have been linked to this area. One of the first results belongs to Elie Cartan, who
showed that if GG is a compact semisimple Lie group, H is a Lie group and ¢ : G — H is an
abstract group homomorphism whose image is bounded, then ¢ is continuous [2]. Another
important result is due to van der Waerden who proved that if a linear representation of a
simple nonabelian compact Lie group is bounded around the identity, then it is continuous
[27]. Hans Freudenthal proves a theorem similar to van der Waerden: he considers G to be a
simple real Lie group (of dimension > 3) which is absolutely simple, i.e. the complexification
of its Lie algebra remains simple as a complex Lie algebra, and he shows that, under this
assumption, any automorphism of G is continuous [4]. This result applies to SLs(R), but it
is not true for SLy(C) as von Neumann noted that if ¢ is a discontinuous automorphism of

C, the mapping
- a b
W SLy(C) — SLy(C), —

is not continuous. Furthermore, Borel and Tits extended the van der Waerden paper in a
variety of ways to Lie groups over locally compact fields [1], [26]. Similar questions about
metrizable topological groups arose naturally. One result is due to Robert Kallman, who

answered a question posed by Ulam, Schreier and von Neumann. By combining ideas from



algebra and descriptive set theory, he proved that if G is a complete separable metric group
and if ¢ : G — S is an algebraic isomorphism, then ¢ is a topological isomorphism [13].
This is perhaps a surprising result because, for example, it is false for the additive group
(R, +). To see this, note that R and R? are isomorphic as vector spaces over Q and therefore
are isomorphic as additive groups, but they are not homeomorphic in spite of the fact that
both groups are Polish groups. Later, Kallman used similar methods to prove analogous
theorems for large classes of groups, each of which requires unique special algebraic tricks:
compact simple Lie groups [11]; compact connected metric groups with totally disconnected
center [14]; the homeomorphism group of manifolds [17]; the diffeomorphism group of C*
manifolds [17]; the homeomorphism group of the Hilbert cube [17]; the homeomorphism
group of pseudo-arc (unpublished); the p-adic integers [12]; the group of measure-preserving
transforms of [0, 1] [16]; the group of measurable, non-singular, invertible transforms of [0, 1]
(clarifying an example of Kakutani)(unpublished); semisimple Lie groups of second kind
(unpublished); and the real az + b group [15].

The purpose of my dissertation is to add to this list by proving that U (H), the group of
unitary operators acting on a separable infinite dimensional Hilbert space, admits a unique
topology in which it is a complete separable metric group. The basic idea again is to
combine algebraic techniques with descriptive set theoretical results and prove the following
theorem ”Let H be a separable infinite dimensional complex Hilbert space, let G be a Polish
topological group and ¢ : G — U(H) an algebraic isomorphism. Then ¢ is a topological
isomorphism”, Theorem 3.58. The same theorem holds for the projective unitary group
PU(H) Theorem 4.18, for the group of *-automorphisms of L£L(H) Corollary 5.37 and for
the complex isometry group Theorem 8.10. If H is a separable real Hilbert space with
dim(H) > 3, the theorem is also true for the orthogonal group O(H) Theorem 6.40, for the
projective orthogonal group PO(H) Theorem 7.13 and for the real isometry group Theorem
8.13. It is surprising that the theorem fails for ¢ (n) if H is n—dimensional complex Hilbert

space Corollary 3.64.



Some of the theorems and propositions in this project do not represent original work.
They are reproduced here for the convenience of the reader, sometimes with slightly different
than the original proofs. If a theorem is a well known result, the name of the author is listed,
if it is just a general fact there is no name associated with it. Recommended references for

the general facts are [20], [21], [25] and [18]. All of the original theorems are marked with
*.



CHAPTER 2

BASICS OF HILBERT SPACES

2.1. Inner Products

DEFINITION 2.1. Let V be a vector space over C or R. A norm on V is a functionp: V — R
satisfying, for every x,y € V and every a € R or a € C the following:

1) p(z +y) < p(x) + py);

2) plax) = |a|p(z);

3) p(x) > 0 whenever x # 0.

The function p is usually denoted || - ||.

DEFINITION 2.2. A normed space is a pair (V| - ||), where V is a vector space over C or R

and || - || is a norm on V.

DEFINITION 2.3. If (V|| -||) is a normed space, the closed unit ball is the set {x € V' | ||z]] <

1} and is denoted by V;.

DEFINITION 2.4. A bilinear functional on a complex vector space V is a complex-valued
function ¢ on V x V such that ¢(z,y) is linear in the first argument and it is complex
conjugate linear in the second argument. A bilinear functional ¢ is positive if ¢(z,z) > 0 for
every x € V, and it is strictly positive if ¢(x,z) > 0, whenever x # 0. A bilinear functional ¢
is conjugate-symmetric if ¢(z,y) = m for every x,y € V. The quadratic form gZ; induced
by a bilinear functional ¢ on a complex vector space is the real-valued function defined for
each z € V by ¢(x) = ¢(z, 2).

A real bilinear functional on a real vector space is a real valued function defined in a
similar way, except that the values ¢(x,y) are required to be real and the conjugation no

longer appear.



DEFINITION 2.5. An inner product on a complex vector space V is a strictly positive,
conjugate-symmetric, bilinear functional on V. An inner product space is a complex vector
space V' and a choice of inner product on V. The quadratic form (x, ) induced by the inner
product is denoted by ||z]|>. The positive square root ||z|| of ||z]|? is a norm, called the norm
of x.

A real inner product space is a real complex vector space and a strictly positive, sym-

metric, real bilinear functional on it.

DEFINITION 2.6. We say that a bilinear functional ¢ is bounded if there is a real number ¢
such that |¢(z,y)| < c||z]/||y]|. When this is so, we denote by ||¢|| the least possible value of

¢, which is given by
o]l = sup{le(z, y)| [ =[] < 1, flyll <1}

PROPOSITION 2.7 (Parallelogram Law). If V' is a complex or a real inner product space,

then
Iz +ylI? + llz =yl = 2([|=*]| + |lylI*)

for every x,y € V.
Proof. ||z +y|* + |z —yll* = (x +y, 2 +y) +{x —y, 2 —y) = (z,2) + (2, y) + {y,2) + {y,y) +
(v,2) = (z,9) — (y,2) + (y,9) = 2(z, 2) + 2(y, y) = 2(||=*|| + [|y]]*). O

PROPOSITION 2.8 (Polarization identity). IquS 1s the quadratic form induced by a bilinear

functional ¢ on a complex vector space V', then

~ 1 ~ 1

6(2,) = D50+ 1)) — B (& — ) + (50 + iy) — D5 (e — i)

1
2
for every z,y € V.
Proof. (3(x + ) — d(3(x — y)) + id(3(z + iy)) — id(3(x — iy)) = ¢ (x + 1), 3z +v)) —
o(5(x—y), 5(x—y))+io(5(z+iy), 3(z+iy) —id(5(x—iy), 3 (x—iy)) = jo(z, )+

1900y, )+ 50y, y) — 10(, 1)+ 16(2, y) + 16y, ©) — §6(y, y) + jiod(x, ©) + 1oz, y) — 1
110y, y) — 1io(z, ) + 10(2,y) — 10(y, ) — 1id(y,y) = d(z,y) O



DEFINITION 2.9. Let V' be a vector space over C. Define the distance between two vectors
x and y to be ||z — y||. Then V is a metric space with respect to this distance function.
A Hilbert space is an inner product space which, as a metric space, is complete. A Hilbert
space is usually denoted by H.

If V is a vector space over R, a real Hilbert space is defined in a similar way. As regards
elementary geometrical properties of Hilbert spaces, there is a little difference between the
real and the complex cases. In the main we shall restrict attention to the complex case,

making occasional comments on the modifications needed to deal with real spaces.

DEFINITION 2.10. A Hilbert space H is separable if there is D C H a countable dense subset.

Throughout the Hilbert space H will be assumed to be separable.

DEFINITION 2.11. We define two topologies on a Hilbert space H. The first topology is
compatible with the metric induced by the norm and is called the strong topology. A base
of neighborhoods for the strong topology at the point xy is the collection of all sets of the

form
{z | [l — ol < €}
where € > 0. We say that the net x; converges strongly to z if ||z; — z|| — 0 and we denote
this by z; 5o
Another topology on a Hilbert space is called the weak topology. A base of neighborhoods

for the weak topology at the point x( is the collection of all sets of the form
{2 ] {x —mo,y:)| <€, 1 <i <k}

where y1,y2,...,yx € H and € > 0. We say that the net z; converges weakly to z if

(z; — x,y) — 0 for every y € H and we denote this by z; — z.

2.2. Linear Operators

DEFINITION 2.12. An operator is a linear transformation from H into H. We say that the

operator T' : H — 'H is bounded if there exists C' € R such that ||Tz|| < C||z| for every



x € H. The least such constant C' is the norm of T. The collection of all bounded operators

acting on a Hilbert space H is denoted by L(H).

LEMMA 2.13. If T € L(H), then |T|| = sup{[{Tz,y)| | [|z]| < 1, ||y|l < 1}.

Proof. 1t |[Tal| # 0, let y = (2. Then [lyll = 1 and sup{|(T,3)| | llz] < 1, [ly]

1} = sup {[(Te, ) ol <1} = sup {150 | lall <1} = sup{|iTall | Jlz) < 1} =
sup{ ITol ) o o} — inf {c | L2l < c} =inf{C| |Tz| < Clz|} = ||IT]| O

IN

THEOREM 2.14 (Riesz’s Representation Theorem). If ‘H is a Hilbert space and y € H, the
equation ¢,(x) = (x,y) defines a continuous linear functional ¢, on H, and ||¢,|| = ||yl
Each continuous linear functional on H arises in this way from a unique element y of 'H.
Proof. Since the inner product is linear in the first argument, it is clear that ¢, is linear. For
every y € H we have that |¢,(x)| = [(x,y)| < ||z] ||y|| for every z € H = ¢, is bounded and
hence continuous. If x = y we have that |¢,(z)| = ||z| ||yl = l|¢y|l = lly]|-

If ¢ # 0 is a continuous linear functional on H, let Y = ¢~1(0). Then, since ¢ # 0 we have
that Y # H = Y+ # {0}. Let u € Y+ be such that ||u|]| = 1. Note that ¢(d(u)x — ¢(z)u) =
d(u)p(z) — ¢p(z)p(u) = 0 for every z € H = d(u)z — ¢(z)u € Y and, since u € Y+ we
have that 0 = (p(u)r — d(z)u,u) = d(u)(z,u) — ¢(z) = ¢(x) = ¢(u)(z,u) = (z,(u)u).
Let y = Wu Then ¢(z) = ¢y(x) = (x,y) for every x € H. If ¢ = 0 then it is clear
that 0 = ¢(x) = ¢o(x) = (x,0) for every x € H. If also ¢ = ¢,, with z € H then
|y — z|| = ||py—2:|| = |6y — @2l = ||¢ — ¢]| = 0 = y = z = the representation of ¢ is unique.
O

THEOREM 2.15 (Banach-Alaoglu). Let H be a Hilbert space over C or R. The weak topology
on Hy ={x € H | ||z| <1}, the unit ball of H, is compact Hausdorff.
Proof. Here is the proof for the complex case only. The real case is similar.

For every v € H, let D, = {z € C | |2| < [|z]|} be the closed disc in C. Let D =[], 4, D

equipped with the product topology. By Tychonoft’s Theorem D is compact. For every x €



Hy let 0(z) = [[,en(,y). Since for every x € Hy and every y € H, [z, y)| < ||zl [[yll = [[yl,
we have that 0(x) € D and hence ¢ is a mapping from H; into D.

If z1, 29 € Hy such that §(x1) = 0(xg), then(xy,y) = (z9,y) for every y € H = x; =
Ty = § is one-to-one. If z;, 2 C Hy, then v; = z < (x;,y) — (z,y) for every y € H &
d(xj) — 0(z). Hence ¢ is an embedding of H; with the weak topology into D with the
product topology.

Let 21 # x5 € Hy. Then there exists yo € H such that (x1,v0) # (z2,%0) € Dy, = there
exist Uy, Uy C Dy, open, disjoint such that (xq,y0) € Uy C Dy, and (z2,y0) € Uy C Dy,.
Then 6~ ' (Uy x [],,4,, Dy) and 6~ (U x ], D,) are disjoint weakly open sets and separate
x1 and zo. Hence the weak topology on H; is Hausdorff. We will show compactness by
showing that the range of J is closed in D, which can be viewed as the set of all complex
valued functions acting on H.

Let f € clp(6(H1)). Then f : H — C and there exists z; C H; such that 6(z;) — f,
which is that (z;,y) — f(y) for every y € H. Since |(z;,y)| < ||y||, we have that |f(y)| < ||yl
for every y e H = || f|| < 1.

Let € > 0, 1,29 € H, o, € C and let 3 = ax; + fas. Let U = {g € D | |g(x1) —
flz1)] < €, |g(za) — fxe)] < €, |g(xs) — f(z3)] < €}. Then U C D is open and
contains f = 6(H;) NU # (0 = there exists g € H; such that [(zg,z1) — f(x1)| <

€, |(zo,x2) — f(z2)| <€, [{(xo,23) — f(x3)] < e. Then
|f(23) — ouf (21) = Bf (22)| =
|f(w3) — (w0, w3) + (w0, 73) — auf (21) — B (w2)] =
|f(23) = (o, 23) + a{zo, 21) + Blwo, v2) — af(21) = Bf(2)] <
|f(x3) = (wo, 23)| + alf (1) — (w0, 21)| + Bl f (22) — (20, 22)| <

e+ac+ fBe=¢€(l+a+p)



Since this is true for every ¢, we have that f is linear. By Riesz’s Representation Theorem we
have that there exists z € H; such that f(y) = (x,y) foreveryy € H = f € 6(H1) = 6(H1)

is closed in D = H; is weakly compact. [J

THEOREM 2.16. If 'H is separable, the weak topology on Hy is compact and metrizable. In
this case, a metric compatible with the weak topology on Hy is
()= 3 glte e
1>1

where {e1, s, ..., €, ...} is an orthonormal basis for H.
Proof. We have shown in the Theorem 2.15 that the unit ball is compact. To show that the
metric just defined is compatible with the weak topology, we have to show that if (x;) C H;
is a net and * € H;, then x; — = < d(v;,z) — 0.

If (z;) C Hy is a net, € H, and x; — x, then (x; — z,¢;) — 0 for every [ > 1. Let

e > 0. Choose L so that 2! > 2. Then § > 55 = 5755 (X n1 51) = Doy o7 =

€

Sera = Yoer gl —zll el = Yo l{z; — e for every j. For every 1 <1< L
there is an J; such that %|(z; — z,¢;)| < 55 for every j > J;. Let J > {J; | 1 <1< L}. Then
Siccr atlxy — @, e)| < § for every j > J. Hence, if j > J, then Yo, 5il(z; — z,e))| <
e = d(zj,x) — 0.

If (z;) C Hiis anet, z € Hy and d(z;,z) — 0, then 3., 5|(z; — z,e)] — 0. This
implies that |(z; — x,¢)| — 0 for every [ > 1 = [(z; — x,v)| — 0 for every v = 321, aey.

Let € > 0, and y € Hy. Choose v = S.F_ ae; be such that [y — v| < $- This can be
done since finite linear combinations of ¢; are dense. Then [(z; — z,y — v)| < [{(x;,y —v)| +
{2,y = o) < lagll Nly = vl + Mzl fly = ol < 2]ly = vl < 5. Since [(z; —2,v)[ — 0 for

every v = Zle aier, choose J such that |(z; — x,v)| < § for every j > J. This implies that

(z; —z,9)| < {25 — 2,y —0)| + |[{2; — z,0)| < e for every j > J = x; = . O

THEOREM 2.17. IfT € L(H) then the equation by(x,y) = (T'z,y) defines a bounded bilinear
functional on H x H and ||br|| = ||T'||. Each bounded bilinear functional on H x H arises in

this way from a unique element of L(H).



Proof. Given T' € L(H) it is clear that by is a bilinear form on ‘H x H. Since |bp(z,y)| =
Tz, )| < || Tz||||lyll < |IT||||=||||ly]| we have that by is bounded and ||br|| < ||T]|. Since
|ITz||* = (Tz, Tx) = br(z,Tx) < [lbr|[[|z[|Tz| we have that |Tz| < [[br|lllz| = [IT]| <
o]l and hence | T = [jbr]|.

Let b : H x H be a bounded bilinear form. For every z € H let (Rz)(y) = b(x,y). Rx is a
linear functional on ‘H and, since |(Rz)(y)| < ||b]|||z]|||y||, Rz is bounded and || Rz || < ||b]|||z]|.
Since b is linear in the first variable, the mapping R, R(z) = Rz from H into the dual space
of H is bounded, conjugate-linear. For every y € H let (Sy)(z) = (x,y). It is clear that Sy
is linear. Since [(Sy)(z)| = [(z,y)| < ||z|/||y|| with equality if x =y = ||Sy|| = ||y||. Thus,
S is a norm-preserving conjugate-linear from H into the dual of H. Let T = S™'R. Then
T : H — 'H is linear and T is bounded by ||b||. Moreover, br(x,y) = (Tz,y) = (S~ Rz, y) =
{y, 571 Re) = (Rx)(y) = b(x, y).

If also by = b for some U € L(H) then ||T — U|| = ||br—v]|| = ||br —bu|| = [b—=0] =0
and hence T'=U. [J

PROPOSITION 2.18. If T € L(H) then
KTz, y) = T(x+y)r+y) —(T(x—y)z—y) +i{T(z+iy),z+iy) — (T (z — 1y),z — iy)

for every x,y € 'H.

Proof. 1f ¢(z,y) = (Tx,y), then ¢ is a bilinear form on H. It follows from Proposition 2.8 that
(Tz,y) = (T(3(z+y)) 5z +y) — (T3 —y), 50z —y) + (T (5= +iy). 5(z +iy)) -
TG — i), 3o — i) = LT+ y), o+ )~ W@ — )3 — )+ 3ilT(a + iy), o + iy) -
H(T(x —iy),z —iy) O

ProprosiTION 2.19. If S and T are bounded linear operators on a Hilbert space H and if
(Tx,x) = (Sx,x) for every x € H, then S =T

Proof. If x,y € 'H, using Proposition 2.18 we have that

KTz,y) = (T(x+y),z+y)—(T(x—y),r—y)+i(T(x+iy),z +iy)—i(T(x — iy),z — iy) =

10



(S(x+y),z+y) — (S —y),z—y) +i(S(x +1iy), v+ iy) —i(S(x — iy),z —iy) = 4(Sz,y)

=S=T. 0

THEOREM 2.20. If H is a Hilbert space and T € L(H) then there is a unique element
T* € L(H) such that

(T*z,y) = (z,Ty)

for every x,y € 'H. Moreover,
1) (aS +bT)* = aS* + bT*
2)(TS)* = S*T*

3) (T*) =T
) NTT| = |IT|?
5) 1T = |17

for every S, T € L(H) and every a,b € C.
Proof. The equation b(x,Ty) = (x,Ty) defines a bilinear functional b on H x H. Since
b(x,y)| = |{z,Ty)| = [(Ty,x)| = |br(y,x)|, where by is the bilinear functional defined
in Theorem 2.17, we have that b is bounded. By the same theorem that there exists a
unique element 7% € L(H) such that (T*z,y) = b(x,y) = (x,Ty) for every z,y € H and
|7*|| = |16l = ||IT||, which proves 5). If € H then ||Tz|? = (Tz,Tz) = (T*Txz,z) <
ITTll2ll? = T2 < IT°T1| < | T|IT] = 7] and 4) follows,

Since ((@S* + bT*)z,y) = a(S*z,y)+b(T*z,y) = alx, Sy)+b{zx, Ty) = (z, (aS + bT)y) =
{(aS +bT)*z,y) for every z,y € H, we have that (aS + bT)* = aS* + bT™.

Since (S*T*z,y) = (T*z, Sy) = (x, TSy) = ((T'S)*x,y) for every x,y € H, we have that

(T'S)* = S*T™*. Finally, since (Ty, x) = (x, Ty) = (T*x,y) = (y, T"x) = ((T")*y, z) for every

x,y € H, we have that (T*)* = T and the theorem is proved. [

DEFINITION 2.21. A bounded linear operator 7' € L(H) is said to be self-adjoint or Hermit-

lanif 7T* ="1T.

11



DEFINITION 2.22. The strong operator topology and the weak operator topology are topolo-
gies on the space of bounded linear operators on a Hilbert space. In the strong operator

topology, an element Tj has a base of neighborhoods consisting of all sets of the form
{Te LH) | (T = To)zil| < e, 1 <i <k}

where x1,x9,...,2;, € H and € > 0. We say that the net 7T, converges to 7" in the strong
operator topology if ||(Tj — T')z|| — 0 for every z € H and we denote this by Tj =% T.

A basic neighborhood at T in the weak operator topology is the collection of all sets of
the form

{T e L(H) | (T — To)ws,y:)| <€, 1 <i <k}

where x1, z2, ..., i, Y1, Y2, ..., Y € H and € > 0. We say that the net T} converges weakly to
T in the weak operator topology if ((17; — T')z,y) — 0 for every x,y € H and we denote this
by T; = T.

DEFINITION 2.23. Let X be a topological space. The set of all functions f : X — X such
that f is bijective and f and f~! are continuous is denoted Hom(X). Hom(X) together

with the composition of functions is a group, called the homeomorphism group of X.

THEOREM 2.24. Let X be a separable compact metric space and let Hom(X) be the home-
omorphism group of X. Then Hom(X) can be given a separable complete metric group

topology. The metric compatible with this group topology is given by

p(f,9) = supd(f(z), g(x)) +supd(f'(z),g " (x))

reX zeX
for every f,g € Hom(X), where d is the metric on X.

A condensed sketch of this proof is in [17]. O

COROLLARY 2.25. Let 'H be a separable Hilbert space over C or R, H;y the unit ball and

Hom(H,) the homeomorphism group of the unit ball. Then

p(f.9) = sup d(f(x), g(x)) + sup d(f (), 9" (z))

rEH, rEH,
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where d is the metric on Hy, defines a complete separable metric on Hom(Hy). Hom(H)
is a topological group with respect to the corresponding topology. If f; — f with respect to
this topology, we will use the notation f; 2t

Proof. If 'H is separable, H; is a separable compact metric space by Theorem 2.16. The

conclusion follows from the Theorem 2.24. [

2.3. Projections

DEFINITION 2.26. An orthogonal projection on a subspace M C H is the transformation

P :'H — M defined, for every z = 2 +y € ‘H, with z € M and y € M+, by P(2) = z.

PROPOSITION 2.27. The orthogonal projection P on a subspace M is an idempotent and
Hermitian operator. If M # O, then ||P|| = 1. Conversely, if P is an idempotent Hermitian
operator and if M = {x € H | P(x) = x}, then P is the orthogonal projection on M.
Proof. 1t is clear that P is linear. If z = x 4+ y with € M and y € M*, then |P(2)|* =
lz|I* < |lz|I* + |lyl|* = ||z]|?, and hence P is bounded and ||P|| < 1. Since P?(z) = P(z) =
x = P(z), we have that P is idempotent. If z; = x; +y; and 23 = x5 + yo, where 1,29 € M
and y1, 9o € M=, then (P(z1), 22) = (21,00 + 1y2) = (21, 2) + (T1, y2) = (1, 12) = (w1, 2) +
(y1,22) = (w1, P(22)) + (y1, P(22)) = (21, P(22)), and hence P is Hermitian. Also, if M # O,
then P(x) = x implies that ||P|| = 1.

Conversely, let P be an idempotent Hermitian operator, M = {x € H | P(z) = z}
and let z € H. Since P is idempotent, P(P(z)) = P(z) and hence P(z) € M. Since P is
Hermitian, (x,z — P(z2)) = (z,2) — (z, P(2)) = (x,z) — (P(z),2) = (z,2) — (x,z) = 0 for
every € M, and hence 2 — P(z) € M*. Since z = P(z) + (2 — P(z)), the conclusion
follows. [J

DEFINITION 2.28. A partial isometry is an operator on a Hilbert space that is an isometry

on the orthogonal complement of its kernel.

PROPOSITION 2.29. An operator U on a Hilbert space H is a partial isometry if and only if

U*U 1is an orthogonal projection.

13



Proof. Let U be a partial isometry and P be the orthogonal projection on Ker(U)*t. If
r € Ker(U)*, then (U*Uz,x) = (Ux,Ux) = |Ux||?> = ||z|* = (x,z). Hence, if 2 € H and
z =z +y, where z € Ker(U)* and y € Ker(U), then (U*Uz, z) = (U*Uz,x) + (U*Ux,y) +
(U Uy, x) + (U Uy,y) = (z,x) = (z,x) + (x,y) = (z,2) = (Pz,z). By Proposition 2.19,
U*U = P is the orthogonal projection on Ker(U)*.

Let U*U be the orthogonal projection on M. We will first show that M = Ker(U)*.
Let z € M and y € Ker(U). Then (z,y) = (U*Ux,y) = (Uz,Uy) = (Uz,0) = 0, and hence
M C Ker(U)t. Let y € M*. Then ||Uy|]* = (Uy,Uy) = (U*Uy,y) = (0,y) = 0. This
implies that y € Ker(U) and hence M+ C Ker(U) = Ker(U)* C M.

It remains to show that U is an isometry on the orthogonal complement of its kernel. To

this end, let € Ker(U)*+ = M. Then, ||Uz|? = (Uz,Ux) = (U*Uz,x) = (z,z) = ||z||>. O

LEMMA 2.30. If P is the orthogonal projection on the subspace M and x is a vector such
that || Px|| = ||z||, then x € M.

Proof. Let x be any vector. Then Px € M and, since (x — Px,y) = (z,y) — (Px,y) =
(r,y) — (z,Py) = 0 for every y € M, x — Px € M*. Since x = Px + (z — Pz), we
have that ||z||? = ||Pz||* + ||z — Pz|* and, since ||z|| = ||Pz||, that ||z — Pz| = 0. Hence,
Pr=x=zeM. O

PROPOSITION 2.31. Let P and Q) be two orthogonal projections on subspaces M and N
respectively. Then the following relations are equivalent.

1) P<Q;

2) || Pz < |Qx| for every x;

3)MCN;

4) QP = P;

5) PQ = P.
Proof. If P < @, then ||Pz||* = (Pz, Px) = (Px, P*z) = (P?z,x) = (Pr,1) < (Qn,1) =

|Qx]||? for every .

14



If |Pz|| < ||Qz]| for all z, let * € M, x = y + 2, where y € AN and z € N*. Then
l2)1? = [|1P]* < [|Qx[* = [[yll* < lylI* + I=]1* = ll=}I* = ||z = [|Qz|. By Lemma 2.30 we
have that x € AV and hence M C N

If M C N, then Pr € M C N for every x, and hence QPx = Px for every x.

If QP = P, then PQ = P*Q* = (QP)* = P* = P.

If PQ = P, then (Px,z) = |Pz|?* = |PQx|* < [|Qz]|> = (Qx,x) for every z, and
therefore P < Q. [J

ProPOSITION 2.32. If P, and P are two orthogonal projections on a Hilbert space 'H, then
Py > Py if and only if Py — Py is an orthogonal projection.
Proof. If P, > P,, then PP, = P/ P, = P,. But then (P, — P2)* = P — Py = P, — P, and
(P, — P)? =P —PPo— PP, — P} =P —P,— P+ P, =P, — P,. Hence, P, — P, is an
orthogonal projection.

If P, — P, is an orthogonal projection, then (Pix,x) — (Pox,x) = (P, — P2)x,x) =
(P — P)?z,x) = (P, — Py)x, (P — Py)z) = ||(PL — Py)x||* > 0 for every x € H. Hence,
P> PR 0O
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CHAPTER 3

THE UNITARY GROUP

Throughout this section H is considered to be a separable infinite dimensional complex

Hilbert space.

3.1. Introduction

DEFINITION 3.1. A bounded linear operator acting on a Hilbert space H is said to be unitary
if it is a norm preserving mapping from H onto H. We denote with ¢ (H) the set of all unitary
operators acting on the Hilbert space H. If H is n-dimensional U (H) is sometimes denoted

Un).

PROPOSITION 3.2. A bounded linear operator U is unitary if and only if U*U = UU* = I.
Proof. If U is unitary then, since ||[Ux; — Uxs|| = ||U (21 — x2)|| = ||Jz1 — 22]|, U is one-to-one,
onto by definition and hence invertible. Since (U*Uz,z) = (Uz,Uz) = ||Uz|* = ||z|* =
(x,z), by Proposition 2.19 we have that U*U = I and hence the inverse of U is the bounded
operator U*. Therefore U*U = UU* = I.

If U*U = UU* = I then U is invertible and hence onto. Since ||Uz|* = (Uz,Ux) =

(U*Uz,x) = (x,z) = ||z||?, then U preserves norms and hence U is unitary. (]

3.2. Topologies on U(H)

PROPOSITION 3.3. The weak operator topology and the strong operator topology coincide on
U(H).
Proof. 1f U; = U then, since [(Ujz,y) — (Uz,y)| = [((U; = U)z,y)| < [|(U; = U)z|| |yl — 0
for j large and for every z,y € H = U; 2.

If U; =% U, then (Ujz,y) — (Ux,y) for every z,y € H. In particular, (U;z,Uzx) —
(Uz,Uxz) for every x € H. Then ||(U; — U)z||* = (U; — U)x, (U; — U)x) = (U;z,Ujz) —
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(Uja,Uz) = (Uz,Ujz) + (Uz,Uz) = ||* = ({Ujz,Uz) + (Ujz,Ux)) + ||z]|* = 2||=[]* —
2Re((U;z, Uz)) — 2||z||* —2Re((Uz, Uz)) = 2||z||* — 2Re(||z]|*) = 0 for every x € H. Hence
U, %% U. O

LEMMA 3.4. If (T;), T C L(H) are linear operators and if T; —> T, then T; = T*.
Proof. 1f T; == T, then (T; —T) = 0 = ((T; — T)x,y) — 0 for every x,y € H. This implies
that (z,(T; = T)'y) = 0= T =T = ([; - T) = 0= T; = T*. O

LEMMA 3.5. If'H is a separable complex Hilbert space and f € Hom(H,), then the mappings
[ (f(z),y) and f — (f~1(z),y), where x € Hy and y € H, are continuous.

Proof. The topology on Hom(H;) is given by the metric

p(f.9) = sup Y _ —|(f(z) — g(x),e)| + sup Z—I “Ha),e)]

r€H1 I>1 zeH1 I>1

where {¢;} is an orthonormal basis for H.

