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This dissertation aims at addressing two important theoretical questions which are 

still debated in the statistical mechanical community. The first question has to do with the 

outstanding problem of how to reconcile time-reversal asymmetric macroscopic laws 

with the time-reversal symmetric laws of microscopic dynamics. This problem is 

addressed by developing a novel mechanical approach inspired by the work of Helmholtz 

on monocyclic systems and the Heat Theorem, i.e., the Helmholtz Theorem. By 

following a line of investigation initiated by Boltzmann, a Generalized Helmholtz 

Theorem is stated and proved. This theorem provides us with a good microscopic 

analogue of thermodynamic entropy. This is the volume entropy, namely the logarithm of 

the volume of phase space enclosed by the constant energy hyper-surface. By using 

quantum mechanics only, it is shown that such entropy can only increase. This can be 

seen as a novel rigorous proof of the Second Law of Thermodynamics that sheds new 

light onto the arrow of time problem. The volume entropy behaves in a thermodynamic-

like way independent of the number of degrees of freedom of the system, indicating that a 

whole thermodynamic-like world exists at the microscopic level. It is also shown that 

breaking of ergodicity leads to microcanonical phase transitions associated with 

nonanalyticities of volume entropy. 

The second part of the dissertation deals with the problem of the foundations of 

generalized ensembles in statistical mechanics. The starting point is Boltzmann's work on 



statistical ensembles and its relation with the Heat Theorem. We first focus on the 

nonextensive thermostatistics of Tsallis and the associated deformed exponential 

ensembles. These ensembles are analyzed in detail and proved (a) to comply with the 

requirements posed by the Heat Theorem, and (b) to interpolate between canonical and 

microcanonical ensembles. Further they are showed to describe finite systems in contact 

with finite heat baths. Their mechanical and information-theoretic foundation, are 

highlighted. Finally, a wide class of generalized ensembles is introduced, all of which 

reproduce the Heat Theorem. This class, named the class of dual orthodes, contains 

microcanonical, canonical, Tsallis and Gaussian ensembles as special cases. 
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CHAPTER 1

INTRODUCTION

This dissertation collects calculations, results and ideas, that stemmed in the last

few years from a continuous meditation about a few central issues that the theory of

statistical mechanics naturally poses. In order to give the reasons for studying the

“Microscopic Foundations of Thermodynamics and Generalized Statistical Ensem-

bles” it is perhaps best to tell how and why I became involved in this subject. As a

student of statistical physics I was never really satisfied with the textbook justification

of “Boltzmann’s principle”:

(1) SW = kB ln W

As a matter of fact this is always presented as a postulate, namely something that is

not derived from some other more fundamental principles, and that everybody accepts

on the basis of experience. Although I did not have any reason to doubt its validity,

I still could not accept “Boltzmann’s principe” as a fundamental principle. The

questions that kept running through my mind were: why is Clausius entropy related to

the number of available states, and why is that relation logarithmic? The questions are

perfectly legitimate. Besides the undisputable phenomenological validity of Eq. (1)

and its connection with Boltzmann’s H-theorem (which refers to rarefied gases only),

textbooks often do not really provide any bold theoretical foundation for it1. Reading

about Boltzmann’s studies on the heat theorem from Gallavotti’s Short Treatise of

Statistical Mechanics [2] made me realize that a deeper reason for Eq. (1) actually

existed. Gallavotti’s book has the merit of emphasizing the role played by the heat

1A.I. Khinchin had to comment about this that “All existing attempts to give a general proof of

this postulate must be considered as an aggregate of logical and mathematical errors superimposed

on a general confusion in the definition of the basic quantities”[1]
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theorem in Boltzmann’s construction of statistical mechanics. In particular, if one

considers the continuum counterpart of SW , that is the logarithm of the area of the

hypersurface of constant energy, SΩ = ln Ω, Gallavotti shows that

(2) dSΩ =
dE + PdV

T
+ O

(
1

N

)
,

where P is the pressure, V is the volume, T is the temperature and N is the number

of particles composing the gas. This began to enlighten my understanding of why the

Boltzmann entropy is fundamental: in the thermodynamic limit (N → ∞) it gener-

ates the exact differential δQ
T

, which is not at all a trivial result. This fact justifies

the use of Boltzmann entropy in deriving the thermodynamic relations by differenti-

ating it with respect to energy and volume. At this point another theorem discussed

by Gallavotti attracted my attention, namely the Helmholtz theorem (see Sec. 3.2).

This says that dE+PdV
T

is an exact differential even in small one-dimensional systems,

thus suggesting that the thermodynamic laws already exist at the microscopic level.

Noticing this motivated the subsequent search for a good microscopic or “mechanical”

analogue of entropy which forms a bridge from the Helmholtz theorem, valid for one

degree of freedom, to Eq. (2), valid for a large number of degrees of freedom. The

result is the generalized Helmholtz theorem (see Sec. 3.3). Its associated entropy is

the volume entropy, namely the logarithm of the portion of phase space enclosed by

the energy hypersurface, not its surface area!

At this point the research took two different parallel paths. On one hand, since

the volume entropy is an adiabatic invariant, one is naturally led to guess that for non

adiabatic perturbations it can only increase. Thus I started wondering under what

hypothesis and in what sense this could be proved. The result is a novel proof of the

second law which is presented in Chapter 3. On the other hand, since Boltzmann

used the heat theorem as a rationale for canonical and microcanonical ensembles,

one is naturally led to check if other ensembles also satisfy it. I checked with the

Tsallis ensembles associated with the so called nonextensive thermodynamics, and
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surprisingly enough, they did so! The second part of the dissertation deals with this

fact. I also define an even more generalized class of ensembles that comply with the

requirements posed by the heat theorem.

The dissertation can ideally be divided in two parts. The first, composed of

Chapters 2 to 5, covers The Helmholtz theorem, the generalized Helmholtz theorem,

the the proof of the second law based on volume entropy and more applications

of volume entropy. The second, composed of Chapters 6 to 9, covers the Tsallis

Ensembles, their “mechanical” foundations and their generalizations. In Chapter 2

and Chapter 6 the reader can find more technical introductions to the first and second

part of the dissertation, respectively.

Most of the material presented here has been published in refereed Journals. Part

of it is currently under consideration for publication. Roughly, the content of Chapter

2 has been adapted from Ref. [3], Chapter 3 from Ref. [4], Chapter 4 from Ref. [5]

(currently unpublished), Chapter 6 from Ref. [6], Chapter 7 from Ref. [7], and

Chapter 8 and Appendix C from Ref. [8]. Section 8.5 and Appendix B contain

material covered in Ref. [9] (currently unpublished).

These studies have largely contributed to sharpening my own understanding of

statistical mechanics as well as thermodynamics, both ordinary and nonextensive. It

is my hope that they will also be of help and interest to others as well.
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CHAPTER 2

THE PROBLEM OF TIME REVERSAL ASYMMETRY OF

THERMODYNAMICS

Explaining the time reversal asymmetric nature of macroscopic phenomena such as

those entailed in the second law of thermodynamics from the time reversal symmetric

laws of microscopic dynamics is one of the most challenging problems of modern the-

oretical physics. Since the birth of statistical mechanics with Boltzmann and Gibbs,

scientists in this field have been continuously working on this puzzling problem. A

wide range of approaches and views have been developed which have all contributed,

in different ways, to the development of the multi-faceted, continuously-developing

field of statistical physics. Boltzmann was the first to attack the problem with his

celebrated H-Theorem. In his approach the time reversal asymmetry stems from the

assumption of molecular chaos (Stoßzahl Ansatz ). Along the years many others have

tried to explain the second law using different approaches. Tolman for example first

proposed the idea of coarse graining as a mechanism that breaks time reversal in-

variance. In his famous book [10], the increase of coarse grained entropy is proved

for infinitesimal abrupt changes of an external parameter that does work on a macro-

scopic system. Yet more recently the Brussels-Austin school of Y. Prigogine proposed

another solution based on Rigged Hilbert Spaces (see [11] for a recent review of the

Brussels-Austin school). For some authors irreversibility stems from the very large

number of degrees of freedom that occur in macroscopic systems. For others it is

a consequence of non-integrability of the equations of motion. For still others it is

our limited possibility to know the exact time evolution of macroscopic systems that
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determines the time-reversal symmetry breaking. Chaos and sensitivity to initial con-

ditions are believed to play an important role, too. One thing is sure: there is no

universal consensus about this problem.

In this first part of the thesis we propose yet another approach toward the solution

of this puzzling problem. In order to do so, we shall go back to the works of Boltz-

mann on monocyclic systems [12]. These works were inspired by previous works of

Helmholtz [13] on one-dimensional Hamiltonian systems, whose main result is known

(not as widely as one would expect though) as the Helmholtz theorem 1. These works

of Boltzmann were very closely connected to his celebrated ergodic hypothesis. If

we look back at the development of Boltzmann’s work in statistical physics [14] we

see that he did not develop further those ideas and turned his attention to other

methods like the well-known counting method which led him to the famous formula

SW = ln W and the already mentioned H-Theorem. Here we shall revive that initial

research line of Boltzmann which he did not investigate further. We will undertake

the task of developing it to the point of appreciating its actual relevance for the still

open problem of reconciling the second law with mechanics (classical or quantum).