If fj, f € Hom(Hy) such that p(f;, f) — 0, then sup,cp, Doy 1l {fi(x) — f(2), )| = 0
and $up,cry Spoy &1f7(@) — £ (@), en)| — 0. This implies that |{f;(z) — £(z), )| — 0
and [(f; ' (x) — f~(x), e)| — 0 for every x € Hy and every | > 1 = [(f;(x) — f(z),v)| = 0
and |<fj_1(x) — f7Yx),v)| — 0 for every x € H; and every v = Zl L e

Let € > 0, and y € H. Choose v = .1, aye; be such that ||y — v < $- This can be
done since finite linear combinations of e; are dense. Then, for every x € H; we have that
[(fi(@) = f(@),y =) <|(fi(2),y = o) [+[{f(x),y — )| <[ f@ Ny=vll+F @) ly—v]l <
2|y —v|| < §. Since |(f;j(x) — f(z),v)| — 0 for every x € H; and every v = Zle ae;, choose
)

J such that |(f;(z) — f(z),v)| < § for every j > J. This implies that |(f;(z) — f(z),y)| <

[(fi(z) = f(x),y —v)| + [(fj(x) — f(z),v)| < € for every j > J. Hence, the mapping f —
(f(z),y) is continuous. A similar argument shows that the mapping f — (f~!(z),y) is

continuous. [

PROPOSITION 3.6. % If H is a separable complex Hilbert space, the weak operator topology

on U(H) coincides with the relative topology on U(H) given by Hom(Hy).
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Proof. Let (U;) C U(H) be a net and U € U(H). We want to prove that p(U;,U) — 0 <
U; =% U. If p(U;,U) — 0, since by Lemma 3.5 the mapping f +— (f(z),y) is continuous, we
have that ((U; — U)(z),y) = ||l=[|((U; = U)(y355),y) — 0 for every z,y € H. Hence U = U.

It U; 22, U then, by Lemma 3.4, we have that U; 2%, U* and then by Proposition 3.3 we
have that Ur =% U. Since [(U;(z) — U(z), &) = [{((U; = U)(2),er)| = [{z, (U; = U)*(e)))| <
Jall 107 = U)e)ll < (U —U*)(ep)| — 0, we have that [{U;(z) — U(z), ex)| — 0 uniformly

for every x € H; and every [ > 1.

Let € > 0. Choose L so that 2°7" > 2. Then § > 57 = 57351 51) = Doy 5027 =
1
l

(@) =U@) el = 2. 2

every j. Since [(Uj(x) — U(x),e;)| — 0 uniformly for every = € H; and every [ > 1, then

(U;(z) — U(x), )| for every z € ‘H; and

I>L 21

for every 1 <1 < L there is an J; such that %[(U;(z) — U(z), )| < 5 for every x € H,
and every j > J;. Let J > {J; |1 <1 < L}. Then Z1§1§L?|<Uj(x> —U(z),e)| < § for
every x € Hy and every j > J. Hence, if j > J, then >, 5 |(U;(z) — U(z), ;)| < € for every
x € Hi = sup,ep, 2 51 [(Ui(x) — U(x),e)| < € for every j > J.

A similar proof shows that sup,cy, >, 3:(U; (x) = U~ (x),e)| < € for every j > J'.

Hence p(U;,U) — 0, and therefore the two topologies coincide. [

THEOREM 3.7. % If H is a complex separable Hilbert space, U(H) is a closed subgroup in
Hom(Hy).
Proof. If U € U(H), then U is a bijection from H; into H;. If z;,z € H; such that
x; — x, then for every y € H we have that (Ux;,y) = (z;,U*y) — (z,U*y) = (Uz,y) =
Uz, % Uz, and hence U is weakly continuous. Since the inverse has the same properties
U is a homeomorphism of H; with the relative weak operator topology and hence U(H) C
Hom(Hy). If U,V € U(H) = |[UVz| = ||z|| and UV is onto = UV € U(H). I € U(H).
If U € U(H), then ||U*z|? = (U*z,U*z) = (UU*z,z) = (UU 'z,z) = (x,z) = ||z||*. This
implies that U* € U(H), and hence that U(H) C Hom(H;) is a subgroup.

Let {U;} C U(H) be a net such that U; & ¢ € Hom(H,). Since the inverse operation in

a Polish group is continuous, we have that U = U. j’l N According to Lemma 3.5 we
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have that (U;(z),y) — (¢(x),y) and (U;(z),y) — (¢~ (x),y) for every x € H; and every
y € H.

We will define U : H — H as follows. For every x € H; let U(x) = ¢(z). If © € H,

then there exists A > 0 such that Az € H;, and let U(z) = $¢(\z). If 2 € H and

(M), y) = (5;6(Mz), )

and 3-(U;(Maz),y) = (Uj(x),y) = 3,(U;(Mx),y) — 55 {6(Nez),p) = (5;6(A27),y) for every

z,y € H. This implies that (3 -¢(Miz),y) = </\i2¢()\2x),y> for every x,y € ‘H, which implies

A1, Ag > 0 are such that Az, \ox € Hy, then /\il(Uj(Ala:), y) — %(

that A—lqﬁ()\lx) = %2Q5()\2:L‘) for every x € ‘H. Hence, the definition of U is independent of \.

If v € Hy and y € H, then (U;(x),y) — (¢(z),y) = (U(x),y). f z,y € H, let A >0
be such that Az € Hy, and then (U;(z),y) = $(U;(Ax),y) — $(d(A\z),y) = (30(A\z),y) =
(U(z),y) and hence (U;(z),y) — (U(x),y) for every =,y € H.

For every o, € Cand z,y, 2 € H we have a(U;(z), 2)+5(U;(y), 2) = (U;(ax + By), z) —
(U(ax + By), z). Since (Uj(x),z) — (U(z),z) and (U;(y),z) — (U(y),z), we have that
a(U(z),2) + B(U(y), z) = (Ulazx + By),z) = Ulax + fy) = aU(z) + fU(y) for every
a,f € C and z,y € H and hence U is linear. Since [(U(z),y)| = lim; |(U;(x),y)| <
i [|U; (@) lyll < [l]l [lyll, we have that [[U(z)[ < [lz]| = [[U]| < 1 and hence U is a
linear operator. It remains to show that U is unitary.

Lemma 3.4 implies that (U;(z),y) — (U*(x),y) for every x € H, and every y € H.
Hence U*(z) = ¢~ !(z) for every x € H;. If x € Hy, then ¢(x),¢ *(x) € H; and then
UU(z) = U((x)) = ¢ (¢(2)) = x and UU*(z) = U(¢7'(x)) = ¢(¢7'(2)) = =. If
x ¢ Hi, let A > 0 be such that Az € Hy. Then U*U(z) = U*(3¢(Xx)) = tU*(¢p(Ax)) =
L7 (6(M)) = 2Ar = & and UU*(2) = 10U () = 2067 (Aa)) = Lo(67} (Aa)) = Lha =
x. Hence U*U = UU* = I, and by Proposition 3.2 we have that U is unitary, and therefore
U(H) is closed. O

COROLLARY 3.8. U(H) is a complete separable metric topological group.
Proof. From Corollary 2.25 we have that Hom(H;) is a complete separable metric topological

group. The conclusion follows from Theorem 3.7. [J
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LEMMA 3.9. Let D C H be a dense subset of the Hilbert space H and let Uy € U(H) be

unitary. Then the sets
Mi<i<i{U € U(H) | [[(U = Uo)di|| < e, d; € D}

where € > 0 and k > 1, form a neighborhood base at Uy in U(H) for the strong operator
topology.

Proof. Let {U e U(H) | ||(U — Up)z;|| <€, 1 <i <k} be a basic neighborhood of Uy, where
€ > 0 and x1, 9, ...,z € H. Since D is dense in ‘H, there exist di,d>,...,d;, € D such that
o — dill < 5. 10U € {U € UH) | (U = Uodill < 5, 1 < i < k} then [[(U — Up)a| <
|Uzi = Udil| + |Ud; — Uodi| + |Uods — Upmil| = ||z — dill + (U = Un)dil| + ||z — dil| < €
and hence U € {U € U(H) | (U — Up)z;]] <€, 1 < i < k}. This implies that the sets
{UeU(H) | |[(U=TUs)di|]| <€, 1 <i<k} form aneighborhood base at Uy for the strong

operator topology. [J

LEMMA 3.10. Let {e;};>1 be an orthonormal subset of a Hilbert space H. Then finite linear
combinations of e; are dense in H.

Proof. Let x = ), ae; € H and let € > 0. Since [|2]|* = Y-, |ai|* we have that there exists
N such that 37y |a* < e Then [z — 37 yael)* = | Xy ael® = Yy lal® <

and hence finite linear combinations of ¢; are dense in H.

PROPOSITION 3.11. Let {e;};>1 be an orthonormal subset of a Hilbert space H and let Uy €

U(H) be unitary. Then the sets
M<ick{U € U(H) [ (U = Uo)el| < e}

where € > 0 and k > 1, form a neighborhood base at Uy for the strong operator topology on
U(H).

Proof. Let € > 0 and let D = {}°,,_yae; | N > 1}. Then by Lemma 3.10 D is dense in H
and thus by Lemma 3.9, N = Mi<i<t{U € U(H) | [[(U~Uo)di|| < €}, where d; = >~y ajer

for 1 < ¢ < k, is a basic open neighborhood at U, with respect to the strong operator
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tOpOlOgy. Let N = maxi<i<k Nl and A = maxj<i<k, 1<I<N ’CL” IfU € Z/{(H) is such that
(U = U)ei|l < 7%, then [[(U = Uo)dill < > _1<i<n,
every 1 <i <k and hence U € N. J

a;l ||(U - UO)elH S ZlSZSNi Aﬁ < € for

3.3. The Subsets U(M) and SU(M) of U(H)

DEFINITION 3.12. If H is a Hilbert space, we define Z(U(H)) = {U € U(H) | UV =
VU, YV € U(H)}, the center of U(H).

PROPOSITION 3.13. Z(U(H)) = {\ | |\ =1}
Proof. Let U € U(H), let A be such that |A\| = 1 and let x € H. Then AUz = Ulz =
AU =U\I) = M € Z(U(H)).

Let W € Z(U(H)). Then WA = AW for every A € L(H) since A is a finite linear combi-
nation of unitary operators (Theorem 4.1.7., page 242, [10]). Let {e;};>1 be an orthonormal
basis for H and let P, be the orthogonal projection on the 1-dimensional subspace spanned
by €;. Then W(e)) = WPB/(e)) = PBW(e;) = \e; for some scalar \; for every { > 1. If
i # j and if U € L(H) is such that Ue; = e;, Ue; = e; and Ue; = ¢ for every | # i, 7,
then \je; = We; = WUe; = UWe; = Ulje; = N\jUe; = Nje; = A = A;. Hence, there
exists a scalar A such that \; = X for every [ > 1 and We; = Ae;. We also have that

1 =|le1]| = [[Weq]| = ||[Xes|| = |A| |lex]| = |A|. Hence W = A1, with [A| = 1. O

PROPOSITION 3.14. If M is a closed subspace of the Hilbert space H and if Uy = {U €
UH) | Ul = I}, thenUpy is a closed subgroup of U(H) and the mapping i : Upg — U(M),
i(U) = Ulnm is a well defined isomorphism of topological groups. Accordingly, U(M) may be
identified with Upq, and we can consider U(M) to be a closed subgroup of U(H).
Proof. If U,V € Upn, then Ul =T and Vipyp =1 = UV|py =1 = UV € Uy Let
UeUM)and z € Mt Then x = Uz = Urx = UUr =x = Uty =1 = U* € Up.
This proves that Uy, is a subgroup of U(H).

Let (U,) C Up be such that U,, — U € U(H). Since Uy|rr = I for every n, we have

that (z,y) = (U,z,y) — (Uxz,y) for every x € M+ and every y € H = Uz = x for every
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T € Mt = U € Uy = Uy is closed in U(H). It remains to show that the mapping i is a
topological isomorphism.

Let U € Up. Let 2 € M and y € M*. Then (i(U)x,y) = (Ulpz,y) = (Uz,y) =
(x,U*y) = (z,y) = 0= i(U) : M — M. Since for every x € M we have that ||i(U)z| =
\U|m(z)]| = |Uz|| = ||z|| = ¢(U) is norm preserving. Let y € M. Since U is surjective,
there exists * € H such that Uz = y. If © = x1 + z, with z; € M and x5, € M* then
y=Un+1 =2 =y—Uri EM =20 € MNM!t ={0} =y =Uzx, = Ulpyr, =
i(U)xy = i(U) is onto M. Hence, if U € Upy, then i(U) : M — M is a norm preserving
surjection = i(U) € U(M) = i is well defined.

If Uy,Uy € Upg are such that i(Uy) = i(Us) then Uy|ym = Us|pm and, since Uiy =
Us|pmr = I we have that Uy = Uy = i is one-to-one. If U € U(M) let W : ' H — H be defined
as Wx = UP,x+ Pyx for every x € 'H, where P, and P, are the orthogonal projections on M
and M*, respective. Then ||[Wz||? = |[UPz||? + || Px|]? = ||Piz|?* + | Poz])® = ||z]|? = W
is norm preserving. Let y € H, then Piy € M = there exists 2’ € M such that Uz’ = Pyy.
If v =2’ + Py, then Wa = UPyx + Pox = Ux' + Poy = Py + Py = y = W is surjective
= W is unitary and, since W = I we have that W € Uy,. Note that i(W) =W|y =U
and hence 7 is onto U(M).

Let (U,) C Up be such that U, — U € Uy Then for every z,y € M we have that
(U, y) = (Unlmz,y) = (Upz,y) — (Uz,y) = (Ulpmz,y) = (((U)x,y) = i is continuous.

Let (U,) C U(M) be such that U,, — U € U(M). Then, since i~ (U,)z = U, Pz + Pax
and i1 (U)x = UP,x+ Pyx for every € H, we have that (i 1 (U,)z,y) = (U, Pix + Pox,y) =
(U Pix,y) + (Pyx,y) — (UPx,y) + (Px,y) = (UPiz + Pox,y) = (i Y (U)z,y) = i~! is

continuous. [

DEerFINITION 3.15. If My, My C 'H are two closed subspaces we define their sum to be

My + My ={v; + vy | v € My and vy € My}, My 4+ My is a vector subspace.

PROPOSITION 3.16. If A C 'H is a vector subspace, then (AL)+ = cl(A).
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Proof. Let € A and y € A*. Then x L y and hence x € (A1)t = A C (AL)t = cl(A) C
(AL)L. If cl(A) were a proper subspace of (AL)%, then (A*)t would have a non-zero vector
x such that @ L cl(A), i.e. there exists 0 # z € (A+)+ N AL = {0}, a contradiction. Thus
c(A) = (AH)+. O

LEMMA 3.17. If My, My C H are two closed subspaces, then My N My = (Mi + My)*t.
Proof. If v € M;N M, then (z,a) = 0 for every a € M5 and (z,b) = 0 for every b € M3 =
(r,a+ by = 0 for every a+b € M{+My = v € (My+M3)t = MiNMy C (Mi+Mz)*.
If v € (M{+Mz)t = (x,a+b) = 0 for every a € M7 and every b € My = (x,a) =0
for every a € Mi and (z,b) =0 for every b € My = v € (M{)* = M; and z € (My)*+ =

M2:>$€M1QM2:>(M1L+M2L)LCMlmMz. ]

COROLLARY 3.18. If My, My C H, are two closed subspaces, then cl(Mi + Myz) = (M;N
M)t

Proof. Tt follows from Proposition 3.16 and Lemma 3.17 that (M; N My)t = [(M; +
M)+ = (M7 + My). O

ProproOSITION 3.19. Let M; C 'H, | = 1,2 be two finite dimensional closed subspaces. If
U e UM, forl = 1,2, then Ulp, : My — M, is a linear mapping, the determinant
det(U|pm,) ezists and det(Ula,) = det(Ulm,)-

Proof. Since U € U(M,) for [ = 1,2, we have that Ul v = I forl =1,2 = Uy py =1 =
Ulamt+mypy = I and, using Corollary 3.18, we have that Ul na,)e = 1. IfMiNMy = {0}
then, since (M; N My)t = H we have that U = I = det(U|n,) = det(U|p,) = 1.

If MiNMy # {0}, let {eq, e, ..., €x} be an orthonormal basis for M; N Ms. Extend this
to {e1, ..., €k, €ks1, ..., €n }, an orthonormal basis for M; and denote N = span({egi1, ..., €n}).
Since N' C (M N My)? it follows that Uy = I and hence det(U|x) = 1. This implies that
det(U|pm,) = det(U|pmynm,) det(Uly) = det(Ulapynnm, ). Similarly, we have that det(U|a,) =
det(U|pm,nnm,) and hence det(U|pq, ) = det(U| g, ). O
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DEFINITION 3.20. Define the finite dimensional unitaries to be Up(H) = U{U(M) | M C
H, M finite dimensional }. For every U € Ur(H), there exists M C H finite dimensional
such that Ul = I, and we define det(U) = det(U|rq). According with Proposition 3.19
this definition is independent on the choice of M and hence det : Up(H) — C is well
defined. If M C H is finite dimensional, we denote SU(M) to be the set SU(M) = {U €
UM) | det(U) = 1}, and SUp(H) = {U € Up(H) | det(U) = 1}. SU(M) is called the

special unitary group and sometimes is denoted SU(n), where n is the dimension of M.

PROPOSITION 3.21. SU(M) C U(M) is a subgroup.
Proof. f U,V € SU(M), then det(U) = 1 and det(V) =1 = det(UV ') = det(U) det(V 1) =

det(U)#(‘/) =1= UV_I c SU(M) [l

DEFINITION 3.22. If M C H is a closed subspace, we denote with Z(U(M)) the center of
UM).

REMARK 3.23. Note that Z(U(M)) is a closed subgroup of U (M) and, as an immediate con-
sequence of Proposition 3.13, if ) # M C H, we have that Z(U(M)) ={U e UM) | U|m =
M, [N =1and Ulp =TI}

LEMMA 3.24. % Let {e;}1<i<n be an orthonormal subset of a Hilbert space H and let U €
U(H) a unitary operator acting on H. Then there exists M C H a subspace and W € U(H)
a unitary operator such that We, = Ue; for every 1 <1 <mn and Wy = L
Proof. Let M = span({e;,Ue;}1<i<n). Then M is a closed finite dimensional subspace of
H. Let {ey,ea,....en, f1,..., fr} be an orthonormal basis for M obtained by expanding the
orthonormal system {e;}1<;<,. Since (Ue;, Ue;) = (e;, ej) = d;j, then {Ue;}1<i<, is also an
orthonormal system and expand this to {Uey,Ues, ...,Uey, g1, ..., g }, another orthonormal
basis for M. Note that the two bases have the same cardinality. Define W to be We; = Ug,
for 1 <i<n, Wfi=g for1<Il<kandW|y. =1 We will show that ¥ is unitary.

Let y € H. Then y = y;+y, withy; € M, y, € M+ and gy, = YoiccnalUer+ 2 bigr.
If z = Z1glgn are; + Zlglgk b fi + y2, then Wz = y and hence W is onto.
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If = 21 + 29, where 21 = Zl<l<n aje; + Zl<l<k bifi € M and 1, € Mt then |[Wx|]? =
(W[l + [Was|? = || 321 <pe, aUer + 321 i tugul” + l2l” = V/af + 67 + [[22]|> = ||l ||* +

|z2||* = ||z||* and hence W is an isometry. [J

THEOREM 3.25. % Let {e;}1<i<n be an orthonormal subset of a Hilbert space H and let
U € U(H) be a unitary operator acting on H. Then there exists M C 'H a finite dimensional
subspace, dim(M) = N > n, such that span({e;}1<i<n) C M, and there exists V € SU(M)
such that Ve, = Ue; for every 1 <1 <n.
Proof. Let {e;}1<i<n be an orthonormal subset of H and U € U(H) a unitary operator acting
on H. According with Lemma 3.24 there exists NV C H a finite dimensional subspace of
H and W € U(N) a unitary operator such that We, = Ue; for every 1 <1 < n. Note if
= det(W), then |\ = 1. Let N = dim(N) + 1, let fy € N+ be such that || fy| = 1 and
let M = span(N U{fn}). Then dim(M) = N > n and span({e;}1<i<n) C N C M. Define
ViH—Has V=W, Vfy=1fyand V|ye = I. Obviously V € U(M) and, since
det(V) = + det(W) = 1, it follows that V € SU(M). O

3.4. ¢~ HU(M)) is Closed

PROPOSITION 3.26. If G is a Hausdorff topological group and O # S C G then the set

{9 € G|gs=sgVseS}isclosed in G.

Proof. For every s € Slet Cs, = {ge€ G| gs =59} ={g€ G| gsgls! =e}. Since G is
11

Hausdorff, {e} is closed in G, and since ¢,(g) = gsg~'s™! is continuous, C; = ¢;1({e}) is
closed in G. But then {g € G | gs = sg Vs € S} = NgesCs is closed in G. O

LEMMA 3.27. If W € U(H) is such that WV = VW for every V. € U(M?1), then W : M —
M is surjective and W : M+ — M=+ is surjective.

Proof. Let W € U(H) be such that WV = VW for every V € U(M™). Let V : H — H be
defined as V& = x1 — x, for every = x; + 25 € H, where ; € M and x5 € M*. It is clear
that V' is an isometry from H onto H and hence V € U(H). Since V| = I, we have that
V € U(M™) and hence WV = VW. Let 21 € M and let Wz, = y; + yo, with y; € M and
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Yyp € M. Then yy —yo =V +y2) = VWay = WVay =Wy =y +yp = 42 = —p =
Pp=0=>Won=peM=>W: M- M.

Let 2o € M*, and let Wxy = y1 + 92, with y; € M and yo € M*. Then y; — 3o =
V(yr +y2) = VWay =WV = W(—23) = —Was=—y1 —yp =t = -ty =>y1 = 0=
Wxy =19 € Mt =W : M+ — M+

Let 4, € M and y» € M*. Since W is onto H, there exists ¢ = z; + x5 € H and
2 = 21 + 2 € H such that Wz = 3, and Wz = vy, where 21,2, € M and z,, 20 € M™.
Then yy = Way + Way = Was =y —Way e M= Was € MOAW (ML) c MNM: =
Wio=0=2=0=1y=Wax1 =W : M- Misontoand yo, = Wz; + Wzy = Wz =
Yo—-WoneMt=Waye M NWM CMINM=Wz=0=2=0=1y,=Wz=
W : M+ — Mt is onto. O

THEOREM 3.28. % Let G be a Polish topological group, M a closed subspace of H and
¢: G — UH) an algebraic isomorphism. Then ¢~ [Z(U(H))U(M)] is closed in G.

Proof. We will prove that Z(U(H))UM) ={W € U(H) | WV = VW VV € U(M™*)}. This
will imply that ¢~ [Z(UH)UM)] = ¢~ ({W € U(H) | WV = VIV VYV € UM™P)}) =
{671 W) | 6 (W6 (V) = 67 (V)6 (W) ¥ 67 (V) € ¢~ (M)} and then, according
with the Proposition 3.26 we will have that ¢—'[Z(U(H))U(M)] is closed in G. Note that
by Proposition 3.13 we have that Z(U(H))U(M) ={\U |U e U(M), |\ =1}.

Let U € UM), let V € U(M™) and let = x1 + 25 € H, with x; € M and x5 € ML
Then Uzy = x5, Vr; = 2, and, by Proposition 3.14, Uz; € M and Vz, € M~ and hence
VUzy = Uz and UVzy = Vay. It follows that AUV = AUV (z1 + x9) = MUV +
UViy) = ANUxy 4+ Vay) = ANVUxy + VUxsy) = \WWUx = VAUz = AUV = VAU for every
VeUMY) = ZUH)NUM) C{W cUH) | WV = VIV VYV c UM}

Let W € U(H) be such that WV = VIV for every V € U(M?'). Let U : M+ — M+
be unitary, and let V' : H — H be defined as Vo = x1 + Uxy for every x = x1 + 29 € H,
where ; € M and 2, € M*. V is unitary since it is an isometry from H onto H, and

Vim = 1. Thus V € U(M?1), and hence VIV = WV. Let 11 € M and 2o € M=*. Then,
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by Lemma 3.27 Wz, € M and Wy € M+, and hence Wy + UWxy = VW + VWxy =
VW (x1+20) = WV (x1+22) = W(xy +Uns) = Way + WUzy = UWxe = WUxs for every
1y € Mt = UW|y = W|yeU. By Proposition 3.13 it follows that W|,. = A for some
A € C with [A| = 1. But then AW € U(H) and \W o = A\ =1 = AW € UM) =
W = MW € ZU(H))UM) and hence {W € U(H) | WV = VIV YV € UM} C
ZUMH)UM). O

PROPOSITION 3.29. % Let G be a Polish topological group, M C H an infinite dimensional
closed subspace and ¢ : G — U(H) an algebraic isomorphism. Then ¢~ (U(M)) is an
analytic subset of G.

Proof. Let [-,-] : G x G — G be defined as [a,b] = aba"'b~!. Since the group opera-
tions are continuous, [, -] is continuous. If a,b € ¢~ (Z(U(H))U(M)) C G then ¢(a), p(b) €
Z(U(H))U(M) = there exist U,V € U(M) and A, p scalars such that ¢(a) = AU and ¢(b) =
uV. But then [a,b] = ¢~ (AU)o~ (V)" (AU (u V) = ¢ (UVU- V) €
¢~ (U(M)). This proves that [, -||s—1z@r)um) <=1z ) takes its values in ¢~ ({U(M)).
Let T € U(M) and denote T'| oy = W. Since M is infinite dimensional and since W is unitary

on M, we have by [7], page 134, problem 191, that there exist unitaries U, V' : M — M
such that W = U'V'U'"'V'L If U,V : H — H are such that U|y = U’, Ulpe =1, V|p =

V' and Ve = I then U,V € ZUH)UM) and [¢~(U), ¢~ (V)] = ¢~ (UVU-V) =

¢~ H(T') and hence [, || p=1 (z@)um) <=1 (Z@@0 M) 18 onto ¢~ H({U(M)). Since G is a Pol-

ish topological group, G x G is a Polish topological group and since ¢~ (Z(U(H))U(M)) is
closed in G by Theorem 3.28, we have that ¢~ (Z(U(H))UM)) x ¢~ H(Z(U(H))U(M)) is
closed in G x G. Since [+, ] is continuous, it follows that ¢~ (2 (M)) is the continuous image

of a closed subset of a Polish topological group, and therefore an analytic subset of G. [J

DEFINITION 3.30. Let X be a topological space. A set A C X is said to be a set with the
Baire property if there exists an open set U C X such that AAU = (U\ A)U (A\U), the

symmetric difference of A and U, is meager in X.
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REMARK 3.31. The collection of subsets of X which have the Baire property, BP(X), is a
o-algebra of subsets.(cf. [18], p.47)

LeEmMA 3.32 (D.E.Miller, [24]). Let G be a Polish topological group and H C G be a dense
subgroup. Suppose E C G is a subset with the Baire property which is right-invariant under
H (i.e. EH = F). Then E is meager or comeager.

Proof. This lemma and its proof are slightly different than the original of Miller, and is only
valid in the separable case.

Since G is a separable metric space, it has a countable base for its topology. The relative
topology on H is also second countable, and hence H is separable as a subspace of G. If
D C H is any countable dense subgroup of H, then D is dense in G and E is right-invariant
under D. Thus, by replacing H with D we may assume that H is countable.

Since F is a set with the Baire property, there exists U C G open, such that £ A U is
meager. If a € H, then (E AU)a = Ea AUa = E A Ua is meager = E A (UgepUa) =
(User Fa) A (UgerUa) C Upeg(Fa AUa) = Ugeg(E A Ua) is meager. Let V = UgegUa.
Then V is open, right-invariant under H, E' AV is meager and, since H is dense in G, V is
dense in G. If V. = (), then E = E AV is meager.

If V#0, then ENV C E AV is meager and, since V is open and dense in G,
ECNVY C VY is meager. This implies that E¢ = (ECNV)U (EYNVY) is meager = E is

comeager. []

DEFINITION 3.33. If X is a topological space and F is a family of subsets of X, we say that
F separates points in X, or is a separating family of points if given any two points z,y € X
with z # y, there exists E' € F such that € E and y ¢ E. We say that F separates subsets
of X if given any two disjoint subsets A, B C X with A # B, there exists £ € F such that
ACFEand BNE =0.
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LEMMA 3.34. Let G be a topological group, H C G a dense subgroup and {E;};>1 a collection
of subsets of G, right-invariant under H. Then {E;};>1 separates the H-cosets if and only
if for every g € G we have that gH = N{E; | g € E;}.

Proof. Note that g € E; & gH C F; since FE; is right-invariant under H. Assume that
for every g € G we have that gH = N{E; | g € E;} and suppose, for contradiction, that
the collection {F;};>1 does not separate the H-cosets. Then there exist a,b € G such that
aH # bH and there is no E; such that «H C E; and bH N E; = (). Thus for every Ej if
aH C E; then bH C E;, = bH C {E; |aH C E;} =n{E; | a € E;} =aH = aH =bH, a
contradiction. Hence, the collection {E;};>; separates the H-cosets.

Assume now that { E; },>1 separates the H-cosets and let g € G. Since g € E; < gH C E;,
we have that gH C N{E; | g € E;}. Let x € N{E; | g € E;} and suppose that = ¢ gH. Then
xH # gH and there exists E; such that gH C By and tHNE, =0 = g€ Eyand x ¢ E}, a
contradiction to z € "{E; | g € E;}. Thus x € gH = {E; |g € E;} CgH. O

THEOREM 3.35 (D.E.Miller, [24]). Let G be a Polish topological group, H C G a subgroup
and {E;};>1 a collection of subsets of G with the Baire property, right-invariant under H,
which separates the H-cosets. Then H is closed in G.
Proof. By replacing G with clg(H) and each E; with E; Nclg(H), then each E; Nclg(H) has
the Baire property is invariant under H and separate the H-cosets. Thus, we may assume
that H is dense in G. It follows from Lemma 3.34 that for every g € G, gH = N{E; | g € E;}.
Suppose that H is meager, and let g € G. Then gH = N{F; | g € E;} is meager. From
Lemma 3.32 we have that each E; is either meager or comeager. If each F;, with g € F; is
comeager, then G \ E; is meager = G\ gH = G\{E; | g€ E;} =U{G\E;, | g € E;}
is meager = G = gH U (G \ gH) is meager, a contradiction with G being Polish. Hence
there exists a meager F; such that ¢ € E;. Since g € G was arbitrary, this implies that
G C U{E; | E;is meager } = G is meager, a contradiction. This implies that H is a

nonmeager subset of G.
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Since each FE; has the Baire property and the sets with the Baire property are closed
under countable intersection and since H = eH = N{E; | e € E;}, we have that H has the
Baire property. Since it is also nonmeager, it follows from a theorem of Pettis (Theorem 9.9,
page 61, [18]) that H ' H contains an open neighborhood of e € G. Let V C H be an open
neighborhood of e € G and let x € G. Then xV is an open neighborhood of x and, since H
is dense, V' N H # (). This implies that x € HV ' € H = G C H = H is closed. [J

COROLLARY 3.36. % Let G be a Polish topological group, A C G an analytic subset and
H C G an analytic subgroup such that A intersects each H-coset in exactly one point and
G = AH. Then H is closed in G.
Proof. Since the topology on G is Polish, the relative topology on A is second countable,
and there exist {C;};>1 a separating family of relatively open sets for the topology on A.
Each C; is the intersection of an open subset of G with an analytic subset of G and hence
is analytic. Let E; = C;H for every i > 1. Since each Fj; is a product of two analytic sets,
each Fj; is analytic and hence has the Baire property. Since F;H = C;HH = C;H = E; for
every ¢ > 1, we have that each E; is right-invariant under H.