Before embarking on such an adventure it is important to ask the question: What

do we exactly mean here by second law? This may sound like a trivial question, but it

is not indeed. As pointed out nicely in Ref. [15] there are many different formulations

of the second law that are not all exactly equivalent. Further the second law lends

itself to possible hasty conclusions which are very controversial. One such conclusion

is Clausius’ celebrated statement: “The entropy of the universe tends to a maximum”

[15]. In order to make our study as clear as possible we shall refer to the second law

as the principle of entropy increase as formulated by Clausius [15]:

THE ENTROPY PRINCIPLE: For every nicht umkehrbar pro-

cess in a thermally isolated system which begins and ends in an

equilibrium state, the entropy of the final state is greater than or

1Not to be confused with the better known Helmholtz theorem of vector calculus
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equal to that of the initial state. For every umkehrbar process in

a thermally isolated system the entropy of the final state is equal

to that of the initial state

The expressions nicht umkehrbar and umkehrbar could be translated into the cur-

rent scientific English as non-quasi-static and quasi-static respectively.2 It must be

stressed that the entropy principle refers to transformations caused by the variation

of some external parameter, and is not at all a statement about the spontaneous ten-

dencies of physical systems. If the variation of the external parameter acts in such a

way as to drive the system out of equilibrium (non-quasi-static process) the entropy

will increase. If it acts in such a way that the system remains arbitrarily close to

equilibrium (quasi-static process) then the entropy will not change.

A few commentators have expressed the idea that the second law might not entail

any time-asymmetry [16]. According to them the time asymmetry stems from another

phenomenological fact that is often confused with the second law itself, namely

THE EQUILIBRIUM PRINCIPLE: An isolated system in an ar-

bitrary initial state within a finite fixed volume will spontaneously

attain a unique state of equilibrium.

The authors of Ref. [16] refer to this basic principle as the minus first law of thermo-

dynamics to stress the fact that it is more fundamental than all the other thermody-

namic laws. In fact the Zeroth, First and Second laws all make use of the concept of

equilibrium.

In this part of the thesis we will address the second law as expressed by the

entropy principle enunciated above. For the sake of completeness and simplicity we

shall re-express it as the following three statements:

2Often the expressions irreversible and reversible are used as synonymous of non-quasi-static

and quasi-static
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Statement 1 (Heat Theorem). There exists a state function S, called entropy, such

that

(3) dS =
δQ

T

where dS is an exact differential, δQ is the heat exchanged (not an exact differential)

and T is the absolute temperature.

Statement 2 (Adiabatic Invariance). For any quasi-static process occurring in a

thermally isolated system that begins and ends in an equilibrium state we have

(4) ∆S = 0.

Statement 3 (Entropy increase). For any non quasi-static process occurring in a

thermally isolated system that begins and ends in an equilibrium state we have

(5) ∆S ≥ 0.

The first two statements evidently pertain to equilibrium thermodynamics whereas

the third pertains to non-equilibrium thermodynamics. We shall address the first two

statements in Chapter 3 and the third in Chapter 4. As we will see, our approach

based on Boltzmann’s early studies on monocyclic systems leads naturally to identify

the statistical mechanical analog of thermodynamic entropy as the so-called volume

entropy. Such an entropy will provide a quite satisfactory (although perhaps not com-

pletely exhaustive) explanation of all the three statements above. New light will be

shed also on the previously mentioned idea that the second law is itself time-reversal

symmetric. The arrow of time stems at the level of equilibrium attainment, which

chronologically and logically comes before the processes occur that are mentioned in

the entropy principle (which are responsible for the entropy increase).

In Chapter 5 we shall see more applications of such entropy which are not related

to the fundamental laws of thermodynamics, but rather to some other very important

macroscopic phenomena, i.e., phase transition. We will see how the volume entropy

7



can also be employed to implement a simple model of phase transitions without

invoking the thermodynamic limit in which the number of degrees of freedom tends

to infinity.
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CHAPTER 3

HEAT THEOREM AND THE GENERALIZED HELMHOLTZ THEOREM

3.1. Surface vs. Volume Entropy

Since the pioneering works of Boltzmann and Gibbs two possibilities have been

given for the microcanonical analysis of physical systems, which correspond to two

different definitions of entropy (see for example the textbook of Gibbs [17] or the

more recent textbook of Huang [18]). We shall refer to these two entropies as “surface

entropy” and “volume entropy”. The surface entropy is defined as:

(6) SΩ(E, V ) = ln Ω(E, V )

where E is the energy, V the volume of the system, and

(7) Ω(E, V ) =

∫
dz

h3N
δ [E −H (z, V )] .

The volume1 entropy is:

(8) SΦ(E, V ) = ln Φ(E, V )

where

(9) Φ(E, V ) =

∫
dz

h3N
θ [E −H (z, V )] .

Throughout this dissertation we adopt a system of units where kB, the Boltzmann

constant, is equal to 1. The symbol δ(x) represents the one-dimensional Dirac delta-

function and θ(x) represents the Heaviside step-function. The symbol z = (p,q) =

(p1, ..., p3N , q1, ..., q3N) is a point in the 6N -dimensional phase space Γ. The Hamil-

tonian is H (z, V ) = K(p) + ϕ (q, V ), where K(p) = p2

2m
and the potential ϕ includes

both particle-particle and container-particle interactions. The container “coordinate”

1Sometimes referred to as “bulk”.
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(i.e., its volume V ) is treated as an “external” parameter. h is a constant with the di-

mensions of an action introduced as a convention 2. The quantity Ω(E, V ) represents

the volume of the infinitesimally thin shell of constant energy E in the phase space Γ

(surface integral), while Φ(E, V ) represents the volume of the region enclosed by the

hyper-surface of constant energy E (volume integral). Following Ref. [1, see p.32],

we assume the energy has a lower bound, which for convenience will be set equal to

zero. With a further assumption of “smoothness” of the hyper-surfaces of constant

energy, the following relation holds:

(10) Ω =
∂

∂E
Φ.

For ideal systems (for which inter-particle interaction energy is negligible) with a very

large number of constituents N , the volume integral tends to the exponential form

Φ ∝ eE [18], hence one has

(11) Ω → Φ as N →∞.

This relation expresses the well-known fact that the two possible microcanonical de-

scriptions associated, respectively, with the volume and surface entropies are equiva-

lent. Far from the thermodynamic limit and for systems with long-range interaction

the two entropies can lead to very different results. One example of this inequivalence

will be offered in Chap. 5. For the purposes of this dissertation, it is worth dis-

cussing some properties of these two entropies in more detail. This discussion helps

to confront them, and to introduce the Helmholtz theorem, whose generalization is

the main result that we present in this chapter.

3.1.1. Properties of the Surface Entropy

From a formal point of view, the surface entropy plays an important role in statis-

tical mechanics for its close connection with the microcanonical distribution. Defining

2I do not include the celebrated Gibbs correction factor 1
N ! for it is not essential in this context.
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the microcanonical distribution as:

(12) ρµ (z,E, V )
dz

h3N
=

δ [E −H (z, V )]

normalization

dz

h3N
,

the normalization factor would be given exactly by the surface integral Ω. This is

why often Ω is referred to as the partition function of the microcanonical ensemble.

Thanks to Eq. (12) the surface integral enters explicitly in the expression of the

microcanonical average of a physical quantity on the surface of constant energy, i.e.,

(13) 〈f〉µ ≡
∫

dz
h3N f(z)δ [E −H (z, V )]

Ω(E, V )
.

From a mathematical perspective Ω plays also the role of the Jacobian of the change

of variables z →E, which simplifies the evaluation of average values of observables of

the type f(E (z)):

(14)
dz

h3N
=Ω(E, V )dE.

Because of this relation Ω is also important in the passage from classical to quantum

statistical mechanics; in fact Ω counts the “density of states at a given energy” (de-

generacy).

From a physical point of view, the surface entropy is interesting as, in the limit of

very large N , it approaches Boltzmann’s counting entropy (SW = ln W ) of the given

equilibrium state. Nevertheless the counting entropy is at the same time more and

less general than the surface entropy. It is more general in the fact that it applies both

to equilibrium and out of equilibrium states, whereas the surface entropy is restricted

to equilibrium; less general in the fact that, unlike the surface entropy, it applies only

to ideal gases [14].

3.1.2. Properties of the Volume Entropy

After the seminal work of P. Hertz [19], it is a known fact that the volume integral

Φ is an adiabatic invariant, and it has been recognized that this very fact plays a

significant role in the mechanical foundations of thermodynamics. To show this, let

11



us first provide a definition of adiabatic invariant. Let H (z, V ) be the Hamiltonian

of a system which depends on an external parameter whose value changes in time

according to some law: V = V (t), and let τ be the characteristic time of variation

of V . Through the dependence on V the Hamiltonian depends explicitly on time,

hence the energy is not conserved (work is performed on the system by changing the

parameter V from outside), and accordingly the energy will change in time with some

temporal law E(t).

Definition 3.1. A function I(E, V ) is called an adiabatic invariant if, in the limit

of very slow variation of V (t), namely as τ →∞, I(E(t), V (t)) → const.