Let a,b € A be such that aH # bH. Then a # b, and there exists C; such that a € C; and
b ¢ C;. We will show that E; = C/H is such that aH C E; and bH N E; = (). If h € H, then
ah € C'H = E; = aH C E;. Suppose that bH N E; # () and let x € bH N E; = bH N CH.
Then there exist ¢ € C; and h,k € H such that bh = ck = ¢ = bhk™! € bH. Since
ce(CiCA=ce ANbH. Since b € ANbH and since A intersects the H-cosets in exactly
one point, we have that b = ¢ € (), a contradiction. Hence, bH N E; = () and therefore
{E;}i>1 separates the H-cosets.

Since the hypothesis of the Theorem 3.35 is satisfied, it follows that H is closed in G. [J

DEFINITION 3.37. Let X be a set and E an equivalence relation on X. A selector for F is
amap s: X — X such that vEy = s(z) = s(y) and s(y)Ex. A transversal for E is a set

T C X that meets every equivalence class in exactly one point.
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If X is a Borel subset of a Polish space and E an equivalence relation on X, a Borel
selector for E' is a selector for E which is also a Borel map and a Borel transversal for E is

a transversal for F which is also a Borel subset of X.

LEMMA 3.38. Let X be a Borel subset of a Polish space and let E be an equivalence relation
on X. If s : X — X is a Borel selector for E, then T = {x € X | x = s(x)} is a Borel
transversal for E.

Proof. Let A be an equivalence class for E. Then A # () and let z € A. Since zEz we have
that s(x)Ez and s(z) € A = s(s(x)) = s(x) = s(x) €T = s(x) € ANT = ANT # (. Let
x,y € T'NA. Since z,y € A we have that zFy = s(z) = s(y) and since x,y € T we have
that © = s(x) and y = s(y). Thus 2 = y and hence 7' is a transversal for E. It remains to
show that 7" is a Borel subset of X.

Let ¢ : X — X x X be defined as ¢(z) = (z,s(z)). If 2 # y € X then ¢(x) =
(x,s(z)) # (y,s(y)) = ¢(y) = ¢ is one-to-one. Let A C X and B C X be Borel subsets.
Then ¢ '(Ax B) ={x € X | ¢(z) € Ax B} ={z € X | (z,s(x)) € Ax B} = {x €
X|reAands(x) e B} ={r e X |z € Aandz € s }(B)} = Ans(B) is a Borel
set, since A, B are Borel and s is a Borel map. This implies that ¢ is a Borel map. Using a
well-known Theorem of Souslin (Corollary 15.2, page 89, [18]) we have that ¢(X) is Borel.
Let A = {(z,2) | # € X} the diagonal of X x X and let P : A — X, P(z,z) = z be the
natural projection on the first coordinate. Then A is closed in X x X and since ¢(X) is
Borel, we have that ¢(X)NA is Borel. If (z,2) # (y,y) € A then P(z,x) =z #y = P(y,y)
and hence P is one-to-one. If (z;,x;) — (x,x) then P(z;,x;) = v; — x = P(x,x) and hence
P is continuous. Using Souslin’s Theorem again, we have that P(¢(X)NA) is a Borel subset
of X. But P(¢p(X)NA)=P{(z,s(x)) | v € X}n{(x,2) |z € X}) = P{(z,s(x)) | z =
s(x)}) ={x | x=s(x)} =T, and hence T is Borel. [J

COROLLARY 3.39. % Let G be a Polish topological group, A C G a closed subgroup and
H C G an analytic subgroup such that AN H = C is closed in G and G = AH. Then H 1is

closed in G.
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Proof. Since A is a closed subgroup of G, A is a Polish topological group. Since C'is a closed
subgroup of G and hence of A and using Theorem 12.17, page 78, [18], we have that there
exists a Borel selector s : A — A for the equivalence relation whose classes are the C-cosets
in A. Let T'={a € A| s(a) = a}. By Lemma 3.38 we have that T" intersects each C-coset in
exactly one point and 7T is a Borel subset of A, thus an analytic subset of G. We will prove
that G = T'H and that T intersects each H-coset in exactly one point. The conclusion will
follow from Corollary 3.36.

Suppose for contradiction that there exists an H-coset aH such that T NaH = {x,y}
and x # y. Since x,y € aH, we have that y~'x € H and since z,y € T C A we have
that y 'z € A=y 'lv € ANH = C = x and y belong to the same C-coset. But then T
intersects a C-coset in two different points, a contradiction.

Let g € G = AH. Then g = ah with a € A and h € H. Denote with Es the
equivalence relation whose classes are the C-cosets. Since aEca = s(a)Eca = a € s(a)C =
there exists ¢ € C such that a = s(a)c = ¢g = s(a)ch. Since s(a)Eca we have that
s(s(a)) = s(a) = s(a) € T. Since ¢ € C C H and h € H we have that ch € H and hence
g=s(a)che TH=GCTH. O

COROLLARY 3.40. % Let G be a Polish topological group, M C 'H an infinite dimensional
closed subspace of the Hilbert space H and ¢ : G — U(H) an algebraic isomorphism. Then
¢~ HU(M)) is closed in G.

Proof. It M = H then U M) =U(H) = ¢~ (U(M)) = G is closed in G. Suppose M # H.
By Theorem 3.28 we have that ¢~ (Z(U(H))UM)) = ¢~ ZU(H)))p ({U(M)) is closed
in G and hence Polish. Since ¢ is an isomorphism we have that ¢~ (Z(U(H))) = Z(G),
the center of G, is a closed subgroup of G and ¢~ }(U(M)) C G is analytic by Proposition
329. If U € ZWU(H)) NU(M), then U = X, with |A\| = 1, and, since U|y = I, we
have that A =1 =U =1 = ZUH)) NUM) = {I} = ¢ H(ZUH))) N ¢~ {UM)) =
o HZUMH)) NUM)) = ¢~ 1(I) = {e} is closed in G. Using Corollary 3.39 we have that
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¢ HU(M)) is closed in ¢~ (Z(U(H))U(M)) and since ¢~ (Z(U(H))U(M)) is closed in G
it follows that ¢~ (U(M)) is closed in G. [

COROLLARY 3.41. % Let G be a Polish topological group, M C H a finite dimensional
closed subspace of the infinite dimensional Hilbert space H and ¢ : G — U(H) an algebraic
isomorphism. Then ¢~ (U(M)) is closed in G.
Proof. Let {ey, e, ..., e, } be a orthonormal basis for M. Extend this to {ey, ..., €n, ..., €nii, ...}
an orthonormal basis for H. For every | > 1, let M; = span({e;}i>1 \ {€n+1}). Each M, is
infinite dimensional. Hence, by Corollary 3.40, we have that ¢~ (U(M;)) is closed in G, for
every [ > 1.

Since U € UM) & Ulpyr =1 & Uepyy = epy forevery | > 1 & U € UM,)
for every | > 1 & U € Ni>1U(M,;) we have that U(M) = N1 U(M,) = ¢ HUM)) =
o H(N=U(M,)) = Nis10 L UM,)) = ¢~ HU(M)) is closed in G. O

COROLLARY 3.42. % Let G be a Polish topological group, M C 'H a closed subspace of the
infinite dimensional Hilbert space H and ¢ : G — U(H) an algebraic isomorphism. Then
¢~ HU(M)) is closed in G.

Proof. Put together Corollary 3.40 and Corollary 3.41. [J

3.5. ¢ H(SU(M)) is Closed

LEMMA 3.43.
0 1 )\1 0 )\2 0
IfU= , thenU € SU(2) and U U* =
—10 0 >\2 0 )\1
Proof. Note that
0 -1
U* =
1 0



and then by a straight forward computation we have that UU* = U*U = I and det(U) =1

and hence U € SU(2).

0 1 A0
-1 0 0 A

O

0 -1 A2 0

LEMMA 3.44. Let M be a finite dimensional Hilbert space with dim(M) = n and let P,Q

be two operators acting on M. If

1

and Q) =

A1

Ak+1

An

are the matriz representations of Py, respective Q with respect to some basis in M, then

P, € SUM) and

P.QP; =

Akt1

A

An

Proof. Note that Py restricted to the appropiate two dimensional subspace equals the matrix

U from Lemma 3.43 and outside that subspace is the identity. Lemma 3.43 implies that

P,QP; is obtained from () by interchanging the two entries of the diagonal A\; and Ajy;.
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Straight forward computation shows that P,Pf = PfP, = I and that det(P;) = 1, and
hence P, € SU(M). O

LEMMA 3.45. Let M be a finite dimensional Hilbert space and let U € SU(M). Then there
exist P,Q € SU(M) such that U = PQP*Q".
Proof. This is a consequence of the main theorem in [5]. Here is a simple, direct proof.

If U € SU(M), then by the Spectral Theorem U is diagonalizable and U can be repre-

sented as

where oy + a9 + ... + o, = 0.
Let P = P P,...P,_1, where Py is defined in Lemma 3.44. Note that P € SU(M) and
P* =Py ,..P;. Let () be defined as

where 0,, = (nfl)alH"*Z)O‘QJF”'J“O‘”‘I and 0, =60, — (a1 + ag + ...+ ) for every 1 <1 <n—1.
Then 61 + ...+ 6, =0, —a1+0, — (an + )+ ... + 0, — (s + as + ... + 1) + 0, =
n, —(n—1a; — (n—2)ag — ... —ay1 = 0= det(Q) =1 = Q € SUM). Note that
O,—01=0,—0,+a1=a;and 0, — 0,11 =0, — (a1 + ...+ ) — O+ (1 + ... + 11) = gy

Using Lemma 3.44 we have that

etn 0
101
PQP* = and since Q" =

e—i01 0

0 eifn—1

35



61’(9,1701) 0

ei(el—eg)
= PQP'Q" = = =U

O ei(onfl —9n)

g

PROPOSITION 3.46. % Let G be a Polish topological space, 'H infinite dimensional Hilbert
space, M C 'H a finite dimensional closed subspace and ¢ : G — U(H) an algebraic isomor-
phism. Then ¢~ (SU(M)) is an analytic subset of G.

Proof. Since ¢~ (U(M)) is closed in G by Corollary 3.42, ¢~ (U(M)) x ¢~HU(M)) is closed
in G xG. Let [,] : ¢ " UM)) x ¢~ (UM)) — G be defined as [a,b] = aba~'b"".
Since the group operations are continuous, [-,-] is continuous. If a,b € ¢~ (U(M)) then
¢(a), p(b) € UM), é([a,b]) = d(aba™'d7") = ¢(a)d(b)(d(a)) " (¢(b))~ € U(M) and
det(([a, b])) = det(¢(aba™"b7")) = det(d(a)) det($(b))(det(¢(a))) " (det(6(b)) ™" = 1 =
é([a,b]) € SUM) = [a,b] € ¢~L(SU(M)). This proves that [-,-] takes its values in
¢ (SUM)). Let y € ¢~ 1(SU(M)). Then ¢(y) = W € SU(M). By Lemma 3.45 we
have that there exist U,V € SU(M) such that W = UVU V= Let a = ¢ }(U) €
o UM)) and b = ¢~ (V) € 6 UM)). Then y = ¢~'(W) = ¢ (UVU'V) =
o~ (U)o (V)@ (U) (o7 (V) ™! = aba™'b™" = [a,b] = [+, 1] is onto ¢~ (SU(M)). Since
-, -] is continuous, it follows that ¢~*(SU(M)) is the continuous image of ¢~ (U(M)) X
¢~ (U(M)), a closed set of a Polish space, and therefore ¢=(SU(M)) is an analytic subset
of G. U

PROPOSITION 3.47. If M s a finite dimensional Hilbert space, then U(M) = Z(U(M)) -
SU(M).

Proof. Since both Z(U(M)), SU(M) C U(M) and since U (M) is a subgroup it follows that
ZUM)) - SUM) CcUM,).
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Let U € U(M) and let det(U) = det(U|pm) = A Then 1 = det(I) = det(UU*) =
det(U) det(U*) = det(U)det(U) = A = |A]2 = |A| = 1. Choose 6 such that ¢ = ),
where n = dim(M). Let V be defined as V] = €I, V|y: = I and W be defined as
Wlm = e PU|p, Wipye = I. Then V € Z(U(M)) and, since det(W) = det(e U| ) =
(em®) det(U|n) = A7\ = 1, we have that W € SU(M). Since Uy = (1) (e U |p) =
VImW]am and since Ul = I = V| W|pe we have that U = VW € Z(UM)) -
SUM) =UM) C ZUM))-SUWM). O

COROLLARY 3.48. % Let G be a Polish topological space, H infinite dimensional Hilbert
space, M C H a finite dimensional closed subspace and ¢ : G — U(H) an algebraic isomor-
phism. Then ¢~ '(SU(M)) is closed in G.

Proof. From Corollary 3.42 we have that ¢~ (U(M)) is closed in G and hence Polish. From
Proposition 3.47 we have that Z(U(M))SU(M) =UM) = ¢~ (Z(U(M)))p (STU(M)) =
¢"HZUM))SUM)) = o7 UM)). ¢"H(ZUM))) = Z(¢7'(U(M))), the center of
¢~ HU(M)) is a closed subgroup of ¢~ ({U(M)) and ¢~(SU(M)) is an analytic subgroup
of G by Proposition 3.46, and hence analytic subgroup of ¢~ (U(M)). Let C = Z(U(M))N
SU(M). Then C = {U € UM) | Ulpm = M, Ulpr = I and det(U) = \* = 1}, where
n = dim(M) = C is finite. Since ¢ is an isomorphism we have that ¢~'(Z(U(M))) N
¢ H(SU(M)) = ¢~ 1(C) is finite and hence closed in ¢p~1(UU(M)). Tt follows from Corollary
3.39 that ¢~ 1(SU(M)) is closed in ¢~ (U(M)) and hence closed in G. [J

3.6. Main Result

LEMMA 3.49. % Let H be a separable infinite dimensional Hilbert space, let {e;};>1 C H
be an orthonormal basis for H and let P be the orthogonal projection on span({e1}). Then
there exists M a three dimensional subspace of H such that for every U € U(H) there exists
Uy € SU(M) such that PUpe; = PUe;.

Proof. Let M = span({ei, €2, e3}) be a three dimensional subspace of H. Note that since P
is the orthogonal projection on span({e;}), then PUe; = Ae; and since |A|? = [A]?|le1]|* =

|Ae1]|? = ||PUe||? < [|[PUet||> +||(I — P)Ue||* = ||Ues]|? = ||le1]]* = 1 we have that || < 1.
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If [A| = 0 let

0 -1 0
Uy=11 0 0
0 0 1

be the matrix representation of Uy with respect to the basis {e1, €2, e3}. Then

0 10
Ui=1 -1 0 0
0 0 1

and by a straight forward computation we have that UyUj = UjUy = I and det(Up) = 1 and

hence Uy € SU(M). Note that Upe; = es and hence PUpe; = 0 = Ae; = PUe;.
If |A] # 0 let
N N
Uo = \/1|/\|\—)\|2)\ A 0
0 0 |A[2PA2
Then we have that
) TEX 0
Up=| Y™ X 0
0 0 AT
and hence
D s W ) X0
Ul = | Y2 0 = D) 0o | =
0 0 IA]PA2 0 0 IAIPA
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|>\‘2+ 1*|/\\2|)\|2 0

A2

v 2
- SEAEEDE 0 =1

0 0 AP~

and similarly UsUy = I. We also have that det(Uy) = |/\|2—( Y 1|/\|A|2)\> (— Y 1|/\|/\|2)\> IAPAT2 =
A2+ (1 — [A]?) = 1 and hence Uy € SU(M).

Since Uyey = Aey + —Vl‘;ﬁ‘ﬂeg it follows that PUse; = Ae; = PUey. [

LEMMA 3.50. Let 'H be a Hilbert space, let e € 'H, let P be the orthogonal projection on
span({e}) and Q =1 — P. If W € U({e}*) then W commutes with P and with Q.
Proof. Let x € H. Since Px € span({e} and W{pan({e}) = I we have that W Px = Pz. Since
Qu € {e}+ and W|gpun(ep = I we have that WQz € {e}+ = PWQx = 0. It follows that
PWz = PW(Px + Qz) = PWPz + PWQz = P*x +0 = Pz = W Px.

On the other hand we have that WQz = W(x — Px) = Wax — WPz = PWx + QWax —
WPx=QWzx. J

LEMMA 3.51. % Let H be a separable infinite dimensional Hilbert space, let e € H be such
that |le|| =1 and let S = {U € U(H) | |le — Ue|| < €}. Then there exists M C H a three
dimensional subspace such that S = U({e}*) [SUM) NS U({e}t).
Proof. Note that if W € U({e}*) and if U € 8 then |le — UWe| = |le — Ue|| < € =
UW € S = SU({e}t) S = SU{e}t) = S and |e — WUe| = |[We — WUe|| =
[W(e—Ue)|=|le-Ue||<e=WUeS=U{e}t)SCS=U{e}')S =38 and hence
U{e}r) SU({ett) =S

Let U € S. Let P be the orthogonal projection on span({e}) and let Q = I — P. By
Lemma 3.49 we have that there exists M a three dimensional subspace and Uy € SU(M)
such that PUpe = PUe. Since ||PUc|* + [|QUel||?> = ||Ue||*> = 1 = ||Use||* = ||PUqel]* +
|QUqel|? we have that ||QUe||> = ||QUoel|?. Since QUe € {e}+ and QUye € {e}* there exists
W € U({e}') such that WQUye = QUe. Since by Lemma 3.50 W commutes with P and
with @) we have that WUye = PWUge + QW Uye = W PUpe + WQUye = PUye + QUe =
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PUe + QUe = Ue = U;W*lUe = e = UyW*U =V e U{e}) = U = WU,V. We also
have that [le — Upe||* = |le — PUoe||* +[|QUoel|* = |le — PUsel|* + [WQUoel|* = |le — PUe||* +
|QUel|* = [[P(e — Ue)||* + [|Q(e — Ue)||* = [le = Ue|* < € = Uy € S. Thus U = WUV,
with W,V € U({e}*') and Uy € SUM) NS. This implies that S C U({e}*) [SUM) N
SJU({e}”) cu({e}t) SU({e}') =S = S =U({e}*) [SUM) NSTU({e}*). D

LEMMA 3.52. The intersection of two analytic subsets of a Polish space is analytic.
Proof. Let X be a Polish space and let Ay, As C X be analytic. Then there exist B,
Borel sets and f; : B, — A; Borel mappings such that fj(B;) = A;, for I = 1,2. Let
F : By x By — X x X be defined as F(by,b2) = (f1(b1), f2(b2)). Then F is obviously
a Borel mapping and hence if D = {(z,z) | * € X} C X x X is the diagonal, then
FYD) = {(by,b2) | by € By, f1(b1) = fo(ba)} C By X By is a Borel subset.

Let y € A; N Ay. Then there exist b, € B, such that y = fi(b), for [ = 1,2 and
(b1,bs) € F~Y(D). The mapping m; o F' : By X By — X is the composition between a
continuous and a Borel mapping, and hence a Borel mapping and (71 0 F')(by, by) = y. Hence

A; N A; is the Borel image of the Borel subset F'~(D), and hence an analytic subset. [J

LEMMA 3.53. The product of two analytic subsets of a Polish space is analytic.

Proof. Let X be a Polish space and let A;, Ay C X be analytic. Then there exist B; Borel sets
and f; : B; — A, Borel mappings such that fj(B;) = A, for [ =1,2. Let F': By x By — X be
defined as F'(by, by) = f1(by) fo(bs). Since the multiplication is continuous, F' is a composition
between a continuous mapping and a Borel mapping and hence a Borel mapping. Since

By x By is Borel, it follows that A; Ay = F(B; X Bs) is analytic. [

LEMMA 3.54. % Let G be a Polish topological group, let H be a separable infinite dimensional
Hilbert space and let e € H be such that ||e]| = 1. Let S = {U e U(H) | ||le — Ue|| < €} and
let ¢ : G — U(H) be an algebraic isomorphism. Then ¢~1(S) is analytic in G.

Proof. Let M be as in Lemma 3.51 so that S = U({e}*) [SUM)NS] U({e}'). Since SU(M)

is a connected compact metric group with a totally disconnected center (Chapter I, Section
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14, [19]), using the result from [14] we have that ¢|s-1(sumy) @ ¢~ (SU(M)) — SU(M) is a
homeomorphism. S N SU(M) is a relatively open subset of SUM) = ¢~ (SN SU(M)) is
relatively open in ¢~} (SU(M)). Since ¢~ (SU(M)) is closed in G by Corollary 3.48, we have
that ¢~ (SN SU(M)) is a Borel subset of G. Since ¢~ (U ({e}*)) is closed in G by Corollary
3.42, it follows from Lemma 3.53 that ¢~ }(S) = ¢~ {U({e}t) [S N SUM)] U({e}t)) =
S U} )o (S N SUM))G U({e})) is analytic. 0

LEMMA 3.55. The union of a sequence of analytic subsets of a Polish topological space is
analytic.

Proof. Let Y be a Polish topological space and let {A4;};>1 be a sequence of analytic subsets
of Y. Then there exist B; Borel sets and f; : B; — A; Borel mappings such that f;(B;) = A,
for every [ > 1. Without loss of generality we may assume that the B;’s are Borel subsets of
the same Polish topological space X. Let F': Nx X — Y be defined as F'((n,x)) = fu(x). If
we define D : (Nx X) x (Nx X) — R by D((n,x),(n,y)) = d(z,y) and D((n,x), (m,y)) =1
if n # m, then D is a complete metric on N x X and hence N x X becomes a Polish
topological group. The mapping F' is Borel, U;>1{l} x B, is a Borel subset of N x X and
hence Uj>14; = F(N X Ui>1 B = F(Uis1{l} x B;) is analytic. O

LEMMA 3.56. A translate of an analytic subset of a Polish topological group is analytic.

Proof. Let X be a Polish topological group, let € X and let A C X be an analytic subset.
Then there there exists B a Borel set and f : B — A a Borel mapping such that f(B) = A.
Let F: X x B — X be defined as F((z,y)) = «f(y). Then {z} x B is a Borel set and
since the multiplication is continuous, the mapping F' is Borel. Hence zA = F({z} x B) is

analytic. [J

LEMMA 3.57. Let G and H be two Polish topological groups and let ¢ : G — H be an algebraic
isomorphism. If ¢~ (U) is a set with the Baire property for every U in a neighborhood basis

U at e in H, then ¢ is a topological isomorphism.

41



Proof. Let U C H be open. Then U = U,>12,V,, where z,, € U and V,, € U. Then
o Nz, Vi) = 071 (x,)97 (V) is a set with the Baire property for every n > 1 = ¢~ }(U) =
Vi)

n>1¢ (
with the Baire property.

is a set with the Baire property = ¢ is measurable with respect to the sets

Since G is Baire and H is separable, it follows from a well-known theorem of Banach,
Kuratowski and Pettis (Theorem 9.10, page 61, [18]) that ¢ is continuous. From Lusin-
Souslin Theorem (page 89, [18]) we have that ¢! is Borel measurable, and hence it is
measurable with respect to the sets with the Baire property. From the same result of
Banach-Kuratowski-Pettis it follows that ¢~! is continuous and hence ¢ is a topological

isomorphism. []

THEOREM 3.58. % Let H be a separable infinite dimensional Hilbert space, let G be a Polish
topological group and ¢ : G — U(H) be an algebraic isomorphism. Then ¢ is a topological
1somorphism.

Proof. Let {e;};>1 be an orthonormal basis for H. Let U be a basic neighborhood of I in U (H).
According with Proposition 3.11 U is of the form U = Mi«;<,{U € U(H) | |[Ue; — e/|| < €}
for some € > 0. ¢~1(U) is analytic by Lemma 3.54 and, since analytic sets have the Baire
property, ¢~ 1(U) is a set with the Baire property. The conclusion follows from Lemma 3.57.
O

3.7. The Finite Dimensional Case

LEMMA 3.59. Let G be a group, A, B C G two subgroups such that G = AB and ab = ba for
everya € A andb € B. If C ={(c,c™') | c € AN B}, then (A x B)/C is isomorphic to G.
Proof. Let ¢ : A x B — G be defined as ¢((a,b)) = ab. Since ¢(ay, by)p(ag, by) = a1biazhy =
ajasbiby = P(ajaz, biby) we have that ¢ is a homomorphism. If ¢ € G then g = ab, with
a € Aand b € B and ¢(a,b) = g = ¢ is onto G. Since ker(¢) = {(a,b) | ¢((a,b)) = e} =
{(a,b) | ab=-¢} ={(a,b) |b=0a"t € ANB} ={(a,a™ ') |a € AN B} = C, it follows from

the Isomorphism Theorem for groups that (A x B)/C' is isomorphic to G. O
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LEMMA 3.60. If A, B are two abstract groups, H is a normal subgroup of A and K is a
normal subgroup of B then H x K is a normal subgroup of A x B and (A X B)/(H x K) ~
(A/H) x (B/K).

Proof. If (a,b) € Ax B and (h, k) € Hx K then (a,b)(h, k)(a,b)™" = (aha™',bkb™') € Hx K,
we have that H x K is a normal subgroup of A x B.

Let m: Ax B — (A/H) x (B/K) be defined as w(a,b) = (m1(a), m2(b)), where 71, my are
the natural quotient mappins m : A — A/H and 7y : B — B/K. Since m(ay,b)m(az,bs) =
(mi(a1), m2(b1))(mi(az), m2(b2)) = (m1(ar)mi(az), ma(b1)m2(b2)) = (m1(araz), m2(bibe)) = w(araz, biby)
we have that 7 is a homomorphism. 7 is obviously onto since 7 and my are onto. Since
m(a,b) = (e,e) € (A/H) x (B/K) < m(a) =e € A/H and my(b) = e € B/K < a € H and
be K < ker(m) = H x K we have that (A x B)/(H x K) ~ (A/H) x (B/K). O

LEMMA 3.61. Let G be a group, let A, B be two subgroups such that G = AB, AN B = {e}
and ab = ba for everya € A and b € B. If N is a normal subgroup of B then N is a normal
subgroup of G and G/N ~ A x (B/N).
Proof. Let g = ab € G. If ¢ € N then gcg~! = abeb~'a™! = baca™'b~! = bcaa™'b! =
bab=* € N = N is a normal subgroup of G. Let ¢ : A x B — G be the homomorphism
defined in Lemma 3.59. Since C = {(c,c¢™) | c € AN B} = {e} x {e}, by the same Lemma
we have that G ~ (A x B)/C' = A x B.

Let 7 : G — G/N be the natural quotient mapping. If (7 o ¢)(a,b) = é € G/N then
¢la,b) e N=abe N=>ae Nb'CB=a=e=be N = ker(rog) ={e} x N =
(Ax B)/({e} x N) ~ G/N. From Lemma 3.60 it follows that A x (B/N) ~ G/N. O

LEMMA 3.62. R/Z ~R @& R/Z as abstract groups.

Proof. Consider R as a vector space over Q. Choose {1} U {r, | a € A}, a Hamel basis
for R. Then R is the weak direct sum of the vector spaces spanned by each element of the
base, i.e. R = Q & (BacaQr,). It follows from Lemma 3.61 that R/Z ~ Q/Z & ($acaQra).
Since |A| = ¢, there exist B,C C A such that BUC = A, BNC =0, |B| = |C] = ¢ and
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BacaQra = (BpepQrg) @ (BrecQry) = R =Q @ (®pesQrs) ® (B1ccQry). Using Lemma
3.61 again, we have that R/Z ~ (Q/Z) & (©pecpQrs) & (©,ecQr,) = R/Z ~ (R/Z)$R. O

PROPOSITION 3.63. IfH is a n-dimensional Hilbert space, thenU(H) ~ RxU(H) as abstract
groups.

Proof. Let T = {X | |[\| = 1}. Then T ~ R/Z, T and SU(H) commute and U(H) =
T -SU(H). Since TN SU(H) = {A | \" = 1} ~ Z,, using Lemma 3.59 we have that
UH) ~ (T xSU(H))/Zy, ~ ((R/Z) x SU(H))/Z,. Since R/Z ~ R x (R/Z) by Lemma 3.62
and using Lemma 3.61 we have that U(H) ~ (R x (R/Z) x SU(H))/Z, ~ R x (R/Z) x
SU(H))/Zy ~R xU(H). O

COROLLARY 3.64. % If 'H is an n-dimensional Hilbert space, there is no unique Polish
topological group topology on U(H).

Proof. According to Proposition 3.63, U(H) is algebraically isomorphic to R x U(H). If T is
the standard Polish topological group topology on U(H) and Ry is the usual topology on
R, then the product topology on R x U(H) is a Polish topological group topology and it is

different than 7" and hence 7 is not unique. [J
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CHAPTER 4

THE PROJECTIVE GROUP

Throughout this section H is considered to be a separable infinite dimensional complex

Hilbert space.

4.1. The Topology on PU(H)

DEFINITION 4.1. If H is a Hilbert space, the projective unitary group is the group PU(H) =
UH)/ZUH)). If 7 : U(H) — PU(H) is the natural quotient mapping and if S C U(H)
then 7(8) ={U-ZU(H)) | U € S} and 71 (x(S)) = {\U | |\ =1 and U € S}.

PROPOSITION 4.2. If N is a normal subgroup of a topological group G, then G/N is a
topological group.