Note that the qualifier “adiabatic” in the context of Hamiltonian mechanics has

quite a different meaning than in thermodynamics, where it is used as synonymous

of “thermally isolated”. For example, with reference to Definition 3.1, in mechanics

an adiabatic transformations is a very slow transformation during which the adia-

batic invariant remains constant. This meaning of “adiabatic” matches with that of

the thermodynamic expression “quasi-static”, rather than “thermally isolated”.3 In

other words, in studying thermodynamic systems as many-body mechanical systems

interacting with an externally driven field of forces, it is quite reasonable to model

quasi-static transformations as adiabatic processes [21, see Sec. 2.3.2]. It is natural,

then, to model the quantities which remain constant during quasi-static transforma-

tions as mechanical adiabatic invariants.

Now consider Statement 2 of the entropy principle (see Chap. 2), ∆S = 0, and recall

that it refers to quasi-static transformations. It is a basic fact of thermodynamics

that along a quasi-static transformation between two equilibrium states of a ther-

mally isolated system, the entropy (which, for the exactness of the heat differential,

3This is also reflected by the fact that a quasi static-process is understood as such a slow process

that it can be thought of as a virtual sequence of equilibrium states, just as the adiabatic process is

so slow that the motion can be thought of as driven by a sequence of “frozen”(i.e., time independent)

Hamiltonians [20].
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is a function of E and V ) is a constant. In modelling this fact from a mechanical

perspective, as Hertz has done, it is natural to require the mechanical expression of

entropy to be an adiabatic invariant. Hertz had also shown that, for any number of

degrees of freedom, the volume integral (Eq. 9) is an adiabatic invariant provided

that the system is ergodic.4 This means that the candidate mechanical expression of

entropy should be a function of Φ: S = f(Φ). If one takes a look at the equipartition

theorem (which is valid independent of the dimensionality of the system as well),

the reason why Hertz was led to choose the entropic function to be of the form of a

logarithmic function becomes clear. Note in fact that the equipartition theorem [1,

p. 104] reads5:

(15) 〈K〉µ =
1

2

〈
p·∂H

∂p

〉

µ

=
3N

2

Φ (E, V )

Ω (E, V )

or equivalently (using Eq. (10)):

(16)

(
2 〈K〉µ

3N

)−1

=
∂

∂E
ln Φ (E, V ) .

From this perspective, the equipartition theorem expresses a very general dynamical-

geometrical property of Hamiltonian systems which, as soon as we agree to name the

quantity
2〈K〉µ

3N
as the “absolute temperature”, reads as the fundamental thermody-

namic relation T−1 = ∂S
∂E

. As a natural consequence, we have to agree to name the

quantity ln Φ (E, V ) the “entropy”. In sum, for ergodic systems, the volume entropy

has two remarkably good properties: it is an adiabatic invariant, that is, it reproduces

Statement 1 of the second law, and it is consistent with the equipartition theorem.

The approach of Hertz has been recently re-expressed by Berdichevsky [23] adopting

a modern viewpoint. In particular Berdichevsky showed that under the hypothesis of

metric indecomposability (see Definition 2 below) the volume entropy is an adiabatic

invariant and that any other adiabatic invariant is necessarily a function of Φ only.

4This is why Φ is sometimes referred to, in literature, as the ergodic adiabatic invariant [22, 20].

5This holds for free gases as well as for interacting systems
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This latter statement leaves no room for alternative definitions of entropy within the

approach of Hertz and it is in contrast with the claim by Toda et.al. [21], that the

surface integral is also an adiabatic invariant. Indeed, that the surface integral is not

in general an adiabatic invariant can be seen by considering as a counter example

the 1D harmonic oscillator (which is trivially ergodic) with slowly varying frequency

ω. The ergodic adiabatic invariant in this case would be the action variable Φ = E
ω

[24]. Therefore the surface integral Ω = ∂
∂E

Φ = 1
ω
, would be trivially non-constant.

However, on the basis of Eq. (11), in the thermodynamic limit and for ideal systems,

it is expected that the surface entropy approaches adiabatic invariance.

3.2. Helmholtz Theorem

In the previous section we have pointed out that the volume entropy provides

a good mechanical analogue of thermodynamic entropy at least for Statement 2 of

the second law. As we will see next, the volume entropy also accounts quite well for

Statement 1 too. First we are going to introduce an interesting, but unfortunately not

very well known, theorem in 1D Hamiltonian mechanics due to Helmholtz. The aim

of this theorem is to provide a mechanical model of Statement 1 of the second law of

thermodynamics for one-dimensional systems. Boltzmann intended to generalize this

theorem to multi-dimensional systems in order to unify micro- and macro- physics

into one consistent picture using ergodicity as the key tool. In the next section we are

going to revive Boltzmann’s argument and provide a generalization of the Theorem,

based on the modern ergodic theory.

The Helmholtz theorem applies to one-dimensional conservative systems in a confined

potential where there is only one periodic trajectory per energy level, i.e., it applies

to what Helmholtz called one-dimensional monocyclic systems [2, p. 38]. To cite

some examples, the harmonic oscillator and a particle in a box are one-dimensional

monocyclic systems, but a particle inside a double-well potential is not because under
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a certain energy value there are two distinct trajectories per energy level6. Roughly

speaking, the theorem applies to one-dimensional Hamiltonian systems with a U-

shaped potential. Let us recall the theorem without proof:

Theorem 1 (Helmholtz). Let H(p, q; V ) = p2

2m
+ϕ(q; V ) be the Hamiltonian of a one-

dimensional monocyclic system. Let a state be characterized by the set of quantities:

(17)

E = total energy = K + ϕ

T = twice the time average of the kinetic energy = 2 〈K〉t
V = the external parameter

P = minus the time average of ∂ϕ
∂V

=
〈− ∂ϕ

∂V

〉
t
.

Then the differential

(18)
dE + PdV

T

is exact7, and SH(E, V )8, defined as:

(19) SH(E, V ) = ln 2

∫ x+(E,V )

x−(E,V )

dx

h

√
2m (E − ϕ (x, V ))

is the generating function, i.e.:

(20) dSH =
dE + PdV

T

where the symbols x± (E, V ) denote the turning points of the trajectory, i.e., the

roots of the equation E − ϕ (x, V ) = 0, and time averages are calculated over one

period τ of the trajectory (x(t), p(t)):

(21) < f(x, p) >t
.
=

1

τ

∫ τ

0

dtf(x(t), p(t))

As the reader can easily note, this theorem says that there is a class of mechanical

systems which provide a model of thermodynamic behavior as described in Statement

6A double-well potential system will be discussed in Chap. 5 to illustrate the mechanism of

microcanonical phase transitions as captured by the volume entropy when ergodicity breaks down

7This is often referred to as the heat theorem [2].

8The subscript H stands for Helmholtz.
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1 of the second law of thermodynamics. Once we attach the thermodynamic names of

“temperature” and “entropy” to T and SH , respectively9, the theorem reads exactly

as Statement 1 of the second law of thermodynamics (see Chap.2). For such systems,

the heat theorem holds as a consequence of Hamiltonian mechanics alone. Later

we will see that the same can be said of multidimensional systems provided certain

assumptions are made. In developing the generalization we are going to adopt a

historical point of view. In particular we are going to consider Boltzmann’s ideas

about the extension of Helmholtz’s result to many particle systems and we are going

to develop those. Our starting point will be Gallavotti’s reconstruction of Boltzmann’s

ergodic hypothesis [2, see Sec. 9.1 and Appendix 9.A.3].

3.3. Generalized Helmholtz Theorem

3.3.0.1. Discrete Version. According to Gallavotti [2, see Sec. 9.1 and App.

9.A.3], based on a discrete picture of phase space, Boltzmann saw how the Helmholtz

theorem could be applied to multi-dimensional systems. The argument of Gallavotti

goes as follows: imagine that we divide the phase space into cells of the same size

and then consider the time evolution of the system as a map which transforms a cell

into another, that is, a permutation of the phase space cells on the hyper-surface of

constant energy. This permutation is in general decomposable into sub-permutations,

or cycles, involving only a fraction of the total number of cells. This happens, for

instance, when extra integrals of motion are present besides the energy: cells with

different values of these integrals do not transform into each other, but only among

themselves to define the aforementioned cycles. The discrete ergodic hypothesis of

Boltzmann-Gallavotti (the reader may find a detailed account in [2, Sec. 1.3 ]) is that

there is only one cycle per energy level, i.e., that the discrete trajectory visits all the

phase space points (cells) with a given energy. A system satisfying such a hypothesis

will be referred to as a discrete ergodic system in this paper. For such systems, the

9P can be proved to be the average momentum transfer to the confining walls per unit time,

therefore it has its own mechanical interpretation of pressure.
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motion can be followed along a curvilinear abscissa running along the trajectory itself,

reducing the dynamics of the multi-dimensional system to that of a one-dimensional

monocyclic system to which the Helmholtz theorem can be applied. More explicitly,

let us discretize the phase space into hyper-cubic cells of volume h3N = (∆q∆p)3N .

Consider the trajectory in the discrete configuration space as an ordered sequence

of cells labelled by a counter j, and let ` = j∆q be the distance travelled by the

representative point (` is, so to speak, a “discrete curvilinear abscissa”). Let us now

define the sequence

(22) ` → q(`)

which assigns the cell centered at q to the travelled distance `. The representative

point spends different times in different cells. Denoting the sojourn time in the jth

cell with the symbol ∆tj allows us to define the velocity ˙̀ .
= ∆q

∆tj
associated with `.