Proof. Let aN,bN € G/N and let U C G/N be an open neighborhood of aN - bN = abN.
Then 7= }(U) C G is open and contains ab. Let a € V C G and b € W C G be open and
such that V - W C 7~ Y(U). Then n(V) and 7(WW) are open neighborhoods of aN and bN
respectively, in G/N and 7(V)r(W) = (VW) C m(7~*(U)) = U = the multiplication in
G/N is continuous. Let U C G/N be open. Then 7~!(U) is open in G and (771 (U))™! is
open since inversion in G is continuous. Since z € (771 (U)) ' ezt e 77 1(U) & n(z7!) =
() €U & w(x) e Ut &z enm(U!) we have that (7~ 1(U))™' = 7~ 4(U!) and
hence 7((7~*(U))™) = w(x~*(U™!)) = U~! is open = the inversion in G/N is continuous.

O

COROLLARY 4.3. PU(H) is a topological group.
Proof. Z(U(H)) is a normal subgroup of U(H) and use Proposition 4.2. [J

THEOREM 4.4. Let G be a metrizable topological group and H C G a closed subgroup. Then
G/H is metrizable.
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Proof. Let d be a compatible right invariant metric on G and let D(zH,yH ) = inf{d(z,yh) | h €
H}. Tt is clear that D(zH,yH) > 0 for every z,y € G. If tH = yH then y ‘v € H =
D(zH,yH) = inf{d(z,yh) | h € H} = d(z,y(y~'x)) = 0. If D(zH,yH) = 0 = there
exists a sequence {h,},>1 C H such that yh, — z = h, — y 'z = y v € H =
xH = yH. Hence D(zH,yH) = 0 & zH = yH. D(zH,yH) = inf{d(z,yh) | h €
H} = inf{d(xh™,y) | h € H} = inf{d(y,zh™') | h € H} = D(yH,zH). If z,y,2 € G
and hy,hy € H, then D(zH,yH) < d(x,yhohi?) = d(zhy,yhs) < d(z,xhy) + d(z, yhs) =
D(xH,yH) < inf{d(z,zhy) | hy € H} + inf{d(z,yhs) | he € H} = D(zH,xH) + D(zH,yH)
and hence D is a metric.

To prove that the metric D is compatible with the topology on G/H it is enough to
show that 7(By(a,d)) = Bp(w(a),d), where 7 : G — G/H is the natural quotient mapping,
a € Gandd > 0. Let b € By(a,d). Then d(b,a) < § = D(aH,bH) = D(w(a),n(b)) <
d = m(b) € Bp(m(a),d) and so 7(Bqg(a,d)) C Bp(m(a),d). Conversely, choose b € G such
that w(b) € Bp(w(a),d). Then D(n(b),n(a)) < 0 and hence there exists h € H such that
d(a,bh) < § = bh € By(a,d) = n(bh) = n(b) € m(By(a,d)) = Bp(w(a),d) C n(Bqy(a,d)). O

PROPOSITION 4.5. If G is a separable topological group and H a subgroup, the G/H is
separable.

Proof. Let D C G be a countable dense subset. Then 7(D) is countable and, since 7 is
continuous, we have that G/H = 7(G) = w(clg(D)) C clg/u(m(D)) = w(D) is dense in G.
O

COROLLARY 4.6. % If H is separable, PU(H) is a Polish topological group.

Proof. PU(H) is metrizable by Theorem 4.4. If H is separable, then Hom(H;), the homeo-
morphism group of the unit ball, is completely metrizable by Corollary 2.25 and since U(H)
is a closed subgroup of Hom(H;) by Theorem 3.7, we have that U(H) is completely metriz-
able. Since the mapping 7 is continuous and onto, using a theorem of Hausdorff [8] we have

that PU(H) is completely metrizable. PU(H) is separable by Proposition 4.5. [J
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4.2. The Subsets 7(U(M)), 7(SU(M)) and 7(S) of PU(H)

THEOREM 4.7. s Let M be a closed subspace of the Hilbert space H and let W € U(H)
be such that WUW*U* € Z(U(H)) for every U € U(M). Then WU = UW for every
UeUU(M).

Proof. Let W € U(H) be such that WUW*U* € Z(U(H)) for every U € U(M). Then
there exists A = A(U), with [A\|] = 1, such that WU = NU)UW. If Uy, Uy € U(M), then
MNULUR) UL URW = WUy = AUDUW Uy = NUDAMUs) UL UsW = AULUL) = AUDAUy)
the mapping A : U(M) — T = {\ € C | |\| = 1} is a homomorphism of groups. If U € U(M)

Y

then U* € U(M) and 1 = A\(I) = NU*U) = NUHNU) = NU*) = (A U))"' = \U). If
{U;}jes C U(M) and U € U(M) are such that U; == U, then NU;) = WU;W*U; =
WUW*U* = A\(U) = A is continuous.

If M is infinite dimensional and if U € U(M), according to [7], page 134, problem 191,
there exist P, Q € U(M) such that U = PQP*Q* and then A\(U) = A(P)A(Q)X\(P)'\(Q)!

1 for every U e U(M) = WUW*U* =1 = WU = UW for every U € U(M).

Suppose first that M is one-dimensional, that M = span({e;}) and that {e;};>; is
an orthonormal basis for H. Note that in this case U(M) = T, the circle group, and
hence U(M) is connected. Let U € U(M). Then Ue; = e'®e;, Ue; = ¢ for every | > 2
and U*e; = e "@e; and U*e; = ¢ for every | > 2. If (We;,e;) # 0 for some 4,5 > 2
then, since WU = ANU)UW, we have that (We;,e;) = (WUe;,e;) = ANU)({UWe;,ej) =
MUY We;,Utej) = ANU)(Wey,e;) = AU) = 1.

Otherwise, (We;, e;) = 0 for every 4,7 > 2. In addition, if (Wey, e1) # 0 then e (Wey, e1) =
(WUey,e1) = MU (UWey,er) = MNU)(Wey,U*er) = ANU)e™“(Wey,er) = \NU) = 1.

Otherwise, if (Wey,e;) = 0 and (We;, e;) = 0 for all ¢, j > 2, then for every [ > 2 we have
that (Wej,e1) = (WUe,e1) = MU){UWey,e1) = NU)(Wey,U*er) = NU)e“(Wey, er). If
(Wep,eq) = 0 for all [ > 2 then (Weje;) = 0 for all Il > 1 = (Wax,eq) = 0 for all
reEH=Wre =0=e =WW*e = W(0) =0, a contradiction. Thus, there exists [ > 2

such that (Wey,e1) # 0 = AU)e' =1 = A\U) = e~ We also have that e’*(Wey,e;) =

47



(WUey,e;) = MU)(UWeq,e) = NU)Wey,U*e;) = NU)(Wey,e) for 1 > 2. If (Weq,e) =
0 for all I > 2 then (Wey,e;) =0 foralll > 1= (Wey,z) =0 forallz € H = We; =
0 = e = W*We; = W*0) = 0, a contradiction. Thus, there exists [ > 2 such that
(Wey,e) # 0= e*=\NU) = ANU)*=1= ANU) = +1. Since U(M) is connected, A is
continuous and A(I) = 1= A(U) =1 = WU = UW for every U € U(M).

Suppose now that M = span({e,...,e,}) is n-dimensional where {¢;};>; is an or-
thonormal basis for H. If U € U(M) then, according with the spectral theorem, we
have that there exists V' € U(M) such that VUV*e; = e for every 1 < [ < n and
VUV*e; = ¢ for every | > n. If for every 1 < 1 < n we define Up|span(e,)e1 = et®e; and
Ullspan({eryyr = I then VUV* = UUs...U, and hence U = V*U,U,...U,V. If we denote
M, = span({e;}), then each M, is one-dimensional, each U; € U(M;) and U(M;) C U(M).
Thus WU, = \(U,)U,W for every I > 1 and by the previous paragraph we have that A(U;) = 1
for every 1 < 1 < n = MU) = AVHNUDMU2).. NU)AV) = A(VIA(V) = 1 and hence
WU = UW for every U € U(M). O

THEOREM 4.8. % Let M be a closed subspace of the Hilbert space H, G a Polish topological
group and ¢ : G — PU(H) an algebraic isomorphism. Then ¢~ (7 (U(M))) is closed in G,
where m: U(H) — PU(H) is the natural quotient mapping.

Proof. We will prove that w(U(M)) = {W € PU(H) | WV = VIV for all V € n(UU(M1))}.
This will imply that ¢~ (x(U(M))) = {¢~ (W) | 67 (W)p 1 (V) = ¢ (V) (W) Vo (V) €
¢~ (mw(U(M™1)))} and then, according with the Proposition 3.26 we will have that ¢~ (7 (U (M)))
is closed in G. Note that if S € U(H) and U € w(S) then there exists U € S such that
m(U)=U.

Let U € m(UU(M)) and V € n(U(M™1)). Let U € U(M) be such that 7(U) = U and V €
U(M™L) be such that 7(V) = V. According with Theorem 3.28 we have that UV = VU =
T(U)n(V) = a(V)a(U) = UV = VU = aUM)rUM") = 7UM))rUM)) =

T(UM)) C {W € PUH) | WV = VW for all V € n(U(M1))}.
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Let W € PU(H) be such that WV = VW for all V € 7(U(M™L)). Let W € U(H) be such
that 7(W) = W and, for every V € n(U(M™1)), let V € U(M™) be such that =(V) = V.
Then 7(W)r(V) = 7(V)x(W) = n(WV) = a(VW) = WVW*V* € ZUMH)) = WV =
VW by Theorem 4.7. Using Theorem 3.28 we have that W € Z(U(H))-U(M) = there exist
A with [A| = 1 and U € U(M) such that W = XU = n(W) = n(U) = W € n(U(M)) =
(W e PUH) | WV = VW for all V € (UML)} C m(U(M)). O

PRrROPOSITION 4.9. If M C 'H is a finite dimensional subspace, then
T(UM)) = 7(Z(UM)))m(SU(M))

Proof. Since Z(U(M)), SU(M) C U(M) and U(M) is a subgroup we have that
ZUM))SUM) cUM) = 7(ZUM)))m(SU(M)) C m(UU(M)).

Let U € m(Ud(M)). Then there exists U € U(M) such that 7(U) = U and by Proposition
3.47 we have that there exist V € Z(U(M)) and W € SU(M) such that U = VIV = =(U) =
(VW) = x(V)r(W) C 7(ZUM)))r(SU(M)) = 1(M) C 1(ZUM))r(SUM)). O

PROPOSITION 4.10. % Let G be a Polish topological space, M C 'H a finite dimensional
closed subspace and ¢ : G — PU(H) an algebraic isomorphism. Then ¢~ (x(SU(M))) is
an analytic subset of G.
Proof. Since ¢~ (m(U(M))) is closed in G by Theorem 4.8, ¢~ (w(U(M))) x ¢~ (x(U(M)))
is closed in G x G. Let [-,-] : ¢ L (x(U(M))) x ¢~ L(m(U(M))) — G be defined as [a,b] =
aba=1b~!. Since the group operations are continuous, [+, -] is continuous. If a,b € ¢~ (7 (U(M)))
then ¢(a), p(b) € TU(M)) = there exist U,V € U(M) such that ¢(a) = 7 (U), (b) = (V)
and (¢(a))™! = (7(U))"' = 7(U*) and similarly (¢(b))~! = 7(V*). Since ¢([a,b]) =
¢(aba™v71) = ¢(a)p(b)(¢(a)) " (4(0)) ™ = m(U)m(V)m(U*)m(V*) = m(UVU*V*) € m(U(M))
and since det(UVU*V*) = det(U)det(V)det(U) det(V) = 1, we have that ¢([a,b]) €
T(SU(M)) = [a,b] € ¢~1(m(SU(M))). This proves that [, -] takes its values in ¢~ (7 (SU(M))).
Let y € ¢~1(n(SU(M))). Then ¢(y) € 7(SU(M)) = there exists W € SU(M) such
that ¢(y) = m(W). By Lemma 3.45 we have that there exist U,V € SU(M) such that W =
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UVU*V*. Let a = ¢~ Y(n(U)) € ¢~ (m(SUM))) C ¢~ (m(U(M))) and b = (W(V)) €
H(m(SUM))) € o7 Hm(U(M))). Then y = ¢~ (x(W)) = ¢~ (m(UVU*V)) = ¢~} (x(V))
Hr(V) (e m(U)) " e (m (V)T = aba™'b™ = [a,b] = [, ] is onto ¢! (x ( U(M))).

Since [+, | is continuous, it follows that ¢~ (7(SU(M))) is the continuous image of ¢~ (7 (U(M))) x

(UU(M))), a closed subset of a Polish space, and therefore ¢! (7(SU(M))) is an ana-

“Hr

lytic subset of G. [J

LEMMA 4.11. % If M C 'H is a finite dimensional subspace, then w(Z(U(M))) = Z(x(U(M))).
Proof. Let U € n(Z(U(M))). Then there exists U € Z(U(M)) such that 7(U) = U. Let
V e n(U(M)) and V € U(M) be such that m(V) = V. Then, since U and V commute, we
have that UV = n(U)a(V) = #(UV) = #(VU) = #(V)ax(U) = VU = U € Z(n(U(M))) =
m(ZUM))) C Z(7(UM))).

Let U € Z(r(U(M))) and let U € U(H) be such that 7(U) = U. We will show that
U € Z(U(M)). This will imply that U € 7(Z(U(M))) and therefore that Z(m(U(M))) C
m(ZUM))). Let V € U(M). Then (V) € w(U(M)) and hence Urn(V) = #(V)U =
(U)n(V) = 7(V)r(U) = n(UVU*V*) = Id € PUH) = UVU*V* € ZU(H)) = from
Theorem 4.7 that UV = VU = U € Z(U(M)). O

COROLLARY 4.12. % Let G be a Polish topological space, M C 'H a finite dimensional closed
subspace and ¢ : G — PU(H) an algebraic isomorphism. Then ¢~ (w(SU(M))) is closed in
G.

Proof. From Corollary 4.8 we have that ¢! (7(U(M))) is closed in G and hence Polish.
From Proposition 4.9 we have that ¢~ (7(Z(U(M))))¢ (7(SUM))) = ¢~ Hx(U(M))). By
Lemma 4.11 we have that 7(Z(U(M))) = Z(w(U(M))) and, since ¢ is an isomorphism, it fol-
lows that ¢~ (m(Z(U(M)))) is the center of ¢~ (7 (U(M))) and therefore ¢~ (7 (Z(U(M))))
is closed in ¢~ H(m(U(M))). ¢~ (m(SU(M))) is an analytic subgroup of G' by Proposition
4.10, and hence analytic subgroup of ¢~ (7 (U(M))). Let C' = 7(Z(U(M)))N7(SU(M)) and
let U/ € C. Then there exist U € Z(U(M)) and V € SU(M) such that n(U) = U = n(V) =
T(UV*) = Id € PUH) = UV* € ZUH)) = UV* = X[ = U = A\V. Since Ul = I

50



and V| =T wehave that \=1=U=V=C={nU)|U € ZUM))NSUM)} =
{n(U) | Ulpm = pl, Ulppr =1, p™ = 1}, where n = dim(M) = C' is finite. Since ¢ is an
isomorphism we have that ¢~!(C) is finite and hence closed in ¢~ (7 (U(M))). Tt follows
from Corollary 3.39 that ¢! (7 (SU(M))) is closed in ¢! (7 (U(M))) and hence closed in G.
0

PROPOSITION 4.13. % Let G be a Polish topological group, let H be a separable Hilbert space
and let e € H be such that |le|| = 1. Let S ={U € U(H)) | |le — Ue|| < ¢} C U(H) and let
¢ : G — PU(H) be an algebraic isomorphism. Then ¢~ (7(S)) is analytic in G.

Proof. Note first that the quotient mapping = : U(H) — PU(H) is open and contin-
uous. Let M C H be a three dimensional subspace as in Lemma 3.51 so that & =
U{e}) [SUM)NS]-U({e}t). Then 7(S) = n(U({e}))n[SUM)NS]m(U({e}*)). Since
SU(M) is a connected compact metric group with a totally disconnected center (Chapter
I, Section 14, [19]), then 7(SU(M)) is a connected compact metric group. A proof simi-
lar to the proof of Proposition 4.11 shows that Z(w(SU(M))) = n(Z(SU(M))) and hence
the center of m(SU(M)) is finite. Using the result from [14] we have that ¢|s-1(rsu(rm)) :
¢~ Hm(SU(M))) — 7(SU(M)) is a homeomorphism. SU(M)NS is a relatively open subset
of SU(M) and hence Borel = 7[SU(M)NS] is analytic in 7(SU(M)) = ¢~ (x[SU(M)NS])
is analytic in ¢~1(7(SU(M))). Since ¢~ (m(U({e}1))) is closed in G by Theorem 4.8 and
therefore analytic, it follows from Lemma 3.53 that ¢~} (7 (S)) = ¢~ L (r(U({e}*))n[SUM)N
SlrU({e}r))) = o7 (rU{e})))o™ (r[SUM) N S])¢~H (m(U({e}))) is analytic. O

4.3. Main Result

PROPOSITION 4.14. % Let {emn}m>1 be an orthonormal basis for the separable infinite di-
menstonal Hilbert space H. For every m,n > 1 let Uy, = {U € U(H) | |ley — Uey| < 2}
Let m : U(H) — PU(H) be the natural quotient mapping. Then

ﬂ T T Unmp)) = {W €UH) | Wen = Amem for every m > 1 with |\,| = 1}

m,n>1
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Proof. Note first that 7' (7(Us,.)) = Z(U(H)) - Upmn for every m,n > 1. Let W € U(H)
be such that We,, = Apnen for every m > 1 and |\,| = 1. Then (\W)e; = AAje; =
e1 = Jler — (MW)ey|| =0 < % for every n > 1 = MW € Uy, for every n > 1 = W €
ZWU(H)) - Uy, for every n > 1. Similarly we have that W € Z(U(H)) - Uy, for every
m,n>1=W € Nuus1ZUH))  Upp = Nins17 H(T(Unn)).

Let W € Nypo1m™ M (m(Upn)) = Ninns1Z(U(H)) - U Then for every m,n > 1 there
exist A\ With [A, .| = 1and Wi, € Uny,p such that W = A, ,Wo, o, and || e, — Wi nem|| < %
for every m,n > 1. Fix m and let p,¢ > 1. Then |\, — Mgl = | Ampem — Amgem| <
P = oWl = ImsWongm = maWongeml & ImaWongem = Amgenll = llem —
Wi pem |+ |Wem —Wen || +lem—Wigemll < %—i—% — 0asp,q — 00 = {\nuntn>1 is Cauchy
= An — Am @s n — 00, with |A\,,| = 1. Thus [|[We,, — Anen| = [ AmaWmnem — Amem|| <
I A Winn€m =AW nem ||+ [ A Wi nem—Amemll = [Amn—Am|- [ Winneml| 1 Am] - [| Wi n€m—

emH<\)\m,n—)\mH—%—>0asn—>oo:>Wem:)\mem. O

COROLLARY 4.15. % Let H be a separable infinite dimensional Hilbert space and 7w : U(H) —
PU(H) be the natural quotient mapping. Then there exists {S;}>1 C U(H) a sequence of
subbasic open neighborhoods of I such that N> (7(S;)) = Z(U(H)).

Proof. Let {ey,}m>1 be an orthonormal basis for H. Let f; = \/76 >oms1 2. Then || fi]* =
% Zm21 # = 1 and expand {fi1} to an orthonormal basis {f,}m>1. Let U, = {U €
UH) | llem — Uenll < 1} and let Vo = {U € U(H) | [|fmo — Ufill < £} Let {Si}iz1 =
{Unmn,Vimn | myn > 1}. According with the Proposition 3.11 {S;};>1 is a sequence of
subbasic open neighborhoods of I in U(H).

Let W € N1 N (m(8)) = [Nimnns17m (T (Unn))] N [Nins17 (7 (Vinn))]. Then, accord-
ing with the Proposition 4.14 we have that We,, = Apne, and W f,, = i fm, with |A,| =
|ttm| =1 for every m > 1. But Wfy =W <‘/76 > 1 %) = */76 Do e = ‘/76 Y 1 Amem
and also Wf) = ui1fi = (\/?6 ZmZI %) = (X/?é Zm21 ’%) = A\, = p for every m >
1= We, = ey, forevery m > 1= W = I € ZUH)) = Nz H(w(S))) C Z(U(H)).
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W e Z(U(H)) then W = A for some |A| = 1 and since I € U,,, , and I € V,,, ,, for every
mn>1=WeZUMH)) Up, =71 (TUnn)) and W € ZUH)) - Vinn =7 17 Vin))

for every m,n > 1= W € Nis17 17 (S)). O

THEOREM 4.16. % Let G and H be two Polish topological groups and ¢ : G — H an
algebraic isomorphism. Suppose that there ezists a sequence of open subsets of H, {Up}n>1,
such that Np>1U, = {e}, U, = Un_1 for every n > 1, for every ng there exists ny such that
Uﬁl C U,, and ¢~ *(U,) is a set with the Baire property in G for every n > 1. Then ¢ is a
topological isomorphism.
Proof. Let {ay}m>1 be a countable dense subset of H. We will prove that the sequence
{amUp}m>1, n>1 separate points in H. Then, according to a theorem of Mackey (Theorem
3.3, [22]) we have that {a,,U, }m>1, n>1 generates the Borel structure of H. Since ¢~1(U,) is
a set with the Baire property and since the sets with the Baire property are invariant under
left translations, we have that ¢~ (a,,U,) = ¢~ (am)9 " (U,) is a set with the Baire property
in G. Since {a,,U, }m>1, n>1 generates the Borel structure of H we have that ¢~!(B) is a set
with the Baire property in G for every B Borel subset of H and hence ¢ is measurable with
respect to the sets with the Baire property. Then, since G is Baire and H is separable, it
follows from a well-known theorem of Banach, Kuratowski and Pettis (Theorem 9.10, page
61, [18]) that ¢ is continuous. From Lusin-Souslin Theorem (page 89, [18]) we have that
¢~ ! is Borel measurable, and hence it is measurable with respect to the sets with the Baire
property. From the same result of Banach-Kuratowski-Pettis it follows that ¢! is continuous
and hence ¢ is a topological isomorphism.

To show that {a,,Uy,}m>1, n>1 separates points in H, let z,y € H be such that x # y.
Then 7'y # e = 7'y ¢ N,>1U, = there exists ng such that 7'y ¢ U,,. Let n; be
such that U? C U,,. Then z7'y ¢ UZ. The set zU,, is open and since {am}m>1 is

dense, there exists mg such that a,,, € zU,, = v an, € Uy, = 271 € Uya,l = x €

n1*"mo

1

moUnlt = moUn,. If y € am Uy, then a,}y € U, and since 7 'ay,, € Uy,, we have that
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7y = (@7 am, ) (anty) € U2, C Uy, a contradiction. Thus y ¢ ap Uy, and & € am Uy, =

the collection {a,;,U, }m>1,n>1 separates points in H. [J

LEMMA 4.17. Let f: X — Y be onto and let {A,} cr be a collection of subsets of Y. Then
FOerd H(A4,)) = er s,
Proof. Let y € f(Nyerf *(A,)). Then there exists € Nyerf1(A,) such that y = f(x) =
z € fTYA) forevery y € T = f(z) € A, for every vy € ' = y = f(z) € Nyerd, =
F(PnerfH(AL) € Myer A,

Let y € NyerA,. Then there exists € X such that f(z) =y = f(z) € A, for every v €
D= o€ f71(Ay) for every 7 € T = o € Myerf (A) = y = f(x) € f(Merf'(4,) =
Aerdy © F(Pherf " (4,). O

THEOREM 4.18. % Let H be a separable infinite dimensional Hilbert space, let G be a Polish
topological group and ¢ : G — PU(H) be an algebraic isomorphism. Then ¢ is a topological
1somorphism.
Proof. Let m : U(H) — PU(H) be the natural quotient mapping. Let {S;};>1 be the
sequence defined in Proposition 4.15, {S;}i>1 = {Umn, Vin | m,n > 1}, where U, , = {U €
UMH) | llem = Uenmll < 3}, Vi = {U € UMN) | | fin — Ufill < 3} and {em}mz1, {fin}mz
are two orthonormal bases for H. We will prove that the sequence {7(S;)};>1 of subsets
of PU(H) satisfy the hypothesis of Theorem 4.16 and the conclusion will follow from the
same theorem. Since the projection mapping is open we have that 7(S);) is open for every
[ > 1. Also note that each ¢~!(7(S;)) is analytic in G by Proposition 4.13 and hence each
¢ H(m(8;)) is a set with the Baire property.

Since [|ey, — U*en|| = [U*(Uem — em)|| = ||Uem — eml|| we have that U* € U, ,, whenever
U e Uy, Let U e 7(Upn) and U € U, , be such that 7(U) = U. Then U* € U =
U= (n(U)™ = n(U*) € 1(Upmn) = (71(Upmn)) " C 7). By replacing U, , with U
we have that (7(U,,},)) "' C 7(U,,}) = T(Unn) C (T(Unp)) ™ = (T(Unn)) ™ = 7(Un,,) for
every m,n > 1. Similarly (1(Vinn)) ™t = 7(Vin) for every myn > 1 = (7(S)) ™ = 7(S,) for

every [ > 1.
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Let U,V € Uy 2. Then |le,,—Uep|| < 5= and [|e,,—Ve,, || < o and hence |le,,—UVe,,|| <
lem—Ueml|[+ 1Uemn—UVen|l < =+ =+ = UV € Upnpn = U2 5, CUnp = (T(Un2n))* =
(U2

= on) C T(Up.n) and hence for every mg, ng > 1 there exists m; = mg and n; = 2ng such

that (7(Upyn,))? C T(Umgn,). Similarly for every mg,ng > 1 there exists m; = mg and
ny = 2ng such that (1(Vimyny))? C T(Vimgne) and therefore for every Iy > 1 there exists
such that (7(S,)* C 7(Sy,)-

From Corollary 4.15 we have that N;>17~(7(S;))
that 7(Oiean ' (7(S))) = Nerr(x (7(S)) = Nein(S) = Nim(S) = 7(ZUH))) =
Z(U(H)) and hence Ny>17(S;) is the identity in PU(H). O

Z(U(H)). From Lemma 4.17 we have
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CHAPTER 5
THE GROUP OF *—AUTOMORPHISMS
Throughout this section H is considered to be a separable complex Hilbert space.

5.1. The Topology on Hom(L(H),)

THEOREM b5.1. Let ‘H be a separable Hilbert space and {e;};>1 be a maximal orthonormal

subset. Then

AST) = 3 sl ((5 — Do)

m,n>1
is a metric on L(H), compatible with the weak operator topology.
Proof. Since [((S —T)em,en)| < [|S — T||, the series > (S —T)em, e,)| con-
verges. Clearly d(S,T) > 0, d(S,T) = d(T,S) and d(S,S) = 0. If d(S,T) = 0 then

((S=T)em,en) = 0 for all m,n > 1. Since (S —T)e, = > (S —T)en, em)em for ev-

m,n>1 2m+"

ery n > 1 we have that [|(S — T)en||* = 32,51 (S = Ten,em)* = 0= (S = T)e, = 0
for all n > 1 = S = T. Finally, d(S,T) = Y mst g (S = R+ R —=T)em, e,)| <
S ot 375 1S = R)ems €ndl 4+ g7ee | (R = T, ea)| = d(S, B)+d(R, T) and hence
d is a metric.

Let YU C L(H), be an open set with respect to the topology compatible with the metric
d. Let Sy € U and let € > 0 so that Bd(SO,e) C U. Choose k such that % + %%2 < €. Let
V={5¢e€LMH) |[((S—So)em,en)| < 7, 1 <m,n < k} be a basic weak operator open
neighborhood of Sy. If S € V then

k

A, 50) = 3 s |5 = Shemen)| 42 30 3 (S — SoJemea)] <

m,n=1 m>k+1 n>1

k

> i X g HSH+HSoH>s%<Z 1)(2 2n)+2 > Y

m,n=1 m>k+1n>1 m>k+1n>1
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1 2 1 1 1 1 1 1 1

S Bl D) iy, SR

k + Z gm Z omn k + Z om k + 2k—1 k + 2k—2 €
m>k+1 n>1 m>k

This implies that V C By(Sp, €) C U and hence the metric topology is weaker than the weak
operator topology.

Let V C L(H) be an open set with respect to the weak operator topology and let Sy € V.
Let € > 0 and k > 1 so that {S € L(H) | [{(S — So)em.en)| <€, 1 <m,n <k} CV. Let
U={SecLH)|d(S,S) < 55} If S €U then for every 1 <m,n <k we have that

k
1
(S = So)ems en)| < 2% Y S 15 = So)em, en)| <

m,n=1

€

22k

= €

2%y ! (S = So)em, en)| = 22%d(S, So) < 2%

2m+n
m,n>1

This implies that &/ C V and hence the weak operator topology is weaker than the metric

topology on L(H),. O

COROLLARY 5.2.

p(f,9)= sup d(f(T),g(T)+ sup d(f(T),g"(T))
TeL(H), TeL(H),
where d is the metric on L(H), defined in Theorem 5.1, defines a metric on Hom(L(H),).
Hom(L(H),) is a complete separable metric topological group with the topology compatible
with this metric.

Proof. L(H), is weak operator compact by Theorem 5.1.3, page 306, [10]. From Theorem

5.1 we have that £(H), is a metric space. The conclusion follows from Theorem 2.24. O

5.2. The Subgroup &

DEFINITION 5.3. We say that T' € L(H) is positive if (Tx,x) > 0 for every z € H. If
M C L(H), M* will denote the set of all positive elements of M. If T, S are two self-

adjoint operators, we say that S < T if T — S € L(H)™.