For such a discrete system then, the conservation of energy statement would read

(23)
1

2m
p2

` + ϕ (q (`) , V ) = E.

where p` = m ˙̀. If the original system is a discrete ergodic system, the above equation

describes the motion of a one-dimensional system living in the phase space (`, p`),

where it draws one closed trajectory for each energy specification: namely it is a one-

dimensional monocyclic system. Therefore, the Helmholtz theorem applies, suggesting

that

“Thermodynamic relations are [...] very general and simple conse-

quences of the structure of the equations of motion: they hold for small

and large systems, from one degree of freedom [...] to 1023 degrees of

freedom [...]”[2, p. 266 ]

which is a remarkable result indeed because it implies that an expression for the

entropy in terms of the Hamiltonian must exist for systems of any size. Such a

mechanical expression of entropy, namely the multi-dimensional counterpart of the
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Helmholtz entropy (Eq. (19)) is missing in the Boltzmann-Gallavotti argument, but

it can be found by continuing their argument. Let us express the Helmholtz entropy

associated with a discrete ergodic system as10:

(24) SH(E, V ) = ln

∫ N∆q

0

d`

h

√
2m [E − ϕ (q(`), V )],

where N∆q is the total distance travelled in one cycle. Note that the right hand side

of Eq. (24) depends explicitly on the sequence q(`) which afterwards can be com-

puted only after integrating the complete set of Hamilton equations, which, as N gets

large, becomes a practically impossible task. In order to evaluate SH we will use the

following “trick”. As noticed before, the dynamics of the system can be alternatively

depicted either in the 6N dimensional phase space Γ or in the 2 dimensional phase

space (`, p`). If we express the kinetic energy in both representations, we get:

(25)
1

2m
p2

` =
1

2m

3N∑
i=1

p2
i .

By taking the time average and then applying the equipartition theorem (Eq. (16))

to both sides of Eq. (25) we get (remembering that on the left we are dealing with a

1-dimensional system, whose curve of constant energy “encloses” an area A, and on

the right we have a 3N-dimensional system whose hyper-surface of constant energy

encloses a volume Φ):

(26) 3N
∂

∂E
ln A (E, V ) =

∂

∂E
ln Φ (E, V ) ,

Then, by integration (with the condition A3N
∣∣
E=0

= Φ|E=0) follows the simple for-

mula:

(27) ln Φ = 3N ln A.

10Here the symbol
∫N∆q

0
d`f(`) is a convenient notation for ∆q

∑N
j=0 f(j∆q).
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Note that the area under the trajectory in the phase space of a one-dimensional

system can be expressed as the action integral [24]:

(28) A =

∮
p`d`

h
.

On the other hand, p` =
√

2m [E − ϕ (q (`) , V )]; hence ln A is the Helmholtz entropy

and therefore:

(29) SΦ (E, V ) = 3NSH (E, V ) .

This result is surprising as it reveals that (apart from the multiplicative factor) the

Helmholtz entropy of a discrete ergodic system is nothing but the volume entropy.

Therefore the volume entropy generates the heat differential of discrete ergodic sys-

tems. This result is important because it shows that the discrete version of volume

entropy satisfies Statement 1 of the second law for discrete ergodic systems as a conse-

quence of the microscopic equation of motion. This completes Boltzmann-Gallavotti’s

ideas (see the quotation above) by providing the missing entropy function.

3.3.0.2. Continuum Version. In order to pass to the continuum let us focus on Eq.

(29) and note that, though SH requires a discrete space to be well-defined (otherwise

how could the one-dimensional phase trajectory fill the 6N − 1 dimensional hyper-

surface?), the volume entropy appearing on the left hand side of Eq. (29) can be

safely defined on the continuum (which is indeed the usual case). This suggests

(a) that we consider the volume entropy as a good continuum counterpart of the

Helmholtz entropy of a discrete ergodic system, and (b) that a general formulation of

the Helmholtz theorem may be attempted which does not rely on a discrete structure.

Proceeding in this direction would require in particular the employment of a notion

of ergodicity based on the continuum instead of the Boltzmann-Gallavotti discrete

one.

The notion of metric indecomposability seems to be very well suited for this purpose.

Let us recall that in the modern ergodic theory [1],
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Definition 3.2. A portion Π of the phase space is called metrically indecomposable,

if:

• Π is invariant under the Liouville evolution induced by H, and

• Π cannot be represented in the form Π = Π1 + Π2, where Π1 and Π2 are

invariant disjoint subsets of positive measure.

Two remarks are needed at this point: (1) metric indecomposability extends the

notion of one-dimensional monocyclicity to any dimension, and (2) metric indecom-

posability extends the Boltzmann-Gallavotti discrete notion of ergodicity to the con-

tinuum. The first remark follows from the fact that in the case of one-dimensional

monocyclic systems, any hyper-surface of constant energy in the phase space (they are

indeed curves) is metrically indecomposable. This is a consequence of the fact that

each trajectory draws one complete constant energy curve. For example, for a non-

monocyclic system like a particle inside a double well potential, all the curves with

energy lower than a certain value are in fact decomposable into two sub-curves drawn

by distinct trajectories with same energy (see Chap. 5 and Figure 5.2)). The second

remark follows as one notes that the Boltzmann-Gallavotti ergodicity expresses the

impossibility of decomposing the time-evolution permutation into sub-permutations

as much as metric indecomposability expresses the impossibility of decomposing the

Liouville flow into disjoint sub-flows: they express the same concept in a discrete and

a continuum space, respectively.

Two analogous remarks apply to the volume entropy: (1’) the volume entropy is the

generalization of the Helmholtz entropy (Eq. (19)) to any dimension, (2’) the volume

entropy is the generalization of entropy for discrete ergodic systems in (Eq. (24) to

continuum systems. Remark (1’) follows by direct check that the volume entropy in

one-dimension is equal to the Helmholtz entropy, viz. by integration over dp one gets:

(30)

∫
dxdp

h
θ

(
E − p2

2m
− ϕ (x, V )

)
= 2

∫ x+(E,V )

x−(E,V )

dx

h

√
2m (E − ϕ (x, V )).
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Remark (2’) has been already discussed (see point (a) above).

It is not a surprise, then, that volume entropy and metric indecomposability can

be employed to formulate a generalized Helmholtz theorem (GHT), which on one

hand extends the Helmholtz theorem to any dimension, and on the other extends the

Boltzmann-Gallavotti ideas to the continuum:

Theorem 2 (Helmholtz, generalized). Let H(p,q; V ) be the Hamiltonian of a me-

chanical system with 3N degrees of freedom. Let any hyper-surfaces of constant

energy in the 6N-dim phase space Γ be metrically indecomposable. Let a state be

characterized by the set of quantities:

(31)

E = total energy = K + ϕ

T = twice the time average of the kinetic energy per degree of freedom =
2〈K〉t
3N

V = the external field

P = time average of − ∂ϕ
∂V

= − 〈
∂ϕ
∂V

〉
t
.

Then, the differential

(32)
dE + PdV

T

is exact, and the volume entropy,

(33) SΦ(E, V ) = ln Φ(E, V ),

is the generating function, i.e.:

(34) dSΦ =
dE + PdV

T
.

Proof. The differential of SΦ(E, V ) is:

(35) dSΦ =
∂SΦ

∂E
dE +

∂SΦ

∂V
dV.

Using the definition of Eq.(8):

∂SΦ

∂E
=

1

Φ

(
∂

∂E

∫
dz

h3N
θ [E −H (z, V )]

)
=
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=
1

Φ

(∫
dz

h3N
δ [E −H (z, V )]

)
=

=
Ω

Φ
(36)

∂SΦ

∂V
=

1

Φ

(
∂

∂V

∫
dz

h3N
θ [E −H (z, V )]

)
=

= − 1

Φ

(∫
dz

h3N
δ [E −H (z, V )]

∂

∂V
H (z, V )

)
=

= −Ω

Φ

〈
∂H

∂V

〉

µ

(37)

where use is made of Eqs. (6) and (13) and of the relation d
dx

θ(x) = δ(x). For

Birkhoff’s ergodic theorem [1], metric indecomposability of the hyper-surface of con-

stant energy implies that the time average of any summable phase function f over

(almost) any trajectory belonging to the hyper-surface does not depend on the tra-

jectory itself and is equal to its phase average, i.e.11,

(38) 〈f〉t = 〈f〉µ

where now the time average is calculated over the Poincaré recurrence time τ . Thanks

to Eq.(38), we can interchangeably use the subscript µ or t for the averages. This

implies:

(39) −
〈

∂H

∂V

〉

µ

= −
〈

∂H

∂V

〉

t

= P.

Thanks to the equipartition theorem (Eq. (16)), we also get:

(40)
Φ

Ω
=

2 〈K〉µ
3N

=
2 〈K〉t
3N

= T.

Combining all these together the thesis follows straightforwardly:

(41) dSΦ =
1

T
dE +

P

T
dV.

11For clarity, systems with metrically indecomposable hyper-surfaces will be referred to, in the

text, as Birkhoff ergodic systems.
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3.4. Concluding Remarks

It is worth to notice that the generalized Helmholtz theorem can be easily extended

to any number of external “coordinates”
−→
λ = (λ1, λ2, ...λr). By defining the conjugate

“forces” with:

(42) Pj = −
〈

∂H(z,
−→
λ )

∂λj

〉

t

j = 1...r,

the theorem would read:

(43) dSΦ =
dE +

∑
Pjdλj

T
.