PROPOSITION 5.4. If T € L(H) is a bounded linear operator, then T is self-adjoint if and

only if (Tx,x) is real for each x € H. In particular, positive operators are self-adjoint.
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Proof. For every x € H we have that (T'z,z) — (T"z,z) = (Tx,x) — (x,Tx) = (Tz,x) —

(Tz,zy = 2ilm({(Tx,x)). Hence (T'z,x) is real if and only if (T'z,x) = (T"*x,z) for every

x € 'H. It follows from Proposition 2.19 that T is real if and only if 7% =T. [J

REMARK 5.5. According to the Proposition 5.4, if T € L£(H)" then T is self-adjoint. If
S<TandT < SthenT —S € L(H)  and —(T — S) € L(H)" = (T — S)z,z) = 0 for
every x € H = T — S = 0 by Proposition 2.19. This implies that 7" = S and hence < is a

partial order on the set of self-adjoint operators.
LEMMA 5.6. If T € L(H) is a self-adjoint, bounded linear operator then
1T = sup{|(Tz, z)| | ||=[| = 1}

In particular, if T € L(H)T, then ||T|| = sup{(Tz,z) | ||=| = 1}.
Proof. Let a = sup{[{Tw,z)| | ||z[| = 1}. Since {[(Tw,z)| | [|lz]| = 1} < {[(Tz,y)| | [l=] <
L llyll < 1} we have that a = sup{[(Tz,z)| | [lz]| = 1} < sup{|(Tz,y)| | [l«]| <1, [lyll <
1} = [T

From Proposition 2.18 we have that (Tz,y) = 1(T(z + y), 2 +y) — (T (z —y),z — y) +
(T (x +1iy),z + iy) — +i(T(x — iy),z — iy) and, since by Proposition 5.4 (T'z, z) is real for
each z € H, it follows that Re(Tz,y) = 1(T'(z + y),z +y) — H{T(z —y),z — y) =

Re(Tz, )| < THT(a + )2+ 9)] + Z1T(x —y). 2 — )] =

T+ r+y

, (T )| <
[e ol T+l

lz = yll" llz =yl

1
Jle ol [

1
)+ gt - a2
1 1
Ll + vl + e = ol = Sa(@lel? +20y]?) < o

for every x,y € H with ||z|| <1, ||y| < 1. Here we are also using the Paralelogram Law,

Proposition 2.7.

Let z,y € H such that [|z| = |ly]| = 1 and let ¢ = Re<Tx’|1<’f>[,;i;ﬁ<Tx’y> € C. Then
Re(Tx,y))? Im(Tz,y))2

o] = Ol 4 Onllel g o lea| = ef o]l = 1 and (T(cx),y) = o(Ta,y) =

R T (Re( T, y) + iIm(Ta, y)) = Wty Callenlls = (T, y)]. Tt follows that
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(T'(cz),y) is real and positive and, using the previous inequality, we have that [(T'z,y)| =
(T'(cx),y) = |[Re(T(cx),y)| < a for every z,y € H with ||z|| = |ly|| = 1. This implies that
1T = sup{[(Tz, )| | =] <1, llyll <1} < a = sup{[(Tz,z)[ | ||z[| = 1} and hence
17|} = sup{[{Tz, )| | ]} = 1}. O

COROLLARY 5.7. If S, T € L(H) and S —T >0, then ||S|| > ||T|.
Proof. S > T > 0 = (Sz,z) > (Tz,z) for every z € H. It follows from Lemma 5.6 that

IS1 = sup{(Sz, z) | [lz] = 1} = ||| = sup{{Tz, z) | ||=[| = 1}. O

DEFINITION 5.8. If (T}),cs is a net of self-adjoint operators, we say that (7});es is bounded
above if there exists S a self-adjoint operator such that 7; < S for every j € J. The least

such S, if exists, is denoted sup;c {7}

DEFINITION 5.9. A x—subalgebra of £L(H) is a subalgebra of £(H) which is stable with

respect to the adjoint operation.

DEFINITION 5.10. Let M C L(H). The commutant M’ of M is the set the set defined
as M' = {T € L(H) | TS = ST for every S € L(H)}. The bicommutant M" of M is

DEFINITION 5.11. A von Neumann algebra in H is a x«—subalgebra A of L(H) such that
A = A". The algebra L(H) is a von Neumann algebra.

DEFINITION 5.12. Let A and B be von Neumann algebras. A linear mapping ¢ : A — B
is said to be positive if ¢(AT) C BT. We say that ¢ is normal positive if, further, for every

increasing net {7T;};c; C A" with supremum T € A", the net {¢(7})},e; has supremum

o(T).

PROPOSITION 5.13. Let A be a von Neumann algebra and T € A. Then T € A" if and only
if T'=S*S for some S € A.
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Proof. It T = S*S, then T is self adjoint and (T'z,z) = (S*Sz,z) = (Sx,Sx) = ||Sz|| > 0 =
T2>0.
.U

N|=

If T € A", then Tz € A* and T = T2T? = (T2)*T

DEFINITION 5.14. A x—automorphism acting on £(H) is a bijective mapping ¢ : L(H) —
L(H) satistfying, for every S, T € L(H) and every A € C the following:

)
1) o(ST) = (S)e(T);
2) (S +T) = @(S) + ¢(T);
3) @(AT) = Ap(T);

4) o(T") = (o(T))".

We denote with Aut(L(H)) the set of all x—automorphisms acting on £(H).
A x—anti-automorphism on L(H) is a bijective mapping ¢’ : L(H) — L(H) satisfying,
for every S,T € L(H) and every A € C, ¢/(ST) = ¢'(T)¢'(S) and the conditions 2)-4)

above.
REMARK 5.15. Aut(L(H)) is a group under composition.

PROPOSITION 5.16. If S is the group generated by the x—automorphisms and the x—anti-
automorphisms and if ¢’ is any fized x— anti-automorphism on L(H) then S = Aut(L(H))U
O Aut(L(H)).

Proof. If ¢ € Aut(L(H)) then ¢'¢ is a *—anti-automorphism and hence Aut(L(H)) U
Y Aut(L(H)) C S.

If ¢ is any *—anti-automorphism, let ¢ = ¢'~!1. Then ¢ is linear, p(T*) = (¢(T))* for
every T' € L(H) and since p(ST)) = (¢'~'4)(ST) = ¢~ (Y(T)¥(5)) = ¢~ (¥ (9)' ™ (¥(T)) =
o(S)p(T) = ¢ € Aut(L(H)) = ¢ = v € ¢ Aut(L(H)) and hence S C Aut(L(H)) U
Y Aut(L(H)). O

PROPOSITION 5.17. Let ¢ € Aut(L(H)). If S,T € L(H) are self-adjoint such that S < T
then ©(S), o(T) are self-adjoint and p(S) < (7).
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Proof. Let ¢ € Aut(L(H)) and let S, T € L(H) be self-adjoint. Then S* = S = (¢(9))* =

p(57) = ¢(5). Similarly (¢(T')" = (7).
If S <Tthen T—S > 0 = there exists R € L(H) such that T —S = R*R = p(T'—95) =

p(R)e(R) = (p(R)) () 2 0= o(T) = ¢(5). O

PROPOSITION 5.18. Let A C L(H) be a von Neumann algebra. Then every element of A is
a linear combination of unitary elements of A.
Proof. Since every T € A can be uniquely expressed in the form T = T} + iT,, where

Ty = 3(T+T*) and T, = £(T* — T) are self-adjoint elements of A, it is enough to consider

2
the case of a self-adjoint operator T' € A. We may also assume that ||T'|| < 1 by replacing
T with ¢hr. But then |Tz| < |lz| = (Tw,Tz) < (z,2) = I =T* > 0 = (I —T?):3
exists and it’s positive. Let U = T + i(I — T?)2. Then U € A and U* = T — i(I — T?)z.
Since I — T2 commutes with T, (I — T2)2 commutes with T and hence U*U = UU* =

(T — (I —T?)3)(T +i(I —T?)2) =T?> + I — T? = I. Moreover, T = (U + U*). O

COROLLARY 5.19. Let A C L(H) be a von Neumann algebra and T € L(H). Then T € A
if and only if UT = TU for every unitary operator U € A’.
Proof. f T € A = A" then T commutes with every operator of A’, hence with every unitary
operator U € A'.

If UT = TU for every unitary operator U € A’ then, since by Proposition 5.18 every
operator S € A’ is a linear combination of unitary operators of A’, we have that T" commutes

with every operator of A, and hence T'e A" = A. [0

THEOREM 5.20. If (T}),es is a net of self-adjoint operators on a Hilbert space H, which is
increasing and bounded above, then there exists T € L(H) self-adjoint, such that T} = T.
Moreover, T' = sup;c ;{T}}.

Proof. Let (1});es be an increasing, bounded above net of self-adjoint operators acting on
the Hilbert space H. By assumption, there exists S a self-adjoint operator such that S > Tj

for every j € J. We may assume that T; € L(H)", by considering the net T; — Tj, for

61



J > Jjo if necessary, where T}, is some fixed element of the original net. If M = ||S]| then
by Corollary 5.7 we have that ||T;|| < M for all j € J. This implies that |(Tjz,z)| <
| Tiz|| Nzl < || T5]] ||=]|* < M||z||* = (Tjz,x) is an increasing net, bounded above, and
hence convergent. It follows from the polarization identity (Corollary 2.18) that (T;z,y) is

convergent for all z,y € H. If u : H x H — C is defined as u(x,y) = lim;(Tjx,y) then,

since u(z,y) = lim;(T;z,y) = lim; (T;y,z) = u(y, ), u is a bilinear form on H x H. Since

lu(z,y)| = lim; |[(Tjz,y)| < M ||z| ||y||, we have that u is bounded. Hence, there exists

T € L(H) such that u(z,y) = (Tz,y). Since (Tx,y) = u(z,y) = u(y,z) = (Ty,x) =
(z,Ty), we have that T is self-adjoint. Clearly (T'z,z) = u(z,z) > (Tjz,z) = T > 1T
for every j € J and ||T|| = sup| <1, y)<1{T%y) = supju<1, jyi<1 [u(@,y)| < M. Since
(T = Ty)all> = (T = Ty)H(T = Ty)kal* < |T = T3l (T — Ty)al> < 2M{(T — T)a, ) =
2M ((Tx,z) — (Tjz,x)) = 2M (u(z, z) — (Tjz,z)) — 0, it follows that Tj = T.

Let S be self-adjoint and such that 7; < S for every j € J. Then (Tjx,x) < (Sz,z)
for every z € ‘H. Since T; = T we have that T; =% T and hence (T, z) < (Sz,z) for
every v € H = ((S—T)z,z) > 0 forevery x € H =S —T >0 = S > T and hence

T = StueJ{Tj}- U

COROLLARY 5.21. If {A;} C AT is an increasing net, bounded above with supremum A,
then A € AT,

Proof. Let U € A’ be unitary. Then UAU* = sup,{UA;U*} = sup;{A;} = A, and hence
A commutes with every unitary operator in A’. According with the Corollary 5.19, A € A.

Since A is the supremum of positive operators, A is also positive. [

COROLLARY 5.22. Every x—automorphism acting on L(H) is a normal positive mapping.
Proof. Let ¢ € Aut(L(H)). By Lemma 5.17 we have that ¢ preserves order and hence
e(L(H)") C L(H)". Let {T}}jes C L(H)" be a net with T = sup,,{T;} € L(H)". Since
¢ preserves order we have that {¢(7})};es is increasing and bounded above by (7). Let
S = sup;c; p(T;). Then ¢(T;) < S < (T) for every j € J = T; < ¢ (S) < T for every
JEJ=p HS)=T=S5=p(T).O
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PROPOSITION 5.23. If ¢ is a x—automorphism acting on L(H) then o(T) € L(H), for every
T e L(H),.

Proof. If T € L(H) and ¢ € Aut(L(H)) then (T*Tz,z) = (Tz,Tx) < ||T||*(x,z) = T*T <
1721 = (o(T))*o(T) = p(T*)p(T) = o(T*T) < |T|Pe(I) = [|T|*1 = [ (T)I]* < ||IT]* =
if |7]| <1 then |lo(T)|| <1 and hence ¢(T) € L(H), for every T € L(H),. O

PROPOSITION 5.24. % If S is the group defined in Proposition 5.16 then S C Hom(L(H),).
Proof. If ¢ € Aut(L(H)) then @[, : L(H), — L(H), by Proposition 5.23 and it is normal
by Corollary 5.22. According to Theorem 2, page 59 [3] we have that @[z, is continuous
with respect to the weak operator topology. Similarly ¢ £(w), 1s weak operator continuous
and hence Aut(L(H)) C Hom(L(H),). Since S = Aut(L(H))U¢' Aut(L(H)) where ¢’ is any
fixed *—anti-automorphism, it remains to show that there exists ¢’ a *—anti-automorphism
such that ¢'|z(3), is continuous with respect to the weak operator topology.

Let {e;};>1 be an orthonormal basis for H. If x = lel aer, let Vo = Zl21 ase;. Then V' :
H— H, V( Az +py) = \WWa+nuVy for every z,y € Hand A\, € C and, if z = Yosiwme €H
and y = Y o, biey € H, then (Vir,Vy) = (3,0, @er, Y oy bie) = > s @b = (y,x). Also
note that V2 = I and hence V~! =V and that ||[Vz|]* = |(Vz,Vz)| = |(z,z)| = ||z|]*

Let ¢' : L(H) — L(H) be defined as ¢'(T) = VI*V~'. Let T € L(H), =,y € H
and A\, € C. Then o(T) Az + py) = VIV YAz + py) = VI(A\V e + aV=1ly) =
VNIV 'z + aTV=ly) = A\WTV e + yVIV =y = Mg (T)x + pe'(T)y = ¢'(T) is lin-
ear. Since [[¢/(T)z] = [VIV | = [TV-1al| < || - [V-'al| = |T] - 2] we have that
¢'(T') is bounded. Thus ¢'(T') € L(H) for every T € L(H). We will show that ¢ is a
*—anti-automorphism and that ¢'|z3), is continuous with respect to the weak operator
topology.

If $,T € L(H) and if A € C we have that /(S +T) = V(S + T)*'V~" = VSV 4
VIV = (S) + ¢(T); ¢(\T) = VTV = VATV = \VT*V=L = M/ (T)
and ¢/(ST) = V(ST)*V-' = VI*S*V~! = VI*V-IVSV! = o (T)(S). If T € L(H),
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since (¢'(T)*z,y) = (z,¢'(T)y) = (x, VTV ly) = (TV 1y, Voia) = (V7 y, TV lz) =
(VTVa,y) = (o(T*)x,y) for every z,y € H, we have that ¢'(T)* = ¢'(T*).

Let v : L(H) — L(H) be defined as ¢(T) = VIT*V. Same arguments as before
shows that (T) € L(H) and that (T*) = ¢(T)*. Since ©'(Y(T)) = V(T)*V! =
Vip(THV = VVHT*)*VV ™! = T and since ¢(¢'(T)) = V1 (T)'V = VI (THV =
VIW(T*)*V=IWV =T for every T € L(H) = ¢’ and v are inverses of each other and hence
bijections.

To show continuity, let {T;};e; C L£(H) be such that T; = T € L(H). Then T} —
T* = (T}x,y) — (T"x,y) for every z,y € H. In particular, if we replace z with V~'z and y
with V~ly, then (V=12 Vly) — (TV 7 la, Vly) = (3, VIV a) — (y, VIV r) =
(y, o' (Tj)z) — (y,¢'(T)z) = ¢'(Tj) == ¢'(T) and hence ¢’ is continuous with respect to

the weak operator topology. [

DEFINITION 5.25. If p : L(H) — L(H) is a linear bijection and ||p(T)| = ||T|| for every
T € L(H) we say that p is a linear bijective isometry. We denote with LBIG the set of all

linear bijective isometries on L(H).

PROPOSITION 5.26. LBIG is a group under composition.
Proof. Let p, n € LBIG and let T € L(H). Obviously pn is linear, bijective and ||pn(T)|| =
In(T)|| = ||T|| and hence pn € LBIG. The identity mapping id : L(H) — L(H) is the
identity element of the group LBIG.

If p € LBIG then p~! is bijective. If S,T € L(H) and A € C then p~'(aT + 5) =
p~Haplp (D) +plp~ ' (S)]) = p~H(plap™ (T)+p~1(S)]) = ap™ (T)+p~(S) and hence p~" is
linear. Since ||T|| = ||p(p~(T))|| = ||p~*(T)|| we have that p~! is an isometry = p~! € LBIG

and hence LBIG is a group. [

THEOREM 5.27. Y If S is the group defined in Proposition 5.16 then clyom(cn),) (Aut(L(H))) C
S. Here, the topology on Hom(L(H),) is the topology compatible with the metric p defined
in Corollary 5.2.
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Proof. Let f € clycomcmy,) (Aut(L(H))). Let {¢;}jes C Aut(L(H)) be such that ¢;] sz, =
€ om(L(H),). Since plp;, f) = $ubrecn, A3 (T), F(T)+F5uDreciro, dloy (T), F(T))
we have that d(p;(T), f(T)) — 0 and d(e; ' (T), f~1(T)) — 0 for every T € L(H), and, since
the weak operator topology and the d-metric topology on £(H), are equivalent, we have that
(i (T)w,y) — (f(T)z,y) and (p; (T)z,y) — (f~(T)z,y) for every T € L(H), and every
r,y € H.

Define ¢ : L(H) — L(H) as o(T) = ||T|f ( |T”) if T # 0 and ©(0) = 0. Note that since
0 = (02, y) = (9;(0)z,y) — (f(0)z,y) for every z,y € H we have that f(0) = 0 = ©(0). If
04T € L(H),, then (py(T)z.y) = IITIe; () w00 — ITIS () 20} = (D))
for every =,y € H and since (¢;(T)z,y) — (f(T)z,y) for every z,y € H we have that
o(T) = f(T) for every T € L(H), and hence ¢|py = f. We also have that (z,y) =
(pj(Dz,y) — (f(Dz,y) = (pD)z,y) = (1) = f(I) = I.

Let S € £(H)and A € C. If S = 0 or A = 0 then AS = 0 = p(AS) = 0 = Ap(S). If S # 0
and A # 0 then {0 (AS)z,9) = MISle; (57) =9 = MSINF (57) .90 = Qe(S)a,y)
and (o,(A),9) = [ASIe; (%) ) — NS (RSy) ) = (@(AS)z,y) for every
z,y € H and hence A\p(S) = ¢(AS).

Let S,T € L(H). If S = 0 then ¢(S + T) = o(T) = ¢(S) + (T). Similarly if 7 = 0. If
S+T=0then =S =T = p(S+T)=0=¢(S) —¢(S) =¢(S) + @(=S) = p(S) + &(T).
If S #0, T # 0and S+ T # 0 then (p;(S)z,y) + (v;(T)x,y) = {p;(S+T)x,y) =
IS+ Tl s (755 ) =) = IS+ TIF (75 ) = 9) = (oS + Tz, y) for every @,y € H.
Similarly (p;(S)z,y) — (¢(S)z,y) and (p;(T)z,y) — (@(T)z,y) for every z,y € H. Hence
(p(S+ Tz, y) = (p(S)z,y) + (p(T)z,y) for every z,y € H = o(S+T) = ¢(S) + (7).

Define o : £(H) — L(H) as (T) = ||T|f (m) if T+ 0 and ¢(0) = 0. By the same
reasoning as before we have that ¥|zm, = f~! and ¢ is linear. If 0 # T' € L(H), then
p((T)) = F(FNT)) = T and ¥(e(T)) = FUF(T)) = T. 10 # T € L(H), let A > 0 be
such that |AT|| < 1. Then @(¢(T)) = Lo(b(AT)) = LF(f71(AT)) = 1AT = T and similarly
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(e(T)) =T. If T'= 0 then ¢(1(0)) = 0 and ¥(¢(0)) = 0. Thus ¢ and v are inverses of
each other and hence ¢ is a bijection and ¢~ = .
Let T € L(H). Since (z,9;(T)y) = ((¢;(T)x,y) = {;(T")x,y) — {(p(T")z,y) for
every x,y € H and since (x,¢;(T)y) — (z,0(T)y)
(o(T*)z,y) = (x,0(T)y) for every x,y € H = (T") = (¢(T))" for every T € L(H).
T € £(H), then [o(T)] = |FT)] < 1 = el = suprecpn, (@) < 1. Let
T € £(H). Then [¢(T)] < llgll - 7)) < IT). Similarly o] = supreggn, o~ (T)] < 1

for every x,y € H, we have that

and hence | (T)|| < ||IT||. Replace T with ¢(7T) in the last inequality and get ||T| =
o~ (D) < Io(T)] and bence o(T)]| = .

Thus ¢ € LBIG. Since ¢(I) = I, according to Theorem 7 and Corollary 11 of [9] we have
that ¢ is either a x—automorphism or a *—anti-automorphism. It follows from the definition

of S that ¢ € S and hence clygmcn ) (Aut(L(H))) € S. O

COROLLARY 5.28. % S is a closed subgroup of Hom(L(H),).

Proof. S C Hom(L(H),) by Proposition 5.24. Let ¢’ be any *—anti-automorphism of £(H).

Since S = Aut(L(H))Up' Aut(L(H)) by Proposition 5.16 and since clggom(cr),) (Aut(L(H))) C
S by Theorem 5.27, we have that clsom(c(m),)(S) = Clatomcn ) (Aut(L(H))Up' Aut(L(H))) =
Clatom(e ) (Aut(L(H))) U@ Clgtomzm),) (Aut(L(H))) C SUY'S = SUS = S = Sis a closed

subgroup of Hom(L(H),. O

5.3. The Surjection

DEFINITION 5.29. Let H be a Hilbert space of dimension n. A family (U; j)1<; j<n of oper-
ators in L(H) is called a self-adjoint system of n x n matrix units if U; ;Uy,; = 0 for j # k,
UijUjk = Uik, Do1<icy Ui = I and U, = Uy

If H is infinite dimensional, a family (U, ;)1<ij<n of operators in L(H) is called a self-
adjoint system of operator units if U; ;Uy; = 0 for j # k, U; ;U = Uiy, UZ*J = U;; and

Zi21 Ui, = I, with convergence of 2121 Ui; in the strong operator topology.
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PROPOSITION 5.30. The system of n X n matrix units in finite dimensional Hilbert space
and the system of operator units in infinite dimensional Hilbert space as in Definition 5.29
exst.
Proof. In finite dimensional case U; ; corresponds to the matrix with all entries 0 except in
position (i, j), where the entry is 1.

In the infinite dimensional case, let {e;};c;, be an orthonormal basis for H, and define

Ui ; for every e; as

0 ifj#l

Uijler) =

It is obvious that U, ;’s are linear operators. We need to show that U, ;U,; = 0 if j # k,
Ui jUjr = Ui, Zizl Ui =1 and U}; = Uj;. Let v = Y oier mer € H.

If j # kthen U jUy () = Ui jUpm (3 1er @er) = Ui (3 e @Ukm(er) = Ui j(amUim(em)) =
anUi; j(ex) = 0.

UijUsk(2) = UsUin(Qier @er) = Uij(2 e, aUsn(e)) = Uij(anUsk(er)) = axUs;(e;) =
are;. On the other hand, U;i(x) = Uip(3 e mer) = D e alUin(er) = arUsp(er) = ages,
and hence U, ;U = U, .

If y=>,c, bier € H, then

<Ui,j(~’17),3/> = <Ui,j(zalel)azblel Zal i,j (e1) Zblel Clj i, 6] Zblel

leL leL leL leL leL

= a;(e;, Z bier) = ajb;

leL

On the other hand,

$ U]z Zaleh i Zblel <Z alelazblUj,i(el)> = (Z alehbin,i(ei))

leL leL leL leL leL

= E(Z wey, ej) = b_iaj

leL

* P ..
and hence U; = Uj ;.
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Since || Y21 cic, Uii() =2 = | Xps, aitill* = Xois, lail* — 0 as n — oo for every x € H

we have that Zi21 Ui, converges in the strong operator topology to I. [

PRrROPOSITION 5.31. If'H is finite dimensional, then for every x—automorphism ¢ acting on
L(H) there is an unitary operator W such that p(T) = WTW* for every T € L(H).

Proof. Let n = dim(H) and let ¢ be a x—automorphism on L£(H). If P is an orthogonal
projection, then (p(P))* = ¢(P)p(P) = ¢(P?) = ¢(P) and (p(P))* = ¢(P*) = ¢(P), and
hence ¢(P) is an orthogonal projection. If P; and P, are two orthogonal projections such
that P, > P, then P, — P, is an orthogonal projection, and ¢(P; — P) = ¢(P) —p(F2) is an
orthogonal projection, and then p(P;) > ¢(P,). Hence ¢ preserves the order of projections
and sends minimal nonzero projections into minimal nonzero projections. If U is a partial
isometry, then (p(U))*o(U) = p(U*)p(U) = ¢(U*U) is an orthogonal projection, since U*U
is, and hence ¢(U) is a partial isometry.

Let (U; j)1<ij<n be a self-adjoint system of n x n matrix units as in Definition 5.29. Note
that since U7; = Uy, Uy = Uy; and Uy;U; 5 = 0 for i@ # j, then Uy, is a family of nonzero
orthogonal projections with sum I. Also note that since UZ’JUZ]' = U;;U;; = U;; is an
orthogonal projection, then each U, ; is a partial isometry. Since U;; is a minimal nonzero
projection, we have that U, ;(H) is 1-dimensional for every 1 <i < n. Since ¢(U;;) is also a
minimal nonzero projection, we have that ¢(U;;)(H) is 1-dimensional.

Let e; € Uy1(H) and f1 € p(Ur1)(H) be such that |le;]] = 1 and ||f1|| = 1. For every
I >1let e = Upi(er) and fi = o(U;1)(f1). If i # 7, then (e;,e;) = (Uii(er),Uja(er)) =
<U1,jUi,1(el)7€1> = <0(€1), €1> = 0 and <€i7 €i> = <Ui,1(€1>7 Ui,1(€1)> = (61, Ul,iUi,l(el)> =
(e1,Ur1(e1)) = (e1,e1) = 1. Hence, {e;}1<i<y is orthonormal and therefore an orthonormal
basis since any orthonormal set is independent and its size equals the dimension of the space.
A similar argument shows that {f;}1<;<n is also orthonormal basis.

Define W : ' H — H by W(e;) = f; for every 1 <[ < n. It is clear that W is an invertible
operator. If 2 = 3 ases, then [[W(@)| = [W(S ae)ll = | S ahill? = Xlail? = [z
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Hence, W is an isometry and, since it is surjective, W is unitary. Next we will show that
o(U;) = WU, ;W*.

Note first that WU, 1(e1) = W(e) = fi = o(Ui1)(f1) = (U)W (e1). If I # 1, then
WU (&) = WU Ui (er) = W0(er) = 0 and o(Up1 )W (er) = o(Ui1)(fr) = o(Ui1)p(Ui1)(f1) =
©(U1U1)(f1) = ¢(0)(f1) = 0(f1) = 0. Since {e; }1<i<n and {f;}1<i<, are orthonormal bases,
we have that (U)W = WU, ; = o(U;1) = WU, ;W* for every 1 <[ <n.

For every 1 < i, j < n we have that ¢(Us ;) = ¢(Ui1Us;) = ¢(Uir)e(Ur;) = o(Uin)e(Usy) =
Ui (p(U;1))" = (WULW (WU W)t = WU WWUSW* = WU Uy W = WU W™,
The system (U j)1<i,j<n is linearly independent and the dimension of the linear span(U; ;)
is n?. Since the dimension of £(H) is n?, we have that £(H) = span(U; ;). Hence, for every
T € L(H), T = >, ;a;Ui;. This implies that o(T) = ¢(3_, ;ai;Ui;) = >, 5 aijp(Uiy) =

S e WU W = WS, ay U W = WTW*. O

PROPOSITION 5.32. If 'H is a separable Hilbert space, then for every x—automorphism ¢
acting on L(H) there is an unitary operator W such that o(T') = WTW™* for every T € L(H).
Proof. Let ¢ be a sx—automorphism on L(H). If P is an orthogonal projection, then
(0(P))? = @(P)p(P) = ¢(P?) = ¢(P) and (p(P))* = ¢(P*) = ¢(P), and hence ¢(P)
is an orthogonal projection. If P, and P, are two orthogonal projections such that P, > P,
then P — P, is an orthogonal projection, and ¢(P; — Py) = ¢(P1) — p(P,) is an orthogonal
projection, and then ¢(P;) > ¢(P;). Hence ¢ preserves the order of projections and sends
minimal nonzero projections into minimal nonzero projections. If U is a partial isometry,
then (o(U))*o(U) = o(U*)p(U) = ¢(U*U) is an orthogonal projection, since U*U is, and
hence p(U) is a partial isometry.

Let (Ui ;)i jer be a self-adjoint system of operator units, as in Definition 5.29. Note that
since Ugi = Ui, Uf; = Uiy and U;;U;; = 0 for 4 # j, then U;; is a family of nonzero
orthogonal projections. Also note that since Ui,jUZ-fj = U;;U;; = U,;; is an orthogonal

projection, then each Uj ; is a partial isometry. Since U;; is a minimal nonzero projection,
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we have that U; ;(H) is 1-dimensional for every ¢ € I. Since ¢(U;;) is also a minimal nonzero
projection, we have that ¢(U;;)(H) is 1-dimensional.

Let e; € Uy1(H) and f1 € p(U11)(H) be such that |le;]] = 1 and || f1|| = 1. For every
I >1let e = Upi(er) and fi = @(U;1)(f1). If i # 7, then (e;,e;) = (Uii(er),Uja(er)) =
(U ;jUia(e1),e1) = (0(er),e1) = 0 and (e;,e;) = (Uia(er),Uir(er)) = (e1,Ur,Uir(e1)) =
(e1,Ur1(e1)) = (e1,e1) = 1. Hence {e;};>1 is orthonormal. Let x € H such that (z,e;) =0
for every [ > 1. Then (U;,(x), e;) = (x, U (e;)) = (z,e;) = 0, and hence Up;(z) = 0 for every
1> 1. Since || sy Ua(@)ll € Spon [V}l = 0 and || Sys, Uua(a)]| — [fall, we have that
x = 0 and therefore that {e;};>; is an orthonormal basis. A similar argument shows that
{fi}1>1 is also an orthonormal basis.

Define W : H — H by W(e;) = f; for every | € I. It is clear that W is an invertible
operator. If x = 3 ase;, then [[W(z)[|* = W (X aie))|* = | 2 aifill® = Xlail* = [l]*.
Hence, W is an isometry and, since it is surjective, W is unitary. Next we will show that
o(Ui;) = WU ;W™

Note first that WU, 1(e1) = W(e) = fi = o(Ui1)(f1) = (U)W (er). If I # 1, then
WU i (e) = WU Ui (e1) = WO(er) = 0 and (Ui, )W (er) = o(Unn)(fi) = e(Uin)e(Uin)(f1) =
©(U1U1)(f1) = ¢(0)(f1) = 0(f1) = 0. Since {e;}ier and {f;}ier are orthonormal bases, we
have that (U )W = WU1 = o(Uy1) = WU W™ for every | € I. For every i,j € [
we have that (Ui ;) = ¢(U;1U ;) = @(Ui1)p(Us;) = @(Uin)e(Usy) = o(Uia)(e(Uja))" =
(WU W WU W) = WU WWUNW* = WU Uy jW* = WU ;W So the family
U, ; satisfy the conclusion of the theorem.

Let T € L(H) and let z = ;- aye; € H. Then T'(x) = o, bie; € H and

O UaTU ) (@) = O ULTY Ui O me) = (O UnT)O_ aje;) = (O UiiT)(x) =

i,5>1 i>1 7j>1 >1 i>1 7>1 i>1
= U ber) =) bie; = T(x)
i>1 >1 i>1

Hence ;. U TU;; = T for every T' € L(H). If z = >, e, and if for every j > 1
we let T(e;) = Y;5qafer, then (U TU; ) (x) = (Ui TU) (Y sy wer) = (Ui T)(aje;) =
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a;U;;T(ej) = ajUi,i(leIOz{el) = ajoz{ei = ajaje; for every 4,5 > 1. But U (z) =
UiiQoisiawer) = Y sy alijer = D salijUi(er) = a;Ui;Uja(er) = a;Uiq(er) = age;
for every 4,7 > 1, and hence U;;,TU;; = ozf Ui ; for every i,7 > 1. Therefore for every
T € L(H) we have that T'=3_, .-, olU; ;.

For every T € L(H) we have that o(T) = QO(ZZ-J-ZI ani,j) = Ei,jzl afgo(Ui,j) =

Zi,]El agWUidw* = W(Zm‘zl agUi,j)W* =WTWwW=*. O

5.4. Main Result

LEMMA 5.33. Let G be a Polish topological group, H C G a subgroup such that H € BP and
G/H is countable. Then H is open in G and therefore closed in G.
Proof. If H is meager in G, then each coset of G/H is meager in G and then G is meager
since G/H is countable. This contradicts the fact that G is Polish. Thus H is nonmeager.
By the Theorem of Pettis (Theorem 9.9, page 61, [18]) we have that H'H = H contains
an open neighborhood V of e € G and since H = U,cgxV we have that H is open.

Let x € clgH. Then xH is an open neighborhood of v == xHNH # () = x € H = H is

closed = H is a Polish topological group. [

LEMMA 5.34. % Aut(L(H)) = {a® | a € S}, where S is the group defined in Proposition
5.10.

Proof. If a € S, since the square of a *—anti-automorphism is a *—automorphism, then o?
is a x—automorphism = {a? | « € §} C Aut(L(H)).

Let ¢ € Aut(L(H)). Then by Proposition 5.32 we have that there exists U € U(H)
such that ¢ = ¢y, where @y (T) = UTU* for every T € L(H). Choose V € U(H) such
that V2 = U. Such a V exists by the Spectral Theorem. Note that if o (T) = VTV* then
oy € Aut(L(H)). Since p(T) = oy(T) = UTU* = V(VTV*)V* = (py)*(T) we have that
pe{a?|aeS}= Aut(L(H)) C{a?|aecS}. O

THEOREM 5.35. % If H is a separable Hilbert space, then Aut(L(H)) is a closed subgroup

of Hom(L(H),) and therefore is a Polish topological group.
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Proof. We will prove that Aut(L(H)) is closed in S and hence Polish. Then, since Hom(L(H),)
is a Polish topological group by Corollary 5.2 and since S is closed in Hom(L(H),) by Corol-
lary 5.28, we will have that Aut(L(H)) is closed in Hom(L(H),) and hence Polish.

The mapping ¢ — 1? from S to Aut(L(H)) is onto by Lemma 5.34 and continuous since
multiplication in Hom(L(H),) is continuous. Since S is Polish, we have that Aut(L(H)) is
analytic, and hence Aut(L(H)) has the Baire property. Aut(L(H)) is a normal subgroup of
S and |S/Aut(L(H))| = 2 by Proposition 5.16. From Lemma 5.33 it follows that Aut(L(H))

is open in S and hence closed in §. [

THEOREM 5.36. % If H is a complex separable Hilbert space, then PU(H) and Aut(L(H))
are topologicallly isomorphic.

Proof. Let f : U(H) — Aut(L(H)) be defined as f(U) = oy, where oy : LIH) — L(H) is
defined as ¢y (T) = UTU*. We will first show that if U € U(H), then f(U) € Aut(L(H)).

Let U € U(H), and S, T € £(H) be such that ¢y (S) = ¢ (T). Then USU* = UTU* =
S =T = py is one-to-one. If S € L(H) let T = U*SU € L(H). Then ¢y (T) = UTU* =
UU*SUU* = S = @y is onto and hence ¢y is a bijection. Let S, T € L(H) and let
A € C. Then ¢u(ST) = USTU* = USUUTU* = ou(S)ou(T); pu(S +T) = U(S +
TYU* = USU* + UTU* = ou(S) + ¢u(T): ou(AT) = UNT)U* = \UTU* = Apy(T) and
ou(T*) =UT*U* = (UTU*)* = (eu(T))* = f(U) = pu € Aut(L(H)) and hence f is well
defined.

Let U,V € U(H) and let T € L(H). Then f(UVYT) = ooy (T) = UVT(UV) =
UVTV*U = Upy(T)U* = pyev(T) = f(U)f(V)(T) = f is a homomorphism.

Let id : L(H) — L(H) be the identity on L(H). Let U € U(H) be such that f(U) = io.
Then ¢y (T) =T for every T € L(H) = UTU* =T for every T € L(H) = UT = TU for
every T' € L(H) = UW = WU forevery W e U(H) = U € Z(U(H)) = ker(f) = Z(U(H)).

Let {Uj}jes C U(H) be such that U; = U € U(H). Then U; = U* by Lemma 3.4
and hence U; =% U and U; = U* by Proposition 3.3. Thus, for every T' € L(H), and every
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x,y € H we have the following
(U;TUx,y) = (UTU 2,y)| = (Ujz, T"Ujy) — (TU" 2, U"y)| <
(U2, T*USy) — (U, T*Uy)| + (TU 2, USy) — (TU z,U"y)| =
(U = Uz, T"Ufy)| + (TU, (U] = U")y)| <
1057 = U )l - (1T - U7yl + TN - O] - /(U = Uyl <

105 = U )zl - lyll + [l - [ (U7 = Uyl — 0

This implies that [(y, (T)z,y) — (pv(T)z,y)| — 0 uniformly in T € L(H), for every =,y €
H = d(pu; (1), v (1)) — 0 uniformly for every T' € L(H), = suppepw), d(ou; (1), v (1)) —
0. Similarly we have that suppe ), d(gol}jl (T), ¢ (T)) — 0 and hence p(¢py,, pu) — 0 =
fU;) = ¢u, L oy = f(U) = f is continuous. We also have from Proposition 5.32 that the
mapping f is onto. Thus f : U(H) — Aut(L(H)) is a continuous onto homomorphism and
ker(f) = ZWU(H)).

Let m : U(H) — U(H)/ker(f) = PU(H) be the natural quotient mapping and let
Y PU(H) — Aut(L(H)) be the natural group isomorphism so that f = ¢ on. If U C
Aut(L(H)) is open, then f~'(U) C U(H) is open, since f is continuous. But f~'(U) =
7 Y (U)) = v N U) = 7 (f~H(U)) is open in PU(H) since 7, being the quotient mapping,
is open. This implies that ¢ is continuous. Thus ¢ : PU(H) — Aut(L(H)) is a continuous
isomorphism between two Polish topological groups. From Lusin-Souslin Theorem (page 89,
[18]) we have that 1! is Borel measurable, and hence it is measurable with respect to the
sets with the Baire property. From the result of Banach-Kuratowski-Pettis (Theorem 9.10,

page 61, [18]) it follows that ¢~ is continuous and hence v is a topological isomorphism. [J

COROLLARY 5.37. % Let 'H be a separable infinite dimensional Hilbert space, let G be a
Polish topological group and ¢ : G — Aut(L(H)) be an algebraic isomorphism. Then ¢ is a

topological isomorphism.
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Proof. From Theorem 5.36 we have that PU(H) and Aut(L(H)) are topologically isomorphic.
From Theorem 4.18 we have that if ¢ : G — PU(H) is an algebraic isomorphism, then ¢ is

a topological isomorphism. The conclusion follows. [J
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CHAPTER 6

THE ORTHOGONAL GROUP

Throughout this section H is assumed to be a separable real Hilbert space.

DEeFINITION 6.1. If H is a real Hilbert space a unitary operator acting on H is called
an orthogonal operator, the set of orthogonal operators is denoted by O(H) and is called
the orthogonal group of H. If H is n-dimensional, O(H) is sometimes denoted by O(n).
If U € O(H), the adjoint operation U* on O(H) is denoted with UT and on the finite
dimensional case is equivalent to taking transposes of matrices. The center of O(H) is
denoted by Z(O(H)). If H is finite dimensional, the special orthogonal group is the set
SO(H) ={U € O(H) | det(U) = 1}. SO(H) is sometimes denoted SO(n), where n is the

dimension of H.

REMARK 6.2. If M is a closed subspace of the Hilbert space H and if Oy = {U €
O(H) | Ulpr = I} then, as in Proposition 3.14, O may be identified with O(M), and we
can consider O(M) to be a closed subgroup of O(H).

REMARK 6.3. The proofs of Proposition 3.3 and Proposition 3.6 can be easily adapted to
O(H) if H is a separable real Hilbert space and we can conclude that weak operator topology,

the strong operator topology and the relative topology given by Hom(H;) coincide on O(H).

THEOREM 6.4. Y% O(H) is a Polish topological group.
Proof. If 'H is a real separable Hilbert space, in the view of Comment 6.3 we can prove
a theorem similar to the Theorem 3.7 to prove that O(H) is closed in Hom(H;). Since

Hom(H;) is a Polish topological group by Theorem 2.24, the conclusion follows. [

PROPOSITION 6.5. If H is a real Hilbert space, then Z(O(H)) = {+1}.
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Proof. It is clear that I,—1 € Z(O(H)). Let U € Z(O(H)). Let {e;};>1 be an orthonormal
basis and let R : 'H — 'H be defined as Re; = —ey, Rey = €7 and Re; = ¢; for every
123 10 = Yy aer € H then |Rel = | X, aRell? = las| — eall? + aolles | +
dosslalPllel® = Ysq lal* = [[z]> = R is an isometry. If y = 37, ae € H, let © =
—ase; + ajes + 2123 aie;. Then Rr = aqges + ajeq + leg ae; = 2121 ae; = y = R is onto,
and hence R € O(H). We also have that R"e; = 37 (R" ey, e)er = 3,5 (e1, Re)ey = es.
Thus, since UR = RU we have that —(Ues, e1) = (U(—e3),e1) = (URey,e1) = (RUey,e1) =
(Uey, RTe;) = (Uey, ) and (Uey, e1) = (URey, e1) = (RUes, e1) = (Ueg, RTey) = (Uey, €3).

Let V' be defined as Ve; = —e; and Ve, = ¢ for every [ > 2. V is obviously an orthogonal
operator and V%e; = ¢ for every | > 2. Since UV = VU we have that —(Uey, eq) =
(UVey,er) = (VUer,es) = (Uey,VTey) = (Uey,es) = (Uey,es) = 0 and since (Uey, e3) =
—(Ueg, e1) = (Ueg, e1) = 0.

Using similar arguments we can show that (Ue;,e;) = 0 for every i # j and that
(Ue;, e;) = (Uej, e;) for every 4,5 > 1 and hence there exists A € R such that (Ue;, e;) = A
for every [ > 1 = U = M. This implies that Ul = U = [ =UUT =U?=XN1= N =1=
A = =1 and and hence U = £1. [J

6.1. The Orthogonal Group O(n)

PROPOSITION 6.6. Let Gy, Gy be two topological groups and ¢ : Gi — Gy be a homomor-
phism. If ¢ is conlinuous at the origin e; € Gy then ¢ is continuous.

Proof. Let x € Hy and ¢(x) € U C G be open. Then ey € [¢(x)]*U and since ¢ is
continuous at the origin there exists V' C Gy open such that e; € V and ¢(V) C [¢(x)]'U.
Then zV is open, x € zV and if y € 2V then ¢(y) € ¢(x)d(V) C ¢(2)[d(x)]'U = U =

¢(zV) C U = ¢ is continuous at x = ¢ is continuous. [J

LEMMA 6.7. Let Gy, Gy be two Polish topological groups, let ¢ : Gi — Gy be an algebraic
isomorphism, let Hy C Gy be a subgroup with the Baire property and let Hy = ¢—*(H,) C G.
If Go/ Hy is countable, Hy is a set with the Baire property and ¢|y, : Hy — Hy is measurable

with respect to the sets with the Baire property, then ¢ is a topological isomorphism.
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Proof. From Lemma 5.33 we have that Hs is open and closed in G5 and hence H, is a Polish
topological group. Since G1/H; is also countable, we have by the same lemma that H; is
open and closed in G; and hence H; is a Polish topological group. Since ¢|y, : Hy — Hy is
Baire measurable we have by Theorem 9.10, page 61, [18] that ¢|g, is continuous, and hence
¢|m, is continuous at e = ¢ is continuous by Proposition 6.6. The conclusion follows from

Lemma 3.57.

THEOREM 6.8. % Let G be a Polish topological group, H a n-dimensional real Hilbert space,
with n > 3, O(n) the orthogonal group acting on H and ¢ : G — O(n) an algebraic isomor-
phism. Then ¢ is a topological isomorphism.

Proof. SO(n) C O(n) is a subgroup. Using the result from Chapter I, Section 14, [19], we
have that O(n) = SO(n) U Oy - SO(n), where Oy € O(n) and det(Oy) = —1, and hence the
cardinality |O(n)/SO(n)| = 2. Since ¢$~1(SO(n)) is closed in G by Corollary 6.36 and hence
it has the Baire property and since the restriction @|s-1s0my) : ¢ (SO(n)) — SO(n) is
continuous for n > 3 by the result from [14], it follows from Lemma 6.7 that ¢ is continuous.

O

6.2. The Complexification of ‘H

DEFINITION 6.9. Suppose that H is a real Hilbert space and let I be the set of all ordered

pairs (x,y) with both z,y € H. Define the sum of two elements of K by (z,y) + (u,v) =

(x+u, y-+v) and the product of an element of IC by a complex number a+ib by (a+ib)-(z, y)

(ax — by, bx + ay).

PROPOSITION 6.10. The set IC in the previous definition is a complex vector space.
Proof. [(x1,y1) + (w2, y2)] + (3, y3) = (1 + 22, y1+42) + (23, 43) = (1 + T2+ 23, Y1 +Y2+y3) =
(z1,91) + (22 + 23,92 + y3) = (21, 91) + [(T2, 92) + (T3, 93)].

(z,y) +(0,0) = (z,y) = (0,0) + (z,y).

(@, y) + (=2, —y) = (0,0) = (=z, —y) + (2,y).

(1,11) + (22, ¥2) = (1 + 22,11 + y2) = (22, 92) + (21, 11).
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(a+b)[(x1,y1) + (w2, y2)] = (@ +1ib)(z1 + 22, 11 +y2) = (ax1 + axe — byy — byz, bry + b+
ayy + ays) = (axy — by1, bry + ayr) + (axy — bys, bxy + ays) = (a +ib)(x,y) + (a + ib)(xa, yo).

[(a+ib)+ (c+id)|(x,y) = [(a+c)+i(b+d)](z,y) = (ax+cx—by—dy, bx+dx+ay+cy) =
(ax — by, bx + ay) + (cx — dy, dx + cy) = (a + ib)(z,y) + (c + id)(x,y).

[(a+ib)(c+id)](x,y) = [(ac—bd) +i(bc+ad)](z, y) = (acx —bdx — bey — ady, bex + adx +
acy — bdy) = [a(cx — dy) — b(dx + cy), b(cx — dy) + a(dz + cy)] = (a +ib)(cx — dy, dz + cy) =
(a + ib)[(c + id)(x,y)].

1(z,y) = (x — 0y,0z + y) = (z,y). O

DEFINITION 6.11. We call the space K from the previous proposition the complexification

of the space ‘H and denote its elements by = + 7y.

PROPOSITION 6.12. If 'H is a real inner product space and if IC is its complexification, then

the following
(x + iy, u+w) = (z,u) + (y,v) —i((z,0) = (y,u))

defines an inner product on K. If H is a Hilbert space, then K, together with this inner
product is a Hilbert space.
Proof.
{((a+1ib)(z +1y) + (c+id)(z +iw),u + ) = {(ax — by + cz — dw) + i(bx + ay + dz + cw),u + ) =
(ax — by + cz — dw,u)+(bx + ay + dz + cw,v)—i({ax — by + cz — dw,v)—(bx + ay + dz + cw,u)) =
al{z,u) — by, u) + c(z,u) — d(w, u) + b(x,v) + aly, v) +d(z,v) + c(w,v) —ia{x, v) +ib{y, v) —
ic(z,v) +id{w, v) +ib{x, u)+ialy, u) +id(z, u) +ic(w, u) = a((x,w) +(y,v) —i(z,v) +i(y,u))+
ib(i(y, u) —i(z,v) + (y,v) + (z,u)) +c({z, u) + (w,v) —i(z,v) +i{w, u)) +id(i(w, u) —i(z,v) +
(w,v) +(z,u)) = (a+ib)((x, u) + (y,v) — iz, v) +i(y, w) + (c+id)((z, u) + (w, v) —i{z,v) +
i(w,u)) = (a+ib)(x + iy, u + iv) + (c +id)(z + iw, u + iv).

(x4 iy, u+iv) = (z,u) + (y,v) —i({z,v) = (y,u) = (w,2) + (v, y) —i({v,2) = (u,y)) =
(u, ) + (v, y) —i({u,y) — (v,2)) = (u+ v,z + iy).

(x iy, x +iy) = (z,2) + (v, y) —i((z,y) = (y, 7)) = (x,2) + (y,y) = 0.

78



If (z 41y, x +1iy) = 0 then (z,z) + (y,y) = 0= (z,z) =0 and (y,y) =0 =2 =0 and
y=0.0

PROPOSITION 6.13. Let H be a real Hilbert space and K its complezification. If A € L(H)
define A: K — K to be A(x +iy) = Ax +iAy. Then A € L(K) and ||A| = || A].
Proof. A[(z+iy)+(u+iv)] = A(z+u)+i(y+v)] = A(z+u)+iA(y+v) = Az+AutiAy+iAv =
Az + iAy 4+ Au + iAv = Az + iy) + A(u + iv).

Al(a+1ib)(z+1iy)] = Al(az — by) +i(bx + ay)] = A(az — by) +iA(bz + ay) = aAzx — bAy +
i(bAx + aAy) = (a +ib)(Ax +iAy) = (a +ib) A(z + iy).

|A(z+iy)||* = || Az+iAy||* = (Az + iAy, Az + iAy) = (Az, Az)+(Ay, Ay)—i((Az, Ay)—
(Ay, Az)) = [ Al + | Al < AL + 1yl = APl + igll? = 1] < )],

Note that if z € H then ||z|% = (z+1i0,2+1i0) = (z,z) = ||z]|3,. It follows that
1Az[| = | Az|| < [|A]l - [l]| and hence [|A]| < [|A]| O

PROPOSITION 6.14. Let H be a real Hilbert space and IC its complezification. If A € L(H),
then (A)* = AT

Proof. (z + iy, (A)*(u + ) = (A(z + iy),u + iv) = (Az + iAy, u + iv) = (Az, u)+(Ay, v)—
i((Az,v) — (Ay,u)) = (z, ATu) + (y, ATv) —i({z, ATv) — (y, ATu)) = (z + iy, ATu + iATv) =
(@ + 1y, Efp(u +iv)). O

PROPOSITION 6.15. Let 'H be a real Hilbert space and IC its complezification. Define J :

K— K as J(x +iy) = v —iy. Then J*> =1, J is a real linear isometry, J(\z) = \J(z) for

every A € C and z € K and (Jw, Jz) = (z,w) for every w,z € K.

Proof. J*(x +iy) = J(x — iy) = z + iy for every x + iy € K = J*> = I.
J[(z+1iy) + (u+iv)] = J[(z+u) +ily+v)] = (r+u) —i(y+v) = (v —iy) + (u—iv) =

J(z+iy)+ J(u+iv) and J[a(z +iy)] = J(ax +iay) = ax —iay = a(r —iy) = aJ(x +iy) for

I =

every a € R and every x+iy,u+iv € K = J is real linear. ||J(z+iy) (x —iy,x —iy) =

(2, 2) + (—y, —y) —i({z, —y) — (~y,2)) = (¥, 2) + (v, y) —i({y, ) — (z,9)) = (z,2) +(y,y) —

i({(z,y) — (y,z)) = (x + iy, x + 1y) = ||z + iy||* and hence J is an isometry.
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Jl(a+ib)(x +1iy)] = J[(ax — by) + i(bx + ay)] = ax — by — i(bx + ay) = ax — (=b)(—y) +
i[(=b)z + a(—y)] = (a — ib)(z — iy) = (a — ib)J(z + iy) for every a + ib € C and every
x+1y € K.

(J(x+1y), J(u+iv)) = (v —iy,u —w) = (zv,u) + (—y,—v) — i({(zx,—v) — (—y,u)) =
(u,zy + (v, y) —i({u,y) — (v,2)) = (u+ v,z + iy). O

PROPOSITION 6.16. % If T € L(K) and J is the mapping defined in Proposition 6.15, then
JTJ e LK), |JTJ|| = ||T| and (JTJ)* = JT*J.
Proof. Let z,w € K and A € C. Then JTJ(z +w) = JT(Jz + Jw) = J(T'Jz + TJw) =
JTJz + JTJw, JTJ(\z) = JT(A\Jz) = JATJz) = AJTJz and ||JTJz|| = ||[TJz|| <
\TI - W1z = 1T - ||zl = I|JTJ|| < ||T]| and hence JT'J € L(K). By replacing T" with
JTJ in the last inequality we obtain that ||T|| < ||JTJ| and hence ||T|| = ||JTJ|| for every
T e L(K).

Since (JTJz,w) = (JTJz, J*w) = (Jw, TJz) = (T*Jw, Jz) = (J*T*Jw, Jz) = (z, JT* Jw)
for every w, z € K we have that (JTJ)* = JT*J. O

PROPOSITION 6.17. Y If E(+) is a spectral measure on (X, ) with values in K, then JE(-)J
18 also a spectral measure.
Proof. JE(X)J(x +iy) = JE(X)(z —1y) = J(x —iy) = = + iy for every z + iy € K =
JE(X)J = 1.

TE (Ui M) (i) = IS5y BOI) ()] = Spoy JEM) (w+i) = Yo [TE(M) )+
iy). Thus JE(-)J is countably additive.

[JE(M)J]* = JIE(M)]*J = JE(M)J and [JE(M)J)? = JE(M)J*E(M)J = JE(M)J

for every M € 3 and hence JE(-)J is an orthogonal projection. [J

PROPOSITION 6.18. % If T' € L(K) is self-adjoint, E(-) is its associated spectral measure,
then JTJ is self adjoint and JE(-)J is its associated spectral measure.
Proof. 1t T* = T then (JTJ)* = JT*J = JTJ and hence JT'J is self-adjoint. From

the Proposition 6.17 we have that JE(-)J is a spectral measure. Since T is self adjoint
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then for every x,y € K there exists p,, a complex-valued measure on (X, X) such that
(Tz,y) = [ Mgy, where p, ,(B) = (E(B)x,y) for every B € ¥ and every z,y € K.

Since (JTJz,y) = (Jy,TJzx) = (T*Jy, Jx) = (T Jy, Jx) = [ Ay, and since ju,, 1.(B)
(E(B)Jy, Jx) = (z, JE(B)Jy) = ([JE(B)J)*z,y) = (JE(B)Jx,y) for every B € ¥ we have

that JE(-)J is the spectral measure associated with J7T'J. OJ

COROLLARY 6.19. % If T € L(K) is self-adjoint, E(-) is its associated spectral measure and
T =JTJ, then E(B) = JE(B)J for every B € .

Proof. From Proposition 6.18 we have that JE(-).J is the spectral measure associated with
JTJ = T. Since spectral measure associated with 7" is unique, it follows that JE(B)J =

E(B) for every B € ¥. [

LEMMA 6.20. % Let ‘H be a real Hilbert space, K its complezification, let J be the mapping
defined in Proposition 6.15 and let z € K. Then z e H & Jz = 2.
Proof. If z € 'H then Jz = z by the definition of J. Let z = x + iy € K be such that Jz = z.

Thenzx+iy=z2=Jz=x—iy=>y=0=>z=xcH. U

LEMMA 6.21. % If P is an orthogonal projection on K such that JPJ = P then P(H) C H
and P(K) = P(H) + iP(H). Therefore, P(K) is the complezification of P(H).

Proof. If x € ‘H then Pxr = JPJx = JPx = Pz € H by Lemma 6.20 = P(H) C H. If
z=ua+1iy € K then P(z) = P(r +iy) = Pxr+iPy € P(H)+iP(H) CH+iH = P(K) =
(P(K)NH)+i(P(IK)NH) = P(H)+iP(H). O

LEMMA 6.22. Let S,T € L(K) be such that ST =TS, T =T* and let E(-) be the spectral
measure on the measurable space (X, ) associated with T'. Then SE(B) = E(B)S for every
BeX.

Proof. Let P be any polynomial with complex coefficients. Then for every z,y € K we
have that (P(T)z,y) = [ P(\)dpy,, where p, ,(B) = (E(B)z,y) for every B € ¥. Thus
(P(T)Sz,y) = [ P(Ndpszy and (P(T)z,S*y) = [ P(N)dpy, s+ Since S commutes with
T, S commutes with P(T) and hence (P(T)Sxz,y) = (SP(T)x,y) = (P(T)z,S*y) =
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[ P(N)dpszy = [ P(N)dpig,s+y. This implies that g, ,(B) = pip5+4(B) for every B € ¥ =
(E(B)Sx,y) = (E(B)z,S*y) = (SE(B)z,y) = E(B)S = SE(B) for every B € ¥. J

DEFINITION 6.23. Let H be a complex or a real Hilbert space. A subspace M C H is

invariant under an operator A if A(M) C M. A subspace M C H reduces an operator A if

both M and M+ are invariant under A.

PROPOSITION 6.24. Let ‘H be a complex or a real Hilbert space. If M C H is a subspace
and P s the orthogonal projection on M, then M reduces an operator A if and only if
AP = PA.

Proof. Suppose that PA = AP. Then PAP = AP and PA = PAP = PA*P = PA*
and A*P = PA*P. If 2 € M and y € Mt then Ar = APx = PAPr €¢ M = M is
invariant under A. Also A*z = A*Px = PA*Px € M = M is invariant under A*. Since
(Ay,z) = (y, A*z) = 0 = Ay € M+ = M is invariant under A. Since both M and M+
are invariant under A, we have that M reduces A.

Suppose now that M reduces A. Then M is invariant under A and M+ is invariant
under A. Since Pr € M for every x € H then APx € M = PAPx = APx for every
r € H= PAP = AP. Let y € M and let z € M*. Since M~ is invariant under A then
0= (y,Az) = (A*y,z) = A'y € M = M is invariant under A* = A*Pz € M for every
r € H = PA*Px = A*Px for every v € H = PA*P = A*P = PAP = PA and hence
AP = PA. O

LEMMA 6.25. Let KC be a complex Hilbert space and let E : ¥ — L(K) be a spectral measure
on the measurable space (X,%), where X C R and X is the family of Borel subsets of X.
If B € ¥ is such that {0} # E(B)(K) is finite dimensional, then there exists at least one
A € B such that dim(E({\})(K)) # 0.

Proof. We will construct a sequence {B,,},>0 of Borel subsets of B such that B, D B,
for every n > 0 and dim(E(B,)(K)) > 0. Choose By = B and then cover By with a

sequence {I,} of disjoint intervals of length < 1. There is at least one interval I,,; such that
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E(By N I,,)(K) has positive dimension since otherwise, if dim(E(B N I,,)(K)) = 0 for every
n, then E(B) = E(U,(BN1,)) =), E(BNI,) =0= dim(E(B)(K)) = 0, a contradiction.

Choose By = By N 1,,. Cover B; with disjoint intervals [, of length < By the same

3
reason as before there is at least one interval I,, such that E(B; N I,,)(K) has positive
dimension. Choose By = By NI, and continue inductively. Since By D B1 D ... D> B, D ...
we have that E(By) > E(By) > ... > E(B,) > ... > 0 and hence dim(E(By)(K)) >
dim(E(B,)(K)) > ... > dim(E(B,)(K)) > ... > 0. Then there exists N > 0 such that
dim(E(B,)(K)) = C for every n > N, where C' > 0 is an integer and hence F(B,) = E(By)
for all n > N. Since |I,,| < % we have that the intersection N,>1B5, is at most one point.

Since E(B,) =% E(N,>1B,) we have that E(N,>1B,) = E(By) # 0. Hence, thereisa A € B
such that N,>1 B, = {\} and E({\}) = E(By) # 0. O

THEOREM 6.26. % Let ‘H be a real separable infinite dimensional Hilbert space and let
O € O(H). Then there exists M C H a reducing subspace for O such that both M and M=+
are infinite dimensional.

Proof. Let O € O(H) and let A = O+TOT. We will first show that if I is the complexification

of H and if A, O are the extensions to K of A, respectively O, then A is self-adjoint and that
- _ T

A commutes with O. Since AT = <O+TOT> = OTT+O = A we have using Proposition 6.14
that (A)* = AT = A and hence A is self-adjoint. Since OA = OO — Q00" _ 4070

#O = AO we have that OA(x + iy) = O(Az + iAy) = OAz + iOAy = AOx + iAOy =

A(Ozx +i0y) = AO(z + iy) for every = + iy € K and hence A and O commute. Also note
that JAJ(x + iy) = JA(x — iy) = J(Az —iAy) = Az + iAy = A(x + iy) for every z,y € H
and hence JAJ = A,

Let E(-) be the spectral measure defined on the measurable space (X, ) associated with
A. Since A is self-adjoint, by the spectral theorem we have that X = [—||4], [|4]] c R
and X is the collection of Borel subsets of [—||Al|,||Al]]. Since JAJ = A, we have by
Corollary 6.19 that JE(B)J = E(B) for every B € ¥ and hence by Lemma 6.21 that

E(B)(H) C H for every B € ¥. Since O commutes with A, it follows from Lemma 6.22
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that OF(B) = E(B)O for every B € ¥. Thus, if # € H, using the fact that E(B)(H) C 'H
we have that F(B)Oz = E(B)Ox = OE(B)x = OE(B)z for every B € ¥. It follows
from Proposition 6.24 that E(B)(H) reduces O for every B € 3. If, for some B € ¥, both
E(B)(H) and [I — E(B)](H) = E(BY)(H) are infinite dimensional we are done. We will
show that such a B exists.

Let D ={\ € X | E({\})(H) has positive dimension}. Since H is separable, the set D is
countable. If |D| = oo, let D = FUG, where F, G are disjoint, infinite sets. Let B = F C X.
Then G C BY, and hence both E(B)(H) and E(B®)(H) have infinite dimension and are
invariant under O.