An important fact is that, adopting the Helmholtz-Boltzmann viewpoint, we can

derive equilibrium thermodynamics from mechanics without incurring the “method-

ological paradox”, mentioned by Khinchin [1, p. 41], of neglecting inter-molecular

interactions. Indeed, we are forced to include the interaction term in the Hamilton-

ian, because otherwise the system would fail to be ergodic and Boltzmann’s ideas

(either in their original or modern form) would not apply. This is because ergodic-

ity means a situation of complete non-integrability12,which ultimately stems from the

impossibility of reducing the system (through a canonical transformation) to a sim-

pler one with no interactions. Surprisingly, the “disaster” of non-integrability turns

out, indeed, to be the savior: in the very case when the possibility of a microscopic

description is completely out of our reach, the thermodynamic one is made available.

Remarkably, the generalized Helmholtz theorem tells that the heat theorem holds

mechanically for Birkhoff ergodic systems of any size, which, therefore, provide a

good mechanical model of thermodynamics. Taking Gallavotti’s reconstruction as

the starting point, the Helmholtz-Boltzmann theory has been re-expressed within the

frame of the modern ergodic theory and has been found to agree with Berdichevsky’s

[23] reconstruction of Hertz’ theory: both deal with Birkhoff ergodic systems 13 and

12The presence of integrals of motion besides the energy, in fact, would decompose the surface

of constant energy.

13Recall that the volume entropy is the ergodic adiabatic invariant.
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through different paths (in one case the starting point is the requirement that the

entropy generate the heat differential; in the other case the entropy is required to

be an adiabatic invariant) reach the same mechanical expression of entropy, and the

same thermodynamics. Adopting Hertz’s approach, the heat theorem would follow

as a corollary. Adopting that of Helmholtz-Boltzmann adiabatic invariance would

follow. Both theories, remarkably, are based on microscopic dynamics and the ergodic

hypothesis only: never are statistical notions (like probability distributions or the

law of large numbers) invoked. In this sense the generalized Helmholtz theorem is a

theorem of ergodic Hamiltonian mechanics that has a straightforward thermodynamic

interpretation.

To summarize, Statements 1 and 2 of the second law hold mechanically, i.e., as a

consequence of Hamilton’s equations of motion, for ergodic systems, provided that we

identify the thermodynamic entropy with the quantity ln Φ, i.e., the volume entropy

in Eq. (8).

In the next Chapter we will see that Statement 3 can be explained in terms of

volume entropy too. This time a bit of statistics though will be needed.
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CHAPTER 4

VOLUME ENTROPY AND THE LAW OF ENTROPY INCREASE

In the previous chapter we have seen that the volume entropy (8) provides a

good mechanical analogue of thermodynamic entropy in the sense that it accounts

quite well for Statement 1 and Statement 2 of the second law of thermodynamics

(see Chap. 1). These are the two statements that pertain to equilibrium, whereas

Statement 3 pertains to out of equilibrium and expresses the law of entropy increase.

Obviously the fact that the volume entropy accounts for Statement 1 and Statement

2 suggests that it might turn out to be very useful in addressing Statement 3 as

well. It is important to stress that Statements 1 and 2 are accounted for by the

volume entropy mechanically, i.e., no probabilistic assumptions were introduced and

the equations dS = dE+pdV
T

(Statement 1) and ∆S = 0 (Statement 2) hold as a

consequence of ergodic Hamiltonian mechanics only. Simple considerations, however,

suggest that Statement 3 could be proved only in some statistical or averaged sense.

Consider, for example, a particle of mass m in a one-dimensional box of length L.

The particle bounces back and forth inside the box. Let E be the energy of the

particle. Imagine that we can change the length of the box by moving the right

wall of the box. The volume entropy of this elementary ergodic system is simply

SΦ(E,L) = ln(2L
√

2mE/h). Now imagine that we perform a very fast compression

of the box, much faster than the particle period of motion T =
√

2m
E

L. Let L−∆L

be the final length of the box. Imagine that during this transformation the particle

is far from the moving wall and does not bounce against it. Its energy would not

change but the change of its volume entropy would be ∆SΦ = ln(1 −∆L/L). Thus

∆SΦ would be negative. This simple example should convince us that any purely

mechanical attempt to derive the entropy increase principle (i.e.,Statement 3 of the
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second law) on the basis of volume entropy would be in vain. We certainly need to

add some statistical ingredient if we want to prove it.

Thus, we are going to assume that the initial energy of our insulated system is not

known. All we know is that it is within some range E, E + dE with some probability

p(E)Ω(E)dE. The symbol Ω(E) denotes the “density of states” at energy E (Eq.

9). For example, if we first place the system in thermal contact with a heat bath at

temperature T , and then we remove the contact, we will not know for certain what

the energy of the system will be, but we will know that p(E) = e−E/T

Z(T )
where Z(T ) is

the canonical partition function (i.e., the normalization).

In this chapter we will prove that, provided that p(E) is a decreasing function of

E, the expectation value of the volume entropy will be larger than its initial value.

It turns out that such a proof is much easier in quantum mechanics than in classical

mechanics. Therefore we shall first quantize the volume entropy and then study its

behavior under the action of a varying parameter, that is, a time-dependent pertur-

bation.

4.1. Quantum Volume Entropy

Let us first consider the one-dimensional (1D) case. In 1D the volume entropy is:

(44) SΦ = ln

∫

H≤E

dxdp

h
.

This expression can be conveniently reexpressed as the logarithm of the reduced action

[24]

(45) SΦ = ln

∮
pdx

h
.

which is the Helmholtz entropy (19). Quantization of the Helmholtz entropy is almost

immediate. Indeed, using a colorful expression, I would say that Eq. (45) invites

the reader to quantize. Using the semiclassical approximation of Bohr-Sommerfeld

[25] and setting h equal to Planck’s constant allows us to see that SΦ is a quantized
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quantity whose possible values are (within the range of validity of the approximation):

(46) SΦ = ln

(
n +

1

2

)
.

We can extend this line of reasoning to multidimensional systems whose dynamics is

ergodic. In this general case the volume entropy is given by Eq. (8). Again using

the quasi-classical viewpoint [26] the integral in Eq. (8) approximately counts the

number of quantum states not above a certain energy εn = E. Since the levels are

nondegenerate this number is n+ 1
2
, where one considers that the vacuum state counts

as a half state. The levels are nondegenerate because the corresponding classical

dynamics is ergodic. This can be understood by noticing that ergodicity implies that

the Hamiltonian is the only integral of motion. This, translated into the language of

quantum mechanics, says that the Hamiltonian alone constitutes a complete set of

commuting observables, so that the only quantum number is n.

At this point, it is quite easy to construct the quantum version of volume entropy.

Consider a finite (i.e., not necessarily macroscopic) nondegenerate quantum system.

Let N̂ be the quantum number operator, i.e.,:

(47) N̂
.
=

K∑

k=0

k|k〉〈k|

where {|k〉} is the complete orthonormal set of the Hamiltonian’s eigenstates. K, the

total number of energy levels, can be infinite. The eigenvectors of N̂ are the energy

eingenvectors, and the eigenvalues are the corresponding quantum numbers. Then

the quantum volume entropy operator can be defined as:

(48) Ŝ
.
= ln

(
N̂ +

1

2

)

We adopt a system of units where kB, the Boltzmann constant, is equal to 1.

4.2. Proof of the Entropy Principle

Armed with a quantum mechanical analogue of thermodynamic entropy (48), we

can now study its evolution under a time-dependent perturbation. As prescribed by
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the entropy principle (see Chap. 1) we shall assume that the system is thermally

isolated from the environment. As discussed previously, the system energy is not

known. This means that the system is assumed to be in a statistical mixture of

states, described by a density matrix ρ̂i, rather than a pure state |k〉. As prescribed

by Statement 3 we shall also assume that the system is initially at equilibrium. We

will translate this thermodynamic notion into the quantal requirement that ∂ρ̂i

∂t
= 0.

So the system is at equilibrium whenever ∂ρ̂
∂t

= 0 and it is out of equilibrium whenever

∂ρ̂
∂t
6= 0. At t = ti, we switch on a perturbation. This is implemented by changing the

value of some external parameter λ during the course of time: λ = λ(t). λ can be for

example the volume V of a vessel containing the system, or the value of some external

field like an electric or a magnetic field. At time t = toff , the perturbation is switched

off. We assume that at some time tf ≥ toff any transient effect has vanished and the

system has attained a new equilibrium state described by some ρ̂f , such that
∂ρ̂f

∂t
= 0.

Thus, before time ti and after tf the system is at equilibrium, and for ti < t < tf it is

out of equilibrium. Due to the perturbation the Hamiltonian changes from the initial

value Ĥi to the final value Ĥf , and accordingly the quantum entropy operator will

change in time and move from Ŝi to Ŝf . We introduce the following time-dependent

orthonormal basis set {|k, t〉}. The vectors |k, t〉 are defined as the eigenvectors of the

“frozen” Hamiltonian Ĥ(t). That is:

(49) Ĥ(t) =
K∑

k=0

εk(t)|k, t〉〈k, t|.

Since at time ti
∂ρ̂i

∂t
= 0, then [ρ̂i, Ĥ] = 0. This means that ρ̂i is diagonal over the

initial basis {|k, ti〉}:

(50) ρ̂(ti) =
K∑

k=0

pk|k, ti〉〈k, ti|

As anticipated in the introduction we shall assume that the initial probability distri-

bution pi is decreasing:

(51) p0 ≥ p1 ≥ ... ≥ pi ≥ ...
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Our definition of quantum entropy, (48), is essentially an equilibrium definition. Using

the bases {|k, t〉}, we can extend the definition to the out of equilibrium case, as

follows:

(52) Ŝ(t)
.
=

K∑

k=0

ln

(
k +

1

2

)
|k, t〉〈k, t|.

We shall assume that nondegeneracy is kept at all times. This implies that there is

no level crossing, and ensures that the quantum number operator gives the correct

eigenvalues at all times. The same assumption is used in Ref. [27] to ensure the

proper ordering of energy eigenvalues. Note that, unlike the Hamiltonian’s spectrum

(49), the spectrum of the quantum entropy (52) is time-independent. We define the

transition probabilities:

(53) |akn(tf )|2 = |〈n, tf |Û(ti, tf )|k, ti〉|2,

where

(54) Û(ti, t) = T exp

(
− i

}

∫ t

ti

Ĥ(s)ds

)

is the time evolution operator expressed in terms of the time-ordered exponential

T exp. The |akn(tf )|2’s represent the probabilities that the system will be found in

the state |n, tf〉 at time tf provided that it was in the state |k, ti〉 at time ti. They

satisfy the relations [27]:

(55)
K∑

k=0

|akn(tf )|2 =
K∑

n=0

|akn(tf )|2 = 1

and

(56) |akn(tf )|2 ≥ 0.

For the change in the expectation value of the quantum entropy Ŝ of Eq. (48) we

have:

(57) Sf − Si = Tr
[
ρ̂f Ŝf

]
− Tr

[
ρ̂iŜi

]
=

K∑
n=0

(p′n − pn) ln

(
n +

1

2

)
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where

(58) p′n =
K∑

k=0

pk|akn(tf )|2

is the probability that the system is in state |n, tf〉 provided that the initial proba-

bilities were pn.

Using the “summation by parts” rule [27]:

(59)
K∑

n=0

anbn = aK

K∑
n=0

bn −
K−1∑
m=0

(am+1 − am)
m∑

n=0

bn,

Eq. (57) becomes

(60) Sf − Si =
K−1∑
m=0

ln

(
m + 3

2

m + 1
2

) m∑
n=0

(pn − p′n)

We have:

m∑
n=0

(pn − p′n) =
m∑

n=0

pn −
m∑

n=0

K∑
i=0

pi|ain(tf )|2

=
m∑

n=0

pn

(
1−

m∑
i=0

|ain(tf )|2
)
−

m∑
n=0

K∑
i=m+1

pi|ain(tf )|2(61)

From Eqs. (55) and (56) we have (1−∑m
i=0 |ain(tf )|2) ≥ 0 and |ain(tf )|2 ≥ 0, there-

fore using the ordering of probabilities (51) we get (see also [27]):

m∑
n=0

(pn − p′n) ≥ pm

m∑
n=0

(
1−

m∑
i=0

|ain(tf )|2
)
− pm

m∑
n=0

K∑
i=m+1

|ain(tf )|2(62)

= mpm − pm

m∑
n=0

K∑
i=0

|ain(tf )|2 = 0(63)

where we used Eq. (55) in the last line. Noting that ln
(

m+ 3
2

m+ 1
2

)
> 0 in Eq. (60) , we

finally reach the conclusion that:

(64) Sf ≥ Si.

This inequality holds for any transformation acting on a thermally insulated, nonde-

generate quantum system which is initially at equilibrium with a decreasing ordering
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of probabilities. It is not hard to see that the equal sign holds for adiabatic trans-

formation (Statement 2). For this case the nondegeneracy assumption ensures that

the quantum adiabatic theorem holds [28]. This ensures that the transition probabil-

ity between states with different quantum number will be null during an adiabatic

transformation:

(65) |ain(tf )|2 = δin.

Therefore, for an adiabatic transformation we get p′i = pi (see Eq. 58), so we obtain

equality in Eq. 64

(66) Sf = Si.

This concludes our quantum mechanical proof of the entropy principle, that is State-

ments 2 and 3 of the second law. Note that the result in Eq. (66) is not surprising

because the quantum entropy operator has been defined as the quantum counterpart

of a classical adiabatic invariant (i.e., the volume integral Φ of Eq. (9))

We have established and used the following correspondences between thermody-

namics and quantum mechanics:

• entropy ­ ln
(
N̂ + 1

2

)

• equilibrium ­ ∂ρ̂
∂t

= 0

• (non)quasi-static process ­(non)adiabatic perturbation

Since the equilibrium condition for the final state has not been used in the proof,

inequality (64) holds for any t ≥ ti, where at time t the system is possibly out of

equilibrium. Note that this by no means implies that

(67) S(t)
.
= Tr[Ŝ(t)ρ̂(t)]

is a monotonically increasing function of time. All we can say is that if at times t1 <

t2 < ... < tn < ... the density matrix is diagonal and its spectrum is monotonically
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decreasing, then:

(68) S(t1) ≤ S(t2) ≤ ... ≤ S(tn) ≤ ...

If at time tA the system is out of equilibrium, or it is at equilibrium but not with

decreasing ordering of probabilities, there can well be a time tB > tA such that

S(tA) > S(tB). It is important to stress that, when the system is out of equilibrium

the quantity S(t) should not be regarded as the system’s thermodynamic entropy,

which is essentially an equilibrium property. Thus S(t) is only one of the many

possible out-of-equilibrium generalizations of entropy. What makes it special is that

it proves effective in addressing the entropy principle.

4.3. Thomson’s Formulation of the Second Law and the Minimal Work Principle

The present proof of the entropy principle is very close, in the approach and

methods, to a result discussed recently in Ref. [29]. The authors there considered

the following alternative formulation of the second law, which is attributed to Kelvin

(W. Thomson):

THOMSON’S FORMULATION: No work can be extracted from a

closed equilibrium system during a cyclic variation of a parameter

by an external source.

If we denote the work done by the external source as W , the principle can be expressed

simply as:

(69) W ≥ 0

The proof of [29] goes like the one we have proposed above for the entropy principle.

In this case one wants to study the following quantity:

(70) W
.
= Tr[Ĥf ρ̂f ]− Tr[Ĥiρ̂i]
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for a cyclic process. This means that the final Hamiltonian is assumed to be equal to

the initial one Ĥf = Ĥi
.
= Ĥ0. Thus:

(71) W
.
=

K∑
n=0

εn(p′n − pn),

where εn are the eigenvalues of Ĥ0. These are ordered according to ε1 < ε2 < ... <

εi < ... . The eigenvalues εn play the same role here as the entropy eigenvalues

ln(n + 1/2), in Eq. (57). Thus it is immediate to see that, under the assumption of

decreasing probabilities (51), Eq. (69) holds quantum-mechanically.

This result has been extended to the case of a possibly noncyclic transformation

in Ref. [27]. The authors have found that

(72) W − W̃ =
K∑

n=0

ε′n(p′n − pn) ≥ 0,

where ε′n are the eigenvalues of the final Hamiltonian, W is the work actually per-

formed on the system and W̃ is the work that would have been performed if the same

transformation had been carried adiabatically. The proof is formally equivalent to the

one discussed here. Equation (72) expresses the minimal work principle: whenever

we perform a nonadiabatic transformation, we spend more work than we would have

if performing an adiabatic one.

The formal similarity of Eq. (72) and Eq. (57) proves that the formulation of the

second law as a principle of minimal work or as a principle of entropy increase are

equivalent. In particular it is easily seen that:

(73) sign(W − W̃ ) = sign(Sf − Si),

so the two principles are equivalent. Further, whenever one is violated, the other will

be too. Cases where the minimal work principle is violated because of level crossing

are discussed by [27]. In those case The entropy principle would also be violated.

The history behind this kind of quantum mechanical proof of the second law is

relatively recent, and can traced back at last to the works of Ref. [30] and [31].
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Due to the lack of a suitable quantum mechanical analogue of entropy, though, the

application of such quantal approaches has remained restricted to the analysis of

statements that concern work, whose mechanical definition is quite straightforward.

To the best of my knowledge, similar arguments and approaches have been previously

proposed for addressing the entropy principle only in the relatively un-known work

of Tasaki [32].

4.4. Comparison with other Quantum Entropies

The employment of the quantum volume entropy improves quite a lot over previous

attempts at explaining the entropy principle based on quantum entropies. In fact,

the employment of the entropy in Eq. (67) has many advantages over other quantum

mechanical entropies present in literature. In contrast with von Neumann entropy:

(74) SvN = −Tr[ρ̂(t) ln ρ̂(t)]

which is constant in time because of unitarity of the quantum mechanical time-

evolution operator, the expectation value of the quantum operator Ŝ in Eq. (67)does

change in time, and it has been proved to increase under the assumption discussed.