Suppose that |D| < oo and there exists A € D so that dim(E({\})(H)) = oo. Then
A(z) = Az for every z € E({\})(K), where A € R since A is self-adjoint and 0 < |\ <
JA|| < 1. This implies that 207 = AI = Oz + OTz = 2z for every = € E({\})(K).
Let 2 = x + iy, with 2,y € E({A}))(H). Then O(z + iy) + OT(x + iy) = 2\(z + iy) =
Oz +i0y + OTx + i0OTy = 2Xx + i2)\y = Oz + OTx = 2 \z = O%r + 1 = 2)\Ox for
every € H. Fix 0 # x; € H and let §§ C H be the subspace spanned by x; and
Ox;. If y € & then there exist a,b € R such that y = ax; + bOx; = Oy = aOx; +
bO?z; = aOxy + b(2A\Oxy — x1) = —bxry + (a + 200\)Oz; € 8 = S is invariant under
O. Also OTy = aOTzy + bry = a(2)z1 — Oxy) + bxy = 20\ + b)r; — Oz € S = S
is invariant under O = Si is invariant under O = &) reduces O. Fix 0 # z, € S
and let Sy be the subspace spanned by x5 and Oz,. We show as before that S, reduces
O. Continue inductively and get an infinite sequence {S,} of subspaces of H, mutually
orthogonal, each of which 1 or 2-dimensional and all reduce O. Split this sequence into two
infinite subsequences {S)} and {S} and let M = &,S/. Then M reduces O and both M
and M+ = (8,8") ® E(X \ {\})(H) are infinite dimensional.

Finally, suppose that |D| < oo and for every A € D, dim(F({\})(H)) < oo. Then
E(D)(H) is finite dimensional. Let C' = R\ D. Then for every A € C we have that
E({\}) =0 and, since H = E(D)(H) U E(C)(H) we have that dim(F(C)(H)) = oco. Cover
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X with intervals [2%, %), where k € Z and let IF = C' N [2%, %) If there is only one
ki € Z such that E(If") # 0, then E(If) = E(C). Cover I}* with intervals (£, ELL), where
k € Z and let I§ = I}* N [&, 55L). If there is only one ky € Z such that E(I}?) # 0, then
E(I}?) = B(C). Cover Iy? with intervals [£, &), where k € Z and let I} = I} N [ £ ELL),
If it is possible to continue this way, we get a sequence I'' > ... D ¥ I,lfjﬂl D ...
such that E(I¥*) = E(C) and the length |[¥»| < - for every n > 1. This implies that
E(Nys1I¥) = E(C) # 0 = Np>11k» # 0 consists of at most one point = there exists
A € C such that N,>;I* = {A}. But then 0 # E(C) = E({\}) = 0, a contradiction.
Thus, there exists n > 1 and k,l € Z such that k # [ and both dim(E(I¥)(H)) > 0 and
dim(E(I')(H)) > 0. If E(I*)(H) is finite dimensional then E(I%)(K) is finite dimensional,
where K is the complexification of H and then, according with Lemma 6.25 we have that there
exists A € I* such that dim(E({\})(K)) > 0 = by Lemma 6.21 that dim(E({\})(H)) > 0, a
contradiction with A € C. Hence E(I¥)(H) is infinite dimensional and by similar reasoning

we have that E(I!)(H) is infinite dimensional. If we let B = I*, then I! C B¢ and hence

both E(B)(H) and E(B®)(H) are infinite dimensional and invariant under O. O

COROLLARY 6.27. % Let ‘H be a real separable infinite dimensional Hilbert space and let
O € O(H). Then H is the direct sum of an infinite sequence of infinite dimensional subspaces
that reduce O.

Proof. According with Theorem 6.26, there exists H; C H a reducing subspace for O such
that both H; and Hi are infinite dimensional. Using the same theorem again for Hi- we have
that there exists Hy C Hi a reducing subspace for O such that both Hy and Hi- N'Hy are
infinite dimensional. Proceed inductively to obtain an infinite sequence {H,} of mutually
orthogonal infinite dimensional reducing subspaces. If the intersection N,>1H;- # {0}, adjoin

it to Hl. O

PROPOSITION 6.28. % Let 'H be a real separable infinite dimensional Hilbert space and let

O € O(H). Then there exists A, B € O(H) such that O = ABATBT.
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Proof. Let H = ®,czH,, where each H,, is a separable infinite dimensional Hilbert space
that reduces O, as in Corollary 6.27. Since all H,,’s are separable and have the same infinite
dimension, they all are isomorphic to a fixed separable infinite dimensional Hilbert space H’
and hence for every n € Z there exists W,, : H,, — H’ a norm preserving isomorphism. Note
that each W, is orthogonal and that W = W1 Let W = ®,ezW,, : nezHn — PnezH'.
Note that W is a norm preserving isomorphism of H onto &,czH’ = W is orthogonal and
W= =WT. If O € O(H) then O’ = WOWT : ®,ezH' — ®pezH' is a norm preserving
surjection and hence O € O(@nezH'). If H' is the n-th Hilbert space in &,czH' and
if r € H then Wiz € H, = OW'x € H, since H, is invariant under O = O’z =
W,OWTz € H' = H' is invariant under O’ and hence each H’ is invariant under O'.
We will show that the assertion is true for O', i.e. there exist A', B" € O(®,ezH’) such
that O’ = A'B’ATBT. 1If this is true, then A = WTA'W € O(H), B = WIB'W ¢
O(H) and O = WITO'W = WTA'B'ATBTW = WTAWWTBWWTATWWTBTW =
(WTAWYWTBW)WTAW)Y(WTB'W)T = ABATBT.

For every n € Z let P, : ®,czH’ — H' be the orthogonal projection of @®,czH’" onto the
n-th H'. Let A" : @pezH' — ®pezH’ be defined as A'x =5, O™ P,x. Note that P, A’z =
O™ P,x for every n € Z. If a,b € R and x,y € ‘H then A'(ax +by) = > ., O"P,(ax +
by) = ad.,; 0P+ by, ,0"Py = aA'z + bA'y = A’ is linear. Since ||A'z|? =
IS ez PaAZ|* = Scr IPAT]? = 3 107 Paa]? = Sz | Pa]? = | Scs Paz|” =
|z|> = A’ is an isometry. Let y € @®nezH'. For every n € Z let z, = (OT)"Py €
Hoand let 7 = Y, cpn Since Yoeg 7l = Soes [OTV Pagl = ez [Pyl =
13 ez Pny”2 = |ly]> < oo, x is well defined. Note that P,x = z, for every n € Z.
Then A'x = >, ., 0P =%, , 0", =3, ,0"O")"Py =%, , Py =y = A

is surjective = A" € O(®pezH'). Since P,A" = O™P, for every n € Z we have that

neL

P, =0"P,AT = (O")"P, = P,A" for every n € Z.
For every = € @®,czH' let B'x = y, where y is such that P,y = P, _1x. Then B’ :

BnezH — ®nezH' is a well defined mapping and P,B'x = P,_ 1z for every x € &,czH'. If
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a,b e Rand x,y € ®pezH then B'(ax+by) =, ., BB (ax+by) =3,y Po1(az+by) =
a perPooiw + 03, Py = ay ., BBy +0b) ., P,B'y = B’ is linear. Since
1Bl = [Sues Pl = S IPBP = SocslPostl? = |5 Pasal|* =
|z||* = B’ is an isometry. Let y € @®,czH'. For every n € Z let x, = P,;1y and let
b= Fen e Since S 7l = ez IPacttl? = [Sncz Pacit = Iyl < o0, 2 s wel
defined. Then Bz = ) , P.Bx =% ., Pox=> %% 1= ,Py=y=D
is surjective = B’ € O(®pezH'). Since P,B’ = P, for every n € 7Z we have that
P, = P, B for every n € Z.

ABATBTy =Y, B ABATB Ty =%, O"P,BATB Ty =Y  O"P, |ATBTy
> ez OO P BT =3 _,O'Px=Y%
ABATBT. [

P,O'x = O’z for every x € H = O =

neL ne’

6.3. The Subsets O(M) and SO(M) of O(H)

PROPOSITION 6.29. % Let G be a Polish topological group, M a closed subspace of the real
Hilbert space H and ¢ : G — O(H) an algebraic isomorphism. Then ¢~ (Z(O(H))O(M))
is closed in G.

Proof. If dim(H) =1 then M = H = Z(O(H)) = O(M) = {£I} = ¢ (ZOH) is closed.
Suppose that dim(H) > 2.

We will prove that Z(O(H))O(M) = {W € O(H) | WV = VIV YV € O(M™)}. This
will imply that ¢~ (Z(O(H ))O(M)) ({W EOMH) | WV =VW VYV € OMH)}) =
{67 (W) | 67 (W)6 (V) = 67 (V)6 (W) Yo (V) € 6~ (O(M™))} and then, according
with the Proposition 3.26 we will have that ¢! (Z(O(H))O(M)) is closed in G. Note that
by Proposition 6.5 we have that Z(O(H))O(M) ={xU | U € O(M)}.

Let U € O(M), let V € O(M?1) and let = x1 + x5 € H, with 71 € M and 2, € M*.
Then Uzxy = w9, Va; = 2, and, by Proposition 3.14, Uz; € M and V, € M* and hence
VUzxy = Uzy and UVxy = Vag. Tt follows that \UVz = AUV (21 + x2) = MUV +
UVizy) = MUz + Vag) = A\VUzx + VUzxy) = A\WWUx = VAUz = \UV = VU for every
Ve O(MY) = Z(OH)OM) C {W € OH) | WV = VIV ¥V € O(ML)).
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Let W € O(H) be such that WV = VW for every V € O(M™*). Let U : M+ — M+
be orthogonal, and let V' : ' H — H be defined as Vax = x1 + Ux, for every x = x1 + 29 € H,
where 2; € M and z, € M*. V is orthogonal since it is an isometry from H onto H, and
Vim=1. Thus V € O(M?1), and hence VIW = WV. Let x; € M and zo € M*. Then,
by Lemma 3.27 Wz, € M and Wy € M+, and hence Way + UWxy = VW, + VIWxy =
VW (xy + x9) = WV (x1 + x2) = W(xy + Uzy) = Way + WUzy = UWzy = WUz, for
every o € M+ = UW|y = W|peU. Hence W|y,u is in the center of O(M*) and by
Proposition 6.5 it follows that Wy = £tI.If Wiy =1 =W € OM) = W = IW €
ZIOH)OM). EW|pyr=—1=-WecOM)=W=—(-W) e Z(O(H))O(M). This
implies that {W € O(H) | WV = VW VYV € O(M*)} € Z(O(H))O(M). O

PROPOSITION 6.30. % Let G be a Polish topological group, M an infinite dimensional closed
subspace of the real Hilbert space H and ¢ : G — O(H) an algebraic isomorphism. Then
¢ HO(M)) is an analytic subset of G.
Proof. Let [-,-] : G Xx G — G be defined as [a,b] = aba='b~!. Since the group opera-
tions are continuous, [+, -] is continuous. If a,b € ¢~ (Z(O(H))O(M)) C G then ¢(a), p(b) €
Z(O(H))O(M) = there exist U,V € O(M) such that ¢(a) = £U and ¢(b) = £V. But then
[a,0] = ¢ (EU) (V) ((FU) e~ H((FV)TH) = ¢ (UVUTVTY) € ¢7H(OM)).
This proves that [, -]|s-1 203 0M) x6-1 (z(OH)OM)) takes its values in ¢~ (O(M)). Let
T € O(M) and denote T'|p = W. Since M is infinite dimensional and since W is orthogo-
nal on M, we have by Proposition 6.28 that there exist orthogonals U’, V' : M — M such
that W = U'V'U''V'7L Tf U,V : H — H are such that U|y, = U', Ulpe = I, V|pm =
V' and V] = I then U,V € Z(O(H))O(M) and [¢p~*(U), ¢ (V)] = o (UVUIV ) =
O(M)). Since G is a
H(Z(O(H))O(M))
is closed in G by Theorem 6.29, we have that ¢~ (Z(O(H))O(M)) x ¢~ (Z(O(H))O(M))

¢~H(T) and hence [, ]|g-1(z(0m)0m) <ot (z0)0WM) 15 onto ¢~ (O
Polish topological group, G x G is a Polish topological group and since ¢~

is closed in G x G. Since [, -] is continuous, it follows that ¢~'(O(M)) is the continuous
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image of a closed subset of a Polish topological group, and therefore an analytic subset of

G. O

PROPOSITION 6.31. % Let G be a Polish topological group, M a closed subspace of the real
infinite dimensional Hilbert space H and ¢ : G — O(H) an algebraic isomorphism. Then
¢ HO(M)) is closed in G.

Proof. It M = H then O(M) = O(H) and there is nothing to prove, so we may assume
that M # H. Suppose first that M is infinite dimensional. By Theorem 6.29 we have that
o~ HZ(O(H))O(M)) is closed in G and hence Polish. ¢~ (Z(O(H))) = Z(G), the center of
G is a closed in G and ¢~ 1(O(M)) is analytic by Proposition 6.30. If U € Z(O(H))NO(M),
then U = +1 and, since Uy = I, we have that U = I = Z(O(H)) N OM) = {I} =
6 Z(O(H)) N 67 (O(M)) = 67 (Z(O(H)) N O(M)) = 671(I) = {e} is closed in G,
Using Corollary 3.39 we have that ¢~'(O(M)) is closed in ¢~ (Z(O(H))O(M)) and since
¢ HZ(O(H))O(M)) is closed in G it follows that ¢~ (O(M)) is closed in G.

Suppose that M is finite dimensional. Let {ej,es,...,e,} be a orthonormal basis for
M. Extend this to {e1,...,€pn, ..., €nts, ...} an orthonormal basis for H. For every [ > 1,
let M; = span({e;}i>1 \ {ensi}). Each M, is infinite dimensional. Hence, by the previous
paragraph we have that ¢~ (O(M;)) is closed in G, for every [ > 1.

Since U € OM) & Ulpr =1 & Uepyy = €y forevery 1 > 1 & U € O(M,) for
every | > 1 & U € N10(M,) we have that O(M) = N 0(M,;) = ¢ H(O(M)) =
¢ (Ni10(M))) = Niz16~(O(My)) = ¢~ (O(M)) is closed in G. O

DEFINITION 6.32. Let H be a two dimensional real Hilbert space. An element R € L(H) is
called a rotation if its associated matrix can be written in the form

cosf) —sinf
R=R(0) =
sinf cos®

where 0 € R is the angle of rotation. If R € L(H) is a rotation, since R'R = RRT = I we

have that R € O(2) and since det(R) = 1 it follows that R € SO(2).

89



LEMMA 6.33. Let M be a finite dimensional real Hilbert space and let U € SO(M). Then
there exist P,Q € O(M) such that U = PQP'Q.
Proof. If U € SO(M), then U € O(M) and using a result from [6], §81, page 162, we have

that there exists an orthonormal basis for M such that the matrix representation of U is

cosf); —sinb,

sinf; cosb,

cosf, —sind,

sinf, cos@,

(here, all the other entries are 0). Since det(U) = 1 and since the determinant of every
rotation is 1 we must have an even number of —1’s on the diagonal of U. Note that every
pair of 1’s is equivalent to a rotation by 0 and every pair of —1’s is equivalent to a rotation
by m. Thus, the matrix representation of U consists of rotations on the diagonal if the
dimension of M is even and a 1 and rotations on the diagonal if the dimension of M is odd.
The conclusion will follow if we prove that for every rotation R there exist P,Q € O(2) such

that R = PQP'Q!.

cosf) —sinf _ cos g sin g 1 0
Let R = be a rotation and let P = and ) =
sinf  cos@ sin g — Cos g 0 —1
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It is easy to see that P? = [ and Q* =1 = P~! = P and Q7' = Q and hence P,Q € O(2).

By computation we have that

L cos? sin g 1 0 coss  sin g 1 0
PQP Q = =
: 0 : 0
sing —cosg 0 —1 sing —cosg 0 —1
0 _qin? 0 _qin? 20 _ oin28  _9gin @ 0
(COS2 Sln2)<COS2 sm2)(cos2 sin” 3 28In 5 COS 5 )
. 0 -0 0 .9 0 20 .20
sing  cosg sing  cosg 28111§COS§ cos® 5 —sin” 3

cosf) —sinf
— = R
sinf cos®

PROPOSITION 6.34. % Let G be a Polish topological group, M a finite dimensional closed

>

[\
[\

>
>

5

which completes the proof. [

subspace of the real infinite dimensional Hilbert space H and ¢ : G — O(H) an algebraic
isomorphism. Then ¢~ (SO(M)) is an analytic subset of G.

Proof. Since ¢~'(O(M)) is closed in G by Proposition 6.31, ¢~1(O(M)) x ¢~H(O(M)) is
closed in G x G. Let [-,-] : 71 (O(M)) x ¢~ H(O(M)) — G be defined as [a,b] = aba~ b1
Since the group operations are continuous, [-,-] is continuous. If a,b € ¢~1(O(M)) then
6(a),6(b) € OM), 6(la.b]) = dlabab™) = ¢(a)p(b)(¢(a)) (b)) € O(M) and
det(¢([a,b])) = det(p(aba™'b7")) = det(¢(a)) det(¢(b))(det(p(a)))~ (det(¢()) ™! = 1 =
é([a,b]) € SOM) = [a,b] € ¢~'(SO(M)). This proves that [-,-] takes its values in
1 (SO(M)). Let y € $~L(SO(M)). Then ¢(y) = W € SO(M). By Lemma 6.33 we have
that there exist U,V € O(M)) such that W = UVU VL Let a = ¢~} (U) € ¢~ (O(M))
and b = ¢~ (V) € ¢71(O(M)). a and b exist since ¢ is an isomorphism. Then y = ¢~ (W) =
o (UVUTVT) = ¢ (U)¢~ (V) (¢~ H(U)) o' (V)™ = aba™'b"" = [a,b] = [, ] is onto
¢~ H(SO(M)). Since [-, -] is continuous, it follows that ¢~!(SO(M)) is the continuous image
of g1 (O(M)) x ¢~ (O(M)), a closed set of a Polish space by Proposition 6.31, and therefore
¢~ (SO(M)) is an analytic subset of G. [J
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PROPOSITION 6.35. If M is a finite dimensional real Hilbert space, then
O(M) = Z(O(M))SO(M)

Proof. Since Z(O(M)), SO(M) C O(M) and O(M) is a subgroup it follows that
Z(O(M))SO(M) C O(M).

Let U € O(M). Since 1 = det(I) = det(UUT) = det(U) det(UT) = det(U)? = det(U) =
+1. If det(U) =1 then U € SOM) = U = 1U € Z(O(M))SO(M).

If det(U) = —1, consider the matrix representation of U as in Lemma 6.33. Since the
determinant of every rotation is 1 and every rotation is a transformation on a two-dimensional
Hilbert space, we must have that the dimension of M, n is odd. Let e be a unit vector such
that e L M and let H = span({e}UM). Let V : H — H be defined as V| = =1, V|ey =1
and W : H — H be defined as Wy = —U, Wiy = I. Then V € Z(O(M)) by Proposition

()= ()

we have that det(W) = det(—1) det(U), where I is the identity in U(M). Since n = dim(M)

6.5. Since

is odd, we have that det(—I) = (—1)" = —1 = det(W) = 1 and hence W € SO(M). Since
U= (-I)(-U) = VI]uW|m and since Uy = I = V|{W|(ey we have that U = VIV €
Z(O(M))SO(M) and hence O(M) C Z(O(M))SO(M). O

COROLLARY 6.36. % Let G be a Polish topological group, M a finite dimensional closed
subspace of the real infinite dimensional Hilbert space H and ¢ : G — O(H) an algebraic
isomorphism. Then ¢~ (SO(M)) is closed in G.

Proof. From Corollary 6.31 we have that ¢—!(O(M)) is closed in G and hence Polish. From
Proposition 6.35 we have that Z(O(M)) SO(M) = O(M) = ¢~ (Z(O(M)))p~(SO(M)) =
o HOM)). o~ HZ(O(M))) = Z(¢~H(O(M))), the center of ¢~ (O(M)) is a closed sub-
group of ¢~ (O(M)) and ¢~ (SO(M)) is an analytic subgroup of ¢~!(O(M)) by Proposition
6.34. Let C = Z(O(M))NSO(M). Then C = {U € O(M) | Ulpg = %I, Ulpge = I} = C'is

finite and since ¢ is an isomorphism, we have that ¢—!(C') is finite and hence ¢~ (Z(O(M)))N
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" H(SOM)) = ¢ HZ(O(M))NSO(M)) = ¢~ (C) is closed in ¢~ (O(M)). Tt follows from
Corollary 3.39 that ¢~1(SO(M)) is closed in ¢~1(O(M)) and hence closed in G. [

6.4. Main Result

LEMMA 6.37. % Let H be a separable infinite dimensional real Hilbert space, let {e;}1>1 CH
be an orthonormal basis for H and let P be the orthogonal projection on span({e1}). Then
there exists M a three dimensional subspace of H such that for every U € O(H) there exists
Uy € SO(M) such that PUge; = PUe;.
Proof. Let M = span({e1,eq,e3}), a three dimensional subspace of H. Note that since P
is the orthogonal projection on span({ei}), then PUe; = Ae; and since |A|* = |\J*||es||* =
|Ae1]|? = ||PUer||? < [|[PUe||* +||(I — P)Ue||* = ||Ues]|? = ||le1]]* = 1 we have that || < 1.
Let 6 be such that cosf = X\ and let

cosf@ —sinf 0
Up= 1 sinf cosh 0
0 0 1

Then we have that

cos sinf 0
Ug =| —sinf cosf 0
0 0 1
and hence UgU! = I and UI' Uy = I. We also have that det(Uy) = 1 and hence Uy € SO(M).

Since Uye; = cos ey + sin fey 1t follows that PUge; = cos ey = Aey = PUey. O

LEMMA 6.38. % Let H be a separable infinite dimensional real Hilbert space, let e € H be
such that |le]| = 1 and let S = {O € O(H) | ||le — Oe¢|| < €}. Then there exists M C H a
three dimensional subspace such that S = O({e}*) [SO(M) N S] O({e}).

Proof. Note that if W € O({e}') and if O € S then |le — OWe| = |le — O¢| < ¢ =
OW €8 =S 0({e}t) c S =8 0{e}t) =8 and |le — WOe|| = [|[We — WOe|| =
[W(e—0Oe)||=|le—0Oc¢|| <e=WOeS=0{e}')S S = 0O(e})S =38 and hence
O(fe}t) S O({e}h) =S
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Let U € S. Let P be the orthogonal projection on span({e}) and let Q = I — P. By
Lemma 6.37 we have that there exists M a three dimensional subspace and Uy € SO(M)
such that PUpe = PUe. Since ||PUe¢|* + [|QUel||? = ||Ue||*> = 1 = ||Use||? = ||PUqel]* +
|QUqel|? we have that ||QUe||> = |[|QUoel]?. Since QUe € {e}+ and QUye € {e}* there exists
W € O({e}t) such that WQUye = QUe. Since by Lemma 3.50 W commutes with P and
with @) we have that WUye = PWUpe + QW Uye = W PUpe + WQUye = PUpe + QUe =
PUe+ QUe =Ue = UIWTUe = e = UIWTU =V € O({e}*) = U = WU,V. We also
have that fle — Upell? = [le — PUye|[* + | QUael? = lle — PUge|[> + [[WQUoe||? = [le — PUe|*+
1QUe||*> = ||P(e — Ue)||> + ||Qe = Ue)||> = le = Ue||* < € = Uy € S. Thus U = WU,V
with W,V € O({e}*) and Uy € SO(M)NS. This implies that S € O({e}*) [SO(M) N
S O({e}?) C O({e}) S O(fe}) =8 = 8 = O({e}) [SOM) N S] O({e}). O

LEMMA 6.39. % Let G be a Polish topological group, let ' H be an infinite dimensional sepa-
rable Hilbert space and let e € H be such that |le| = 1. Let S = {U € O(H) | |le — Ue|| < €}
and let ¢ : G — O(H) be an algebraic isomorphism. Then ¢—(S) is analytic in G.

Proof. Let M be as in Lemma 6.37 so that S = O({e}*) [SO(M) N S] O({e}*). Since
SO(M) is a connected compact metric group with a totally disconnected center (Chapter
I, Section 14, [19]), using the result from [14] we have that ¢|s-1(som)) : ¢ (SO(M)) —
SO(M) is a homeomorphism. SN SO(M) is a relatively open subset of SO(M) = ¢~ (SN
SO(M)) is relatively open in ¢~ '(SO(M)). Since ¢~ (SO(M)) is closed in G by Corollary
6.36, we have that ¢~1(S N SO(M)) is a Borel subset of G. Since ¢~1(O({e}1)) is closed
in G by Proposition 6.31, it follows from Lemma 3.53 that ¢~1(S) = ¢ 1 (O({e}t) [SN
SO(M)] O({e})) = 671 (O({e}))671(S N SOM))G(O({e})) is analytic. T

THEOREM 6.40. % Let ‘H be a separable infinite dimensional real Hilbert space, let G be
a Polish topological group and ¢ : G — O(H) be an algebraic isomorphism. Then ¢ is a
topological isomorphism.

Proof. Let {e;};>1 be an orthonormal basis for H. Let U be a basic neighborhood of I in O(H).
According with Proposition 3.11 U is of the form U = N1<;<,{U € O(H) | ||[Ue; — e < €}
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for some € > 0. ¢~1(O) is analytic by Lemma 6.39 and, since analytic sets have the Baire
property, ¢~ 1(U) is a set with the Baire property. The conclusion follows from Lemma 3.57.
0

95



CHAPTER 7

THE PROJECTIVE ORTHOGONAL GROUP
Throughout this section H is assumed to be a real Hilbert space.

DerINITION 7.1. If H is a real Hilbert space, the projective orthogonal group is the group
PO(H) = O(H)/Z(O(H)). If m : O(H) — PO(H) is the natural quotient mapping and if
S C O(H) then 7(S) = {£0 | O € S§}. Throughout this section H is assumed to be a real

Hilbert space.

PROPOSITION 7.2. PO(H) is a topological group.
Proof. Z(O(H)) is a normal subgroup of O(H) and use Proposition 4.2. [J

COROLLARY 7.3. % If H is separable, PO(H) is a Polish topological group.

Proof. PO(H) is metrizable by Theorem 4.4. If H is separable, then Hom(H;), the homeo-
morphism group of the unit ball, is completely metrizable by Corollary 2.25 and since O(H)
is a closed subgroup of Hom(H;) by Theorem 3.7, we have that O(H) is completely metriz-
able. Since the mapping 7 is continuous and onto, using a theorem of Hausdorff [8] we have

that PO(H) is completely metrizable. PO(H) is separable by Proposition 4.5. [

THEOREM 7.4. % Let M be a closed subspace of the infinite dimensional Hilbert space H and
let W € O(H) be such that WOWTOT € Z(O(H)) for every O € O(M). Then WO = OW
for every O € O(M).

Proof. Let W € O(H) be such that WOWTOT € Z(O(H)) for every O € O(M). Then
WO = £OW. For every O € O(H) let A\(O) = +£1 be such that WO = AN(O)OW. If
01,0, € O(H) then M(0105)0,05 = WO105 = MO)O1WO5 = A(OD)A(05)0:0,W =
AMO102) = AM(O)A(Og) = X : O(H) — {£1} is a homomorphism of groups. If O € O(H)
then OT € O(H) and 1 = \(I) = A(OTO) = A(OT)N(O) = A(OT) = \(O).
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If M is infinite dimensional and if O € O(M), according to Proposition 6.28, there exist
P,Q € O(M) such that O = PQPTQ" and then \(O) = A(P)A(Q)N(P)A(Q) = 1 for every
0 € OM)= WO = OW for every O € O(M).

Suppose first that M is one-dimensional, that M = span({e;}) and that {e;};>1 is an
orthonormal basis for H. Let O € O(M). Then Oe; = ¢, for every | > 2 and either Oe; = e;
or Oe; = —ey. If Oey = ey then O = I = WO = OW and we are done. So suppose that O is
such that Oe; = —e; and Oe; = ¢ for every | > 2 and that WO = —OW. Note that in this
case OT = 0. Since (Wey,e;) = —(Wey,0e;) = —(OWey,e1) = (WOey, e1) = —(Wey, e;)
we have that (Wey,e;) = 0. Since for every 4,j > 2 we have that (We;, e;) = (We;, Oe¢;) =
(OWey,ej) = —(WOe;,ej) = —(Wey,e;) = (Wey,e;) =0 for every 4,5 > 2. Thus Wey =
SsiWeg,eryer = (Weg,er)er = WiWey = 35 (W Weg, e)er = 30 (Wea, Wep)e, =
Zl21<<W€2,61>61,W€l>€l = (Wes, e1) (2121(61,W65>el) = (Wes, e1) (2521<W€l;€1>€l) =
(WTWeg,e5) = (Weg,e1)? and (W Wey, e3) = (Weg, e1)(Wes, er). Similar computation
shows that (WTWes, e3) = (Wes,e;)?. But then, since WIW = I we must have that
(Weg,e1)2 =1, (Wes,e;)? =1 and (Wesg, e1)(Wes, e;) = 0, which is a contradiction.

Suppose now that M is n-dimensional and that O € O(M). Using a result from [6],

§81, page 162, we have that there exists {e;}1<;<,, an orthonormal basis for M such that the
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matrix representation of O is

1

cosf; —sinb,

sinf; cos6;

cosf, —sinb,

sinf, cos0,

(here, all the other entries are 0). Since the determinant of every rotation is 1 we must have
that det(O) = £1. If det(O) = 1 then O € SO(M) = by Lemma 6.33 that there exists
P,Q € O(M) such that O = PQPTQT = \O) = A(P)MQ)APTNQT) = M(P)*\Q)* =
1. If det(O) = —1 then we must have an odd number of —1’s on the diagonal of O. Without
loss of generality we may assume that Oe; = —e;. If we let V€ O(M) to be such that
Vey = —ep and Ve, = ¢ for 2 < [ < n, then O = VW, where W € SO(M). But then
A(W) =1 and, by the previous paragraph, A(V') = 1 and hence A(O) = A(V)A(W) =1. O

THEOREM 7.5. % Let M be a closed subspace of the Hilbert space H, G a Polish topological
group and ¢ : G — PO(H) an algebraic isomorphism. Then ¢~ (m(O(M))) is closed in G,
where ™ : O(H) — PO(H) is the natural quotient mapping.