Tolman’s coarse-grained entropy [10]:

(75) Scg(t) = −
∑

ν

Pν(t) ln Pν(t)

does change in time and it is an adiabatic invariant [10]. Nonetheless it fails in

accounting for the inequality in the case of nonadiabatic perturbations. All we know

is that for an infinitesimal abrupt transformation that begins and ends in a canonical

equilibrium state 1 the corresponding change in Scg is nonnegative [10]. But this

does not ensure that for any finite nonadiabatic transformation the change would

be nonnegative as required by Clausius formulation. Tolman’s argument that any

finite transformation could be reproduced by a sequence of many infinitesimal abrupt

transformations each followed by attainment of a canonical equilibrium does not seem

1That is ρ̂ = Z−1e−βĤ
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to be tenable. In fact, as a result of a finite nonadiabatic transformation, the system

could well end up in a noncanonical distribution [27]. Further, Tolman’s definition of

entropy of Eq. (75) applies only to macroscopic equilibrium systems. On the contrary

the result proved in Sec. 4.2 holds no matter the number of degrees of freedom of the

system. Thus the quantum volume entropy might turn out to be very useful in the

novel and fast growing field of quantum thermodynamics of nanoscale systems. See

for example Ref. [33] and Ref. [34].

4.5. Classical case

The result of Eq. (64) can be proved also classically. Let the system be initially

distributed according to some probability distribution function p0(E). Let p1(E) be

the final distribution. Let Φ0(E) and Φ1(E) denote the volumes enclosed by the

hyper-surfaces H0(q,p) = E and H1(q,p) = E respectively, where H0 and H1 are

the initial and final Hamiltonians. The volume entropy of a representative point that

at time ti lies on the hypersurface H0(q,p) = E is ln Φ0(E). We have a similar

expression for time tf . Then:

(76) Sf − Si =

∫ ∞

0

dEΩ1(E)p1(E) ln Φ1(E)−
∫ ∞

0

dEΩ0(E)p0(E) ln Φ0(E)

where Ωr denotes the initial (r = 0) or final (r = 1), density of states. Note that

according to Eq. (10), we have:

(77) dEΩr(E) = dΦr(E).

Thus we can make the change of variable E ↔ Φr in the integrals. Let2 Pr(Φr)
.
=

pr(E(Φr)), then we have (after dropping the subscript in Φr):

(78) Sf − Si =

∫ ∞

0

dΦ(P1(Φ)− P0(Φ)) ln Φ

This is the classical analogue of Eq. (57). The role of n+ 1
2

is played by the “enclosed

volume” Φ, and the discrete probabilities pn, p
′
n are now probability density functions

2Note that Φ(E) is a monotonically increasing function of E by definition, so it is always possible

to define the inverse function E(Φ).
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P0(Φ) and P1(Φ). Since the evolution is deterministic, it is possible to express the

final probability in terms of the initial one as

(79) P1(Φ) =

∫ ∞

0

dΘA(Φ, Θ)P0(Θ)

where A(Φ, Θ) is the Green function associated to the evolution of probabilities in Φ

space. That is, A(Φ, Θ) represents the evolution at time tf of a Dirac delta centered

around Θ at time ti. If we denote the time evolution operator that evolves probabilities

in Φ space from time ti to time tf as U (ti, tf ), A is defined as:

(80) A(Φ, Θ) = U (ti, tf )δ(Φ−Θ)

The function A(Φ, Θ) is the classical counterpart of the transition probability |akn|2.
Evidently, thanks to the classical adiabatic theorem, we have for an adiabatic switch-

ing:

(81) A(Φ, Θ) = δ(Φ−Θ)

and Sf = Si as is known from Hertz’s theory (see Chap. 2). The equation above is

the classical counterpart of Eq. (65). For nonadiabatic switching we expect A(Φ, Θ),

considered as a function of Φ, to be bell-shaped with some finite width. The prob-

lem of determining the shape of A has been studied by Jarzinsky [20], who proved

that, within second order of adiabatic perturbation theory, A actually drifts and dif-

fuses according to an effective Fokker-Planck equation. Since A(Φ, Θ) represents a

probability distribution function in Φ space, it satisfies:

(82) A(Φ, Θ) ≥ 0

and

(83)

∫ ∞

0

dΦA(Φ, Θ) = 1.

Using Liouville’s Theorem it is also possible to prove that:

(84)

∫ ∞

0

dΘA(Φ, Θ) = 1;
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see Appendix A. The analogy with the quantum case has been completely established

now, and the proof of the entropy principle follows by repeating the same steps. The

requirement on the initial distribution P0(Φ) is that it be a decreasing function of

Φ. Since Φ0(E) is increasing, this requirement translates into the requirement that

p0(E) be a decreasing function of E.

4.6. The role of the Initial Equilibrium

Inequality (64) for entropy holds as a direct consequence of the time reversal

symmetric microscopic laws of quantum or classical mechanics. As such, it does

not entail any arrow of time. The reason for the emergence of the ≥ sign in Eq.

(64) should be looked for, rather, in the fact that we have considered only a certain

restricted subset of all possible initial conditions. To explain this point it might be

useful to see our ensemble of systems as a box containing many balls (see Fig. 4.1).

Each ball represents an element of the ensemble. The box is divided into labelled cells

that represent the quantum states. The cell closest to the left wall is the state with

n = 0, its right neighbor cell is the state n = 1 and so forth. At time ti, the balls are

distributed in the box according to some probability pn. We can consider the time-

dependent perturbation acting on the system as the action of shaking the box. The

effect of the shaking is that of flattening out the initial distribution. Thus if initially

we had some accumulation of balls towards the left side of the box, we expect the final

state to be flatter. If we look at the average value of n or any other increasing function

of n, like for example ln(n+1/2), we would record an increase of such values. This is

a mere consequence of the fact that initially we had an accumulation towards the left.

If initially we have had an accumulation towards the right, again the shaking would

flatten out the distribution, but this time we would see a decrease of the average

value of n and of ln(n + 1/2). If instead the initial distribution were flat, we would

see no change in those quantities. Indeed it is quite easy to see that the sign of

inequality (64) would be reversed if an increasing ordering of initial probability were

assumed. Therefore, for such subset of the set of all possible initial distributions, we
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Figure 4.1. Visual representation of the effect of a non adiabatic per-

turbation on a quantum system which is initially described by decreas-

ing probabilities. After shaking, the initial accumulation towards the

left would flatten out, and the average value of ln(n + 1/2) (i.e. the

entropy) would increase.

would actually have a law of entropy decrease! This reflects the fact that there is no

asymmetry in the time evolution of the volume entropy operator. Thus, in principle,

it should be possible to observe a decrease of entropy if the initial equilibrium would

be given by an inverted population. In other words, we should be able to observe

an inverted second law of thermodynamics in negative absolute temperature systems.

Indeed experimental evidence of this exists since the very pioneering works of Pound,

Purcell and Ramsey on spin systems [35, 36, 37, 38]. They observed that

“when a negative temperature spin system was subjected to res-

onance radiation, more radiant energy was given off by the spin

system than was absorbed [38].”

This means that it is possible to extract work from a negative temperature system by

means of a cyclic transformation. In other words, for negative temperature systems
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we already have experimental evidence that, in contrast to Eq. (69):

(85) W ≤ 0

Because of the equivalence of the minimal work principle and the entropy principle,

in this case, in contrast to Eq. (64) we would also have:

(86) Sf ≤ Si

The fact that the law of entropy increase is overwhelmingly more often observed than

its mirror-image law of entropy decrease is a consequence of the fact that positive

temperatures are overwhelmingly more common than negative ones. The former in

fact is the natural state of matter, whereas the second can only be created artificially

and only in few very special cases. Ramsey [38] already pointed out that very strict

conditions must be met for a system to be capable of negative temperatures: (a) the

system must be at equilibrium, (b) there must be an upper limit in the Hamiltonian’s

spectrum, and (c) the system must be thermally isolated from the environment. The

second requirement is very restrictive as most systems have an unbounded kinetic

energy term in the Hamiltonian3. Also the requirement (c) is restrictive in the sense

that thermal insulation can be achieved only approximately and for a certain amount

of time. On the contrary, the inevitable thermal contact of our system with its

environment would eventually bring it to the monotonically decreasing Gibbs state

(87) pi = Z−1e−βεi .

The latter describes the natural state of matter, and as such is the inevitable initial

condition of any thermodynamic experiment4. Thus the time asymmetry of the laws

3See [39] for a recent and interesting example of negative kinetic temperature, though.
4If we consider that in experiments on negative temperature systems one has first to create an

inverted population from a natural one, we will see that indeed the total entropy change would be

positive. The entropy spent to create the inverted population is larger than that gained back when

applying the resonant radiation.
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of thermodynamics arises at the level of the initial thermal equilibrium, rather than

in the second law itself. This seems to be in agreement with the view expressed by

Brown and Uffink [16], according to which the second law does not entail any time

asymmetry. The origin of the arrow of time should be found, instead, in the minus

first law of thermodynamics, namely the equilibrium principle cited in Chap. 2.
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CHAPTER 5

APPLICATIONS OF VOLUME ENTROPY: MICROCANONICAL PHASE

TRANSITIONS IN SMALL SYSTEMS

5.1. Overview of Microcanonical Phase Transitions

The work of D.H.E. Gross [40] has recently focused attention on the fact that a

microcanonical description of systems which may display phase transitions is in gen-

eral more adequate than the traditional canonical one. This is because the canonical

description may “smear out” important information contained in the richer micro-

canonical description [40]. For example negative specific heats, which have recently

been observed experimentally in mesoscopic systems [41, 42, 43], can be accounted

for in the microcanonical ensemble but not in the canonical one [44]. Indeed it is well

known that the canonical ensemble and microcanonical ensemble are not in general

equivalent, even when the thermodynamic limit is considered [2, 40, 45, 46].

The statistical mechanical analysis of physical systems based on the canonical

ensemble is quite well established with universal consensus. Roughly speaking one

has to compute the partition function Z(β) and derive the thermodynamics of the

system from the free energy F = −β−1 ln Z(β). For the microcanonical ensemble there

is not such general consensus. Since the pioneering works of Boltzmann and Gibbs,

as we have seen in Chap. 2, two possibilities have been given for the microcanonical

analysis of physical systems, which correspond to surface and volume entropy in Eq.

(6) and (8), respectively.

In the literature about microcanonical phase transitions the surface entropy is

certainly the most popular. For example, the method of Barré et. al. [45], based on

large deviation techniques, uses the surface entropy. The surface entropy is also used

in Rugh’s microcanonical formalism adopted in Ref. [47]. The strongest advocate of
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surface entropy is perhaps Gross [48]. Nonetheless, pioneers of microcanonical phase

transitions, such as Thirring [49] and Lynden-Bell [44], used the volume entropy.

5.1.1. Why use Volume Entropy

As discussed previously (see Sec. 3.1) the two entropies are expected to coincide

in the thermodynamic limit (see Eq. (11)). However when the number of degrees of

freedom of the system under study is small relevant differences may appear. There-

fore, it is necessary to choose the entropy properly. Some authors [50, 51] have already

pointed out that the surface entropy is not adequate when dealing with small sys-

tems because it does not account properly for finite-size effects. On the other hand,

since the volume entropy accounts for all three statements of the second law as a

consequence of the properties of the Hamiltonian time evolution, and no matter the

number of degrees, then the volume entropy must naturally be considered a better

mechanical analogue of thermodynamic entropy than surface entropy.

The surface entropy does not generally reproduce statements 1 and 2. No general

proof exists of Statement 3 from surface entropy that would not involve taking the

thermodynamic limit. Concerning Statement 2, we have already discussed in Sec.

3.1.2 the fact that the surface entropy is not an adiabatic invariant. That Statement

1 is only satisfied approximately by surface entropy has been proved by Gallavotti

[2]. He finds:

(88) dSΩ =
dE + PdV

T
+ O

(
1

N

)

This result is not a surprise if we consider that in general SΦ 6= SΩ, dSΦ = dE+PdV
T

and the fact (Eq. (11)) that the surface entropy approaches the volume entropy for

N tending to infinity.

Recently more authors are becoming aware of the theoretical value of volume

entropy. For example, on the basis of a Laplace transform technique for the mi-

crocanonical ensemble, Pearson et. al. [52] reached the conclusion that the volume

entropy “is the most correct definition for the entropy, even though it is unimportant

42



for any explicit numerical calculation”, meaning that in the thermodynamic limit the

difference with surface entropy becomes negligible. On the other hand, for a small

system, such intrinsic correctness of the volume entropy becomes very important.

Adib [51] argues that the finite size corrections to surface entropy found in Ref. [53]

would be unnecessary if the volume entropy were used instead.

It is worth mentioning that the volume entropy has another property that is

particularly important for small systems which have negative heat capacity, namely

it is a naturally nonextensive entropy. According to Lynden-Bell [44], systems with

negative heat capacity are necessarily nonextensive. The property of nonextensivity

of volume entropy follows directly from the composition rule of enclosed volumes Φi,

i = 1, 2 , of two systems with total energy E = E1 + E2 [1]:

(89) Φ(E) =

∫
dE1Ω1(E1)Φ2(E − E1)

which is not a simple multiplication but a form of convolution which accounts for all

possible partitions of energies between the two systems. On the other hand, despite

what is often stated in literature, the surface entropy is also nonextensive. The

composition rule for surface integrals Ω is convolution, not multiplication [1]:

(90) Ω(E) =

∫
dE1Ω1(E1)Ω2(E − E1).

In summing, the volume entropy accounts for certain basic principles of thermody-

namics, like the heat theorem and Clausius formulation of the second law equally well

for large and small systems, whereas the surface entropy accounts for them only in

the case of large systems. For this reason the volume entropy is the most appropriate

mechanical analogue of thermodynamic entropy for both large and small systems.

5.2. Lennard-Jones Chain

According to the Helmholtz theorem (see Sec. 3.2) the mechanical analogue of

thermodynamic entropy of a one dimensional system is the Helmholtz entropy in Eq.
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19. However the theorem holds if there is only one trajectory per energy level (ergod-

icity). In this section we want to study the properties of the Helmholtz entropy when

the ergodic conditions breaks down. In particular we are going to study the ther-

modynamic behavior of a 1D system that has two possible disconnected trajectories

for energies below a certain critical value and only one above that value. Although

the Helmholtz theorem does not hold for energy below the critical value, it is easy to

adapt it and give the expression for the entropy if we know on what trajectory the

system actually is. In this case P and T would be calculated as time averages over

the actual trajectory and the entropy would be given by the area enclosed by that

trajectory only. Let us illustrate this with a practical example. Let us consider a 1D

chain composed of three particles which interact via a Lennard-Jones potential. Let

us fix the position of two of them and let us place the third one in between, so that

the first two particles act as walls of a 1D box. Let us now study the behavior of the

particle inside the box. Let the interaction potential be:

(91) u(x) =
1

x12
− 1

x6

and let us place the “walls” at x = ±V/2. Then the particle in the box is subject to

the following potential:

(92) ϕ(x, V ) = u(x + V/2) + u(x− V/2)

For values of V larger than a certain critical value Vc ' 2.5, this system has a critical

energy Ec(V ) = φ(0, V ) such that for energy below Ec(V ) ergodicity is broken and

there are two trajectories per energy level. Above Ec the dynamics is ergodic and

there is only one trajectory per energy level. Figure 5.1 shows the graph of ϕ(x, 4)

and Figure 5.2 shows a contour plot of various energy levels in phase space for a

particle of mass m = 1 in the Lennard-Jones box of size V = 4 > Vc . For energy

E = Ec we have a separatrix. Below Ec the curve of constant energy splits into two

disconnected curves, whereas for values of E larger than Ec we have only one curve.

Below the critical energy the volume integral Φ is given by the area enclosed by one
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Figure 5.1. Lennard-Jones box potential profile ϕ(x, V ) for V = 4 > Vc.
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Figure 5.2. Phase space structure for a particle of mass m = 1 in a

Lennard-Jones box of size V = 4 > Vc. The separatrix corresponds to

the critical energy Ec = −0.0308. Below the critical energy there are

two distinct trajectories (the dynamics is not ergodic).
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Figure 5.3. Entropy versus energy for a particle of mass m = 1 in a

Lennard-Jones box of size V = 4 > Vc. The discontinuity of entropy at

the critical energy signals a discontinuous phase transition.

of the two possible trajectories. As the energy crosses the critical value the integral

Φ jumps discontinuously. In formulae we have:

(93) Φ(E) =

[
1

2
θ(Ec − E) + θ(E − Ec)

] ∫
[2m(E − ϕ(x, V ))]1/2

+ dx.

The symbol [y]
1/2
+ denotes a function that is equal to

√
y for y ≥ 0 and is null

otherwise. The volume entropy, which is calculated by taking the logarithm of the

expression above, then displays a jump at the critical energy as well. Figure 5.3 shows

a plot of S as a function of E, for the values m = 1 and V = 4 > Vc. The critical

energy is Ec = −0.0308. Figure 5.4 shows the temperature plotted against the energy

calculated, according to the microcanonical equipartition theorem of Eq. (16):

(94) T
.
= 〈2K〉t =

Φ(E)

Ω(E)
=

(
∂SΦ

∂E

)−1

.

There is a region of negative slope in the graph which correspond to a negative heat

capacity.
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Figure 5.4. Temperature versus Energy for a particle of mass m = 1

in a Lennard-Jones box of size V = 4 > Vc. The curve displays a region

of negative heat capacity. At the critical energy the temperature goes

to zero.

5.3. Discussion

The example provided in the previous section is perhaps too simple to be of

interest to any specific physical problem. Nonetheless it illustrates qualitatively the

mechanism of microcanonical phase transition as captured by the volume entropy.

Such phase transitions are associated with the crossing of separatrix trajectories, for

which the dynamics of the system has no finite time scale. The figures show neatly

that at the separatrix energy the entropy has a discontinuous jump, the temperature

goes to zero, and for energies below the critical energy we have a region of negative

heat capacity. These are not special features of the system studied.1 Whenever a

separatrix is crossed there is a sudden open-up of a larger portion of phase space

1A similar behavior has been observed in a chain of particles interacting via a φ4 potential

studied with volume entropy [54] and has been predicted for the pendulum [50].
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Figure 5.5. Entropy versus Energy for E < Ec. Right below the

critical energy the entropy function (thick line) is convex (the thin

straight line is only a guide for the eye).

for the trajectory to enclose which leads to a discontinuity in the entropy2. Further,

at the separatrix, the period of motion, which for a well known theorem of classical

mechanics is given by Φ′ = Ω [24], becomes infinite. Therefore the temperature, i.e.,

T = Φ/Ω goes to zero. Since the temperature T
.
= 