Proof. We will prove that 7(O(M)) = {W € PO(H) | WV = VW for all V € 7(O(M™))}.
This will imply that ¢~ (r(O(M))) = {¢~ (W) [ ¢~ (W)g~ (V) = ¢~ (V) (W) ¥V ¢~(V) €

¢ H(m(O(M1)))} and then, according with the Proposition 3.26 we will have that ¢~ (7(O(M)))

is closed in G. Note that if S € O(H) and O € 7(S) then there exists O € S such that

~

m(0) = 0.
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Let U € 7(O(M)) and V € 7(O(M™)). Let U € O(M) be such that 7(0) = O and V €
O(M™L) be such that 7(V) = V. According with Theorem 6.29 we have that UV = VU =
r(r(V) = a(V)x(U) = UV = VU = 71(O(M))n(O(ML)) = 7(O(ML))n(O(M)) =
T(O(M)) C {W € PO(H) | WV = VW for all V € 7(O(M*))}.

Let W € PO(H) be such that WV = VIV for all V € 7(O(M?1)). Let W € O(H) be
such that (W) = W and, for every V € 7(O(M™1)), let V€ O(M™*) be such that 7(V) = V.
Then 7(W)a(V) = 2(V)a(W) = a(WV) = 2(VW) = WVWIVT € Z(O(H)) = WV =
VW by Theorem 7.4. Using Theorem 6.29 we have that W € Z(O(H)) - O(M) = there
exists U € O(M) such that W = +U = (W) = #(U) = W € 7(OM)) = {W €
POH) | WV = VW for all V € n(O(ML))} € 7(O(M)). O

PROPOSITION 7.6. If M C 'H is a finite dimensional subspace, then
T(O(M)) = m(Z(O(M)))r(SOM))

Proof. Since Z(O(M)), SO(M) € O(M) and O(M) is a subgroup we have that
Z(O(M))SO(M) € O(M) = n(Z(O(M)))x(SOM)) C T(O(M)).

Let U € n(O(M)). Then there exists U € O(M) such that 7(U) = U and by Proposition
6.35 we have that there exist V € Z(O(M)) and W € SO(M) such that U = VW = = (U) =
(VW) = 7(V)x(W) C 7(Z(O(M)))7(SO(M)) = ©(M) C 7(Z(O(M)))r(SO(M)). O

PROPOSITION 7.7. % Let G be a Polish topological space, M C H a finite dimensional
closed subspace and ¢ : G — PO(H) an algebraic isomorphism. Then ¢~ (7(SO(M))) is
an analytic subset of G.

Proof. Since ¢~ (m(O(M))) is closed in G by Theorem 7.5, ¢~ (m(O(M))) x ¢~ (m(O(M)))

is closed in G x G. Let [,-] : 717 (O(M))) x ¢~ (7(O(M))) — G be defined as [a,b] =
aba=1b~!. Since the group operations are continuous, [-, -] is continuous. If a,b € ¢~ (7(O(M)))
then ¢(a), ¢(b) € m(O(M)) = there exist U,V € O(M) such that ¢(a) = x(U), ¢(b) = (V)
and (¢(a))™" = (7(U))™" = «(U") and similarly (¢(b))~" = «(V"). Since ¢([a,b]) =
d(aba='b~1) = §(a)p(b)(#(a)) " ($(b)) " = w(U)m(V)x(UT)r(VT) = a(UVUTVT) € x(O(M))
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and since det(UVUTVT) = det(U)2det(V)? = 1, we have that ¢([a,b]) € 7(SO(M)) =
[a,b] € ¢~ 1(r(SO(M))). This proves that |-, ] takes its values in ¢~1(7(SO(M))).

Let y € ¢~ 1(7(SO(M))). Then ¢(y) € 7(SO(M)) = there exists W € SO(M) such
that ¢(y) = 7(W). By Lemma 6.33 we have that there exist U,V € O(M)) such that
W =UVUTVT. Let a = ¢ (n(U)) € ¢~ (n(O(M))) and b = ¢~ (n(V)) € ¢~ (m(O(M))).
Then y = ¢~ (r(W)) = ¢~ (x(UVUTVT)) = 6~} (x (V)
o (V) (¢~ (=(U))) " (¢~ (x(V))) ™" = aba™'b7" = [a,b] = [-,] is onto ¢~} (7 (SO(M))).
Since [+, -] is continuous, it follows that ¢~ (7(SO(M))) is the continuous image of ¢~ (7 (O(M))) x
¢~ (m(O(M))), a closed subset of a Polish space, and therefore ¢ (r(SO(M))) is an ana-
lytic subset of G. O

LEMMA 7.8. % If M C 'H is a finite dimensional subspace, then w(Z(O(M))) = Z(x(O(M))).
Proof. Let U € n(Z(O(M))). Then there exists U € Z(O(M)) such that 7(U) = U. Let
Ven(OM))and V e O(M
have that UV = 7(U)x(V
m(Z(O(M))) € Z(m(O(M))).
Let U € Z(n(O(M))) and let U € O(H) be such that 7(U) = U. We will show that

U € Z(O(M)). This will imply that U € 7(Z(O(M))) and therefore that Z(x(O(M))) C

7(Z(O(M))). Let Ve O(M). Then n(V) € n(O(M)) and hence Un(V) = n(V)U =
m(U)x(V) = 7n(V)r(U) = n(UVUTVT) = Id € PO(H) = UVUTVT € Z(O(H)) = from
Theorem 7.4 that UV = VU = U € Z(O(M)). O

) be such that 7(V') = V. Then, since U and V commute, we

(M
) =n(UV) =a(VU) =a(V)z(U) = VU = U € Z(r(O(M))) =

COROLLARY 7.9. % Let G be a Polish topological space, M C 'H a finite dimensional closed
subspace and ¢ : G — PO(H) an algebraic isomorphism. Then ¢~ (m(SO(M))) is closed in
G.

Proof. From Corollary 7.5 we have that ¢~ ((O(M))) is closed in G and hence Polish. From
Proposition 7.6 we have that ¢~ (7(Z(O(M))))p~H(r(SO(M))) = ¢ Hm(O(M))). By
Lemma 7.8 we have that 7(Z(O(M))) = Z(r(O(M))) and, since ¢ is an isomorphism, it fol-
lows that ¢~ (7(Z(O(M)))) is the center of ¢~ (7(O(M))) and therefore ¢~ (7(Z(O(M))))
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is closed in ¢~ (7(O(M))). ¢~ H(r(SO(M))) is an analytic subgroup of G' by Proposition

7.7, and hence analytic subgroup of ¢~ 1(7(O(M))). Let C = 7(Z(O(M))) N 7(SO(M))

and let U € C. Then there exist U € Z(O(M)) and V € SO(M) such that 7(U) = U =

©(V) = n(UVT) = Id € PO(H) = UVT € Z(O(H)) = UVT = £1 = U = +V. Since

Ul = I and V]pe = I we have that U = V = C = {x(U) | U € Z(O(M)) N SO(M)} =

{7T(U) | Ulm = 21, Ulpqr = I} = C is finite. Since ¢ is an isomorphism we have that
“1(C) is finite and hence closed in ¢~} (m(O(M))). It follows from Corollary 3.39 that
“1((SO(M))) is closed in ¢~ (x(O(M))) and hence closed in G. O

PropPOSITION 7.10. % Let G be a Polish topological group, let H be a separable real Hilbert
space and let e € H be such that |le|| = 1. Let S = {O € O(H)) | |le — Oe|| < €} C O(H)
and let ¢ : G — PO(H) be an algebraic isomorphism. Then ¢~ (m(8S)) is analytic in G.
Proof. Note first that the quotient mapping = : O(H) — PO(H) is open and contin-
uous. Let M C 'H be a three dimensional subspace as in Lemma 6.38 so that & =
O({e}) - [SOM)NS]-O({e}+). Then 7(S) = m(O({e}))x[SOM)NS]m(O({e}+)). Since
SO(M) is a connected compact metric group with a totally disconnected center (Chapter
I, Section 14, [19]), then 7(SO(M)) is a connected compact metric group. A proof simi-
lar to the proof of Proposition 7.8 shows that Z(7(SO(M))) = n(Z(SO(M))) and hence
the center of 7(SO(M)) is finite. Using the result from [14] we have that ¢|s-1(r(s0(M))) :
¢ Hm(SO(M))) — 7(SO(M)) is a homeomorphism. SO(M)NS is a relatively open subset
of SO(M) and hence Borel = 7[SO(M)NS] is analytic in 7(SO(M)) = ¢~ H(xr[SO(M)NS])
is analytic in ¢! (7(SO(M))). Since ¢~ (7(O({e}*))) is closed in G by Theorem 7.5 and
therefore analytic, it follows from Lemma 3.53 that ¢~ (7(S)) = ¢~ H(r(O({e}*))r[SO(M)N
SIm(O({e}))) = 67 (m(O({e})))o~ (T[SO(M) N S])¢~ (m(O({e}))) is analytic. O

PROPOSITION 7.11. % Let {em}m>1 be an orthonormal basis for the separable infinite di-

menstonal Hilbert space H. For every m,n > 1 let Op,,, = {O € O(H) | |len, — Oen|| < 2}
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Let m: O(H) — PO(H) be the natural quotient mapping. Then

m T (m(Omn)) = {W € O(H) | We,, = Fe,, for every m > 1}

m,n>1

Proof. Note first that 7 (71(Opp)) = Z(O(H)) - Oy for every m,n > 1. Let W € O(H)
be such that We,, = +e,, for every m > 1. Then |le; — Wey|| =0 < % for every n > 1 or
ler + Wey|| =0 < % for every n > 1 =W € Oy, for every n > 1 or —W € Oy, for every
n>1=W e Z(O(H)) Oy, for every n > 1. Similarly we have that W € Z(O(H)) - Omn
for every m,n >1=W € Ny1>1Z(O(H)) - O = N1 H(T(Orn))-

Let W € Npus1m H(T(Omn)) = Ninns1Z(O(H)) - Oy Then for every m,n > 1
there exists W,,, € O, such that W = £W,,,, = W,,,, = £W. If we fix m, since
[em — Winneml|| < £ for every m,n > 1, we have that [|e,, +Wepn|| < £ or [le, —Wep,| < 2.
If both |[e,, + Wepn|| < £ and |le,, — Wep|| < £, then 2 = 2[ley || = 1260 < [lem — Wenl| +

1

lem + Wem|| < 2 — 0 as n — oo, a contradiction. Thus, either |e, + We,| < L or

lem — Wepn|l < £ = Wep, = tep,. O

COROLLARY 7.12. % Let ‘H be a separable infinite dimensional real Hilbert space and 7w :
O(H) — PO(H) be the natural quotient mapping. Then there exists {S;hi>1 C O(H) a
sequence of subbasic open neighborhoods of I such that M1~ (m(8))) = Z(O(H)).
Proof. Let {e;,}m>1 be an orthonormal basis for H. Let f; = \/Tg Y oms1 2. Then || f1]]* =
& Yoms1 2 = 1 and expand {fi} to an orthonormal basis {fm}m>1. Let Uy, = {O €
OH) | lew — Oenll < 1} and let Vi, = {0 € O(H) | [lfn — Ofnll < 1}. Let {Sihizr =
{UmnyVimm | myn > 1}. According with the Proposition 3.11 {S;};>1 is a sequence of
subbasic open neighborhoods of I in O(H).

Let W € N {7 (8)) = [Numas1m (T Umn))] O [Nins17 (7T (Vimn))].  Then, ac-
cording with the Proposition 7.11 we have that We,, = +e,, and Wf,, = £f, for ev-
ery m > 1. Since Wf; = W(*/?g D om>1 eﬁ) = ‘?Emm Wem and also Wf, = +f; =

m

T m>1 m

W=+l =W € Z(O(H)) = Nz (7(S)) C Z(O(H)).

+ (ﬁ > e—m) = either We,, = e, for every m > 1 or We,, = —e,, for every m > 1 =
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If We Z(O(H)) then W = £1 and since I € Uy, ,, and I € V,,, for every m,n > 1 =
W e Z(OH)) - Unn = 7 H(7Unn)) and W € Z(O(H)) - Viun = 7 Hw(Vimn)) for every

m,n Z 1=We lelﬂ'_l(ﬂ'(Sl)). O

COROLLARY 7.13. % Let 'H be a separable infinite dimensional real Hilbert space, let G be
a Polish topological group and ¢ : G — PO(H) be an algebraic isomorphism. Then ¢ is a
topological 1somorphism.
Proof. Let m : O(H) — PO(H) be the natural quotient mapping. Let {S;};>1 be the
sequence defined in Proposition 7.12, {S;};>1 = {Umn, Vi | m,n > 1}, where U, , = {O €
O(H) | lem — Oemll < 3}, Vinn = {0 € O(H) | [[fm — Ofwll < 3} and {em}mz1, {fintm>1
are two orthonormal bases for H. We will prove that the sequence {7(S;)};>1 of subsets
of PO(H) satisfy the hypothesis of Theorem 4.16 and the conclusion will follow from the
same theorem. Since the projection mapping is open we have that 7(S;) is open for every
[ > 1. Also note that each ¢~!(7(S;)) is analytic in G by Proposition 7.10 and hence each
¢~ Y(m(8))) is a set with the Baire property.

Since ||e,, — OTen|| = [|OT (Oe,, — em)|| = |Oem — e || we have that O € U, ,, whenever
O € Upp. Let R= T(Umn) and O € Uy, , be such that 7(0) = O. Then OT ¢ U =
O~' = (7(0))™' = 7(07) € T(Upnp) = (T(Upn)) ™" C T(Unn). By replacing U, with U},
we have that (7(,,},))" C 7(U,,},) = 7(Umn) C (TUmpn)) ™" = (71 Unp)) " = 7 (Un,y,) for
every m,n > 1. Similarly (1(Vinn)) ™' = 7(Vin) for every myn > 1 = (7(S;)) ™ = 7(S,) for
every [ > 1.

Let U,V € Uy 2n. Then |le,,—Uep || < 5= and [le,,—Ve,, || < o and hence [le,,—UVe,|| <
lem—Uem||+|Uem—UVen| < 55452 = = = UV € Upnp = U, 0y CUnpn = (T(Un2n))? =
(U2

on) C T(Unyn) and hence for every mg,ng > 1 there exists m; = mg and n; = 2ng such

that (7(Upmyn,))? C TUmgn,). Similarly for every mg,ng > 1 there exists m; = mg and
ny = 2ng such that (1(Vimyn,))? C T(Vimgne) and therefore for every Iy > 1 there exists Iy
such that (7(8,)* C 7(Sy,)-
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From Corollary 7.12 we have that Ny>171(7(S;)) = Z(O(H)). From Lemma 4.17 we have
that 7(Miz17 ™ (7(S))) = Nizam (7™ (7(S)) = Nz (S) = Nezm(S) = 7(Z(0(H))) =
Z(O(H)) and hence M;>17(S;) is the identity in PO(H). O
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CHAPTER 8

THE ISOMETRY GROUP

DEFINITION 8.1. Let H be a complex Hilbert space. For every (U, a) € U(H) x H and every
x € H we define (U,a)(x) = Uz + a. If H is a real Hilbert space and if (O,a) € O(H) x H
we define (O, a)(x) = Ox + a for every z € H.

PROPOSITION 8.2. If'H is a complex Hilbert space, the semidirect product U(H) X o H together
with the operation (U,a)(V,b) = (UV,U(b) + a) is a group. We call this group the complex
isometry group and denote it by Ic. If H is real, the real isometry group O(H) Xo H is
defined in a similar way and is denoted Ig.
Proof. Let (U, a), (V,b),(W,c) € Ic. Then
(U, a)(V,0) = (UV,U(b) + a) € I;
(U, a)(V,D)[(W, ¢) = (UV,U(b) + a)(W,c) = (UVW,UV(c) + U(b) + a) = (UVW,U[V(c) +
) = (U, a)(VW,V(c) +b) = (U,a)[(V,b)(W, c)];
(U, a)(1,0) = (U,a) = (1,0)(U, a) and
(U,a)(U*,U*(—a)) = (UU*,UU*(—a)+a) = (I,0) = (U*U,U*(a)+U*(—a)) = (U*,U*(—a))(U, a).

bl + a

The proof for the real isometry group is similar. [

LEMMA 8.3. Let H be a complex Hilbert space. If U(H) is given the weak operator topology
and if H is given the norm topology, then the mapping U(H) x H — H, (U,a) — Ula) is
continuous. Same result holds if H is a real Hilbert space and U(H) is replaced with O(H).
Proof. Let (U;);jes C U(H) be such that U; == U and (a)kerxr C H be such that ay LN
Since the weak operator topology on U(H) and the strong operator topology are equivalent
we have that ||(U; — U)(z)|| — 0 for every x € H. Then [|U;(ar) — U(a)|| < ||U;j(ax) —
Uj(a)l| +1Uj(a) = U(a) || = [Uj(ax — a) || + (U = U) (@) || = [lax = al[ + [|(U; = U)(a)]| — 0 =

Uj(ag) A, U(a) = the mapping (U, a) — U(a) is continuous.
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If H is a real Hilbert space, the continuity of the mapping O(H) x H — H is proved

similarly. [J

PROPOSITION 8.4. % Let H be a complex Hilbert space. If U(H) is given the weak operator
topology and if H s given the norm topology, then Ic with the product topology is a Polish
topological group. U(H) x {0} is the centralizer of {(—1,0)} in Ic and {I} x H is mazimal
abelian and therefore both U(H) x {0} and {(—1,0)} are closed subgroups of Ic. If H is
a real Hilbert space then Ig is a Polish topological group. O(H) x {0} is the centralizer of
{(—=1,0)} inIg and {I} x H is mazimal abelian and therefore both O(H) x {0} and {(—1,0)}
are closed subgroups of Ig.

Proof. Since both U(H) and H are Polish spaces, I¢ is a Polish space. To show that I¢ is a
topological group, let (U, a), (V,b) € I¢. Since the mappings U +— U*, (U,V) — U*V and
a — —a are continuous, and since the mapping (U, a) — U(a) is continuous by Lemma 8.3
we have that (U, a), (V,b)) — (U*V,U*(b) + U*(—a)) = (U*,U*(—a))(V,b) = (U,a)"(V, D)
1s continuous.

To show directly that U(H) x {0} and {I} x H are closed subgroups of I, let (U;);jes C
U(H) be such that U; — U. Then (U;,0) — (U,0) = U(H) x {0} is closed in I¢. If
(aj)jes C H is such that a; — a then (I,a;) — ([,a) = {I} x H is closed in I¢.

If U € U(H) then (U,0)(—1,0) = (—=U,0) = (—1,0)(U,0). Conversely, if (U,a)(—1,0) =
(—1,0)(U,a) then, since (U,a)(—1,0) = (=U,a) and (—1,0)(U,a) = (—=U, —a), we have that
a=—-a=a=0= (Ua) e U(H) x {0} = U(H) x {0} is the centralizer of {(—1,0)},

To show that {I} x H is maximal abelian, let (U,a) € I¢ be such that (U,a)(I,b) =
(1,b)(U,a) for every b € H. Then (U,a)(1,b) = (U,U(b) +a) and (I,b)(U,a) = (U,a+b) =
Ub)=bforeverybe H=U=1= (U,a) € {I} x H = {I} x H is maximal abelian.

The proof for Iy is similar. [J

REMARK 8.5. Since the mapping U(H) — I¢, U — (U, 0) is an isomorphism of topological
groups, we may identify U (H) with U(H) x {0} C I¢ and we can consider U(H) as being a

closed subgroup of I¢. Similarly, if H is a real Hilbert space then O(H) is a closed subgroup
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of Ig. Since the mapping H — I¢, x — (I, ) is an isomorphism of topological groups, we
may identify H with {I} x H C I and we can consider H as being a closed subgroup of I¢.

Similarly, if H is a real Hilbert space then H is a closed subgroup of Iy.

LEMMA 8.6. % Let G be a Polish topological group and let ¢ : G — l¢c be an algebraic
isomorphism. Then ¢~ (U(H)) and ¢~ (H) are closed in G. If H is a real Hilbert space and
if ¢ : G — Ty is an algebraic isomorphism, then ¢~ (O(H)) and ¢~ (H) are closed in G.
Proof. Since by Proposition 8.4, U(H) = {(U,a) € Ic | (U,a)(—1,0) = (—1,0)(U,a)},
we have that 6~ U(H)) = {67'(U7) | 6~ U)o~ (=T,0)) = 6~ (=T, 06" (U)} and the
conclusion will follow from Proposition 3.26.

Since {I} X H is maximal abelian by Proposition 8.4 we have that ¢~'(H) is maximal
abelian and therefore closed in G.

The proof in real case is similar. [

LEMMA 8.7. % Let G be a Polish topological group, let ¢ : G — I¢ be an algebraic isomor-
phism and let 0 # a € H. Then ¢~ ({(I,b) € Ic | ||b]] = ||a||} is an analytic subset of G.
Same result holds if H is a real Hilbert space and if ¢ is replaced with k.

Proof. Let T, = {(1,b) € I | ||b|| = ||a||}. We will prove that T, = {(U,0)(I,a)(U,0)"* | U €
U(H)}. This will imply that 6~ (T,) = {6~1((U,0))6((1, )6~ (1,00 | U € U(H)} =
{R~Y((I,a))R™Y) | R € ¢~ Y(UU(H))} and then, since the multiplication in G is continuous
and since ¢~ (U(H)) is closed by Lemma 8.6, the conclusion follows from Lemma 3.53.

Let U € U(H). Then (U,0)(I,a)(U,0)t = (U,0)(I,a)(U*,0) = (U,0)(U*,a) = (UU*,U(a))
(I,U(a)) € T, since ||U(a)]| = ||a|| = {(U,0)(L,a)(U,0)"" | U € U(H)} C T,. If (I,b) € T,
then there exists U € U(H) such that U(a) = b= (I,b) = (I,U(a)) = (U,0)(I,a)(U,0)" =
T, C{(U,0)(L,a)(U,0)"" | U € U(H)}.

The proof in real case is similar. []

LEMMA 8.8. % Let H be a complex Hilbert space and let a € H. If b,c € H then {(I,b —
c) [ ol = [lell = llall} = {(Z,d) | ||d]| < 2[|a]/}.
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Proof. Let b,c € ‘H be such that ||b]] = ||| = ||a|| and let d = b — c. Then ||d|| = ||b — ¢|| <
1ol + el = 2[lall = {(Z,b = ¢) [ 1]l = llell = llall} < {(Z,d) | [ld] < 2all}-

Let d € H be such that [|d|| < 2|la||. Let u : R — H be defined as p(d) = e“a.
Then g is continuous, u(0) = a and pu(m) = —a. The mapping 6 — |la — p(0)| is also
continuous, |[a — x(0)|] = 0 and ||a — p(7)|| = 2||al|. By the intermediate value theorem
we have that there exists 0y such that ||a — u(6p)|| = ||d|| = there exists U € U(H) such
that U(a — u(6y)) = d. Let b = U(a) and ¢ = U(e%a). Then ||b]| = ||c|]| = ||la| and
d=b—c=A{d)||dl <2lall} C{(L,b—=c) [l = llcll = llall}. O

LEMMA 8.9. % Let G be a Polish topological group, let ¢ : G — lc be an algebraic isomor-
phism and let 0 # a € H. Then ¢~ ({(I,d) € Ic | ||d|| < 2|lal|} is an analytic subset of
G.

Proof. Let T, = {(I,b) € I¢ | ||b]| = ||a||} be the set defined in Lemma 8.7. Then T, -
T =A{@o)I o LIl = el = llall} = {(Z,0)(1,—c) [ bl = llell = llall} = {(I,b -
o) | bl = el = llall} = {(Z,d) | ld]| < 2[|al|} by Lemma 8.8 = ¢~"({(1,d) | d € U}) =
YT, (T,)~*. Since ¢~1(T,) is an analytic subset of G by Lemma 8.7 we have that
oY ({(I,d) | d € U}) is analytic. O

THEOREM 8.10. % Let G be a Polish topological group and let ¢ : G — I be an algebraic
isomorphism. Then ¢ is a topological isomorphism.

Proof. The case when dim(H) = 1 was done by Kallman in [15].

Since ¢~*(H) is closed in G by Lemma 8.6, it is Polish and hence @|s-1(3) : ¢~ (H) — H
is an isomorphism between two Polish topological groups. Let § > 0 and let U = {x €
H | ||lz|| < 8} be an open neighborhood of 0 in H. Then U = Ups1{z € H | ||z]| < {1} =
o N U)=Ups10 ' {z e H | ||zl < 5(” U1 and each of the sets ¢ ({z € H | ||z < ”T_l)})
is analytic by Lemma 8.9 = ¢~!({{) is analytic and hence it has the Baire property. It follows
from Lemma 3.57 that ¢|s-1(3) is a topological isomorphism.

Since by Lemma 8.6 ¢! (U (H)) is closed in G and therefore Polish, @14 : ¢~ (U(H))

U(H) is an algebraic isomorphism between two Polish topological groups. Let {h;,},>1 be
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a dense subset of H. Let W : ¢~ (U(H)) — [[,5, ¢ ' (H) be defined as W(¢~'((U,0))) =
[oos 6 (U, 0)6 (L A6 (U,0) 7 = TLo 67 (1L UR). 1 Us,Us € UH) are
such that [[,5, ¢~ ((1,Ui(hn))) = [ls1 07" ((1,Ua(ha))) then Ui(hy,) = Us(hy) for ev-
ery n > 1 = U; = U, since {h,},>1 is dense = V¥ is one-to-one. Since the group
operations are continuous in G, ¥ is continuous onto its range. If ® : [[ ., ¢7'(H) —
1,51 M is the mapping ®([],>; ¢~ ((1,2n))) = [l,»1(I;2,), then @ is continuous since
each ¢|s-1(3) is a topological isomorphism. For each n > 1 let F, : U(H) — H be de-
fined as F,((U,0)) = (U,0)(I,h,)(U,0)"" = (I,U(h,)). Since the group operations are
continuous, each F), is continuous. Let F' : U(H) — [[,>, H be defined as F((U,0)) =
[[51 Fn((U,0)) = [1,5,(1,U(hy)). Note that the range of F' is the same as the range of
®oW. If U,Uy € U(H) are such that F((Uy,0)) = F((Uy,0)) then [],-,(1,Ui(h,)) =
[[.5:(1,Ua(hy)) = Ui(hy) = Us(h,) = Uy = Uy = F is one-to-one. F is continuous
onto its range since the group multiplication is continuous. By Lusin-Souslin Theorem
(page 89, [18]) we have that F~' : F(U(H)) — U(H) defined on the range of ® o W
is Borel measurable. Thus the mapping F~' o ® o ¥ : ¢ YU(H)) — U(H) is Borel
measurable. Since (F~!' o ® o U)(¢7'((U,0))) = (U,0) = ¢(¢~*((U,0))) we have that
Dlo—r )y = F 1 o®oW = ¢|y-14 ) is Borel measurable. It follows from Lemma 3.57 that
®|o-1 @y is a topological isomorphism. Note that if 7 is infinite dimensional this is true by
Theorem 3.58. However, the proof from this paragraph works independent of the dimension
of H.

Let f: 7' (H)x¢™ (U(H)) — G be defined as f(¢7'((1,a)), ¢~ ((U,0))) = ¢~ ((1,a)(U,0)) =
¢~ Y((U,a)). f is obviously one-to-one. Since the group operations are continuous, f is con-
tinuous onto its range. It follows from Lusin-Souslin Theorem (page 89, [18]) that f~! : G —
¢ H(H)x ¢~ (U(H)) is Borel measurable. The mapping g : ¢~ (H)x ¢~ H(U(H)) — HxU(H)
defined as g(¢~(I,a), o~ (U,0)) = (¢~ ((I,a)))d(¢~ ((U,0))) = (U, a) is a topological iso-
morphism since the restrictions of ¢ to ¢~ (M) and ¢~ (U(H)) are topological isomorphisms.
The mapping h : H X U(H) — I¢ defined as h((a,U)) = (U, a) is obviously a topological
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isomorphism. Thus h o g o f~! is Borel measurable. Since (hogo f1)(¢7((U,a))) =
h(g(o™((1,a)),¢~H((U,0)))) = h((a,V)) = (U,a) = ¢(¢7'((U,a))) we have that ¢ =
hogo f~' = ¢ is a Borel isomorphism and therefore a topological isomorphism by Lemma

3.57. U

LEMMA 8.11. % Let H be a real Hilbert space with dim(H) > 2 and let a € H. If b,c € H
then {(1,b—c) [ |[b] = [lell = llall} = {(L,d) | ld]| < 2{[a]]}-

Proof. Let b, c € H be such that ||b]| = ||c|| = ||a|| and let d = b — ¢. Then ||d|| = ||b — ¢|| <
161 + llell = 2llall = {(1,0 = ¢) [ o] = llell = flall} < {(1,d) [ l|d]| < 2[|all}-

Let d € H be such that ||d|| < 2|/a]|. Since dim(H) > 2 there exists at least one e € H
such that ||e|| = ||a|| and (a,e) = 0. Let ¢ : R — H be defined as ¢(0) = (cos#)a + (sin f)e.
Then v is continuous, [[¥(0)| = |la|| for every 0 € R, ¥(0) = a and (w) = —a. The
mapping 6 — |la — ¢(0)|| is also continuous, ||a — (0)|| = 0 and |la — ¥(7)| = 2||al|. By
the intermediate value theorem we have that there exists 6y such that ||ja — ¥(60)| = ||d|| =
there exists O € O(H) such that O(a — ¥(6y)) = d. Let b = O(a) and ¢ = O(¢(6y)). Then
1ol = llell = llall and d = b —c = {(L,d) | [|d]| < 2[|all} € {(Z,b0—c) [ [|b]| = llc]l = [[a]l}. O

LEMMA 8.12. % Let H be a real Hilbert space with dim(H) > 2, let G be a Polish topological
group, let ¢ : G — Ig be an algebraic isomorphism and let 0 # a € H. Then ¢~ ({(I,d) €
Ic | |d|| < 2]lal|} is an analytic subset of G.

Proof. The proof is identical with the proof of Lemma 8.9, with the exception that instead

of Lemma 8.8 we use Lemma 8.11. [J

THEOREM 8.13. % Let H be a real Hilbert space with dim(H) > 2, let G be a Polish
topological group and let ¢ : G — g be an algebraic isomorphism. Then ¢ is a topological
1somorphism.

Proof. The proof is identical with the proof of Theorem 8.10 with a few exceptions. In the

second paragraph instead of Lemma 8.9 we use Lemma 8.12. [J
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REMARK 8.14. It follows from [23] that on a real Hilbert space the surjective isometries

coincide with I.
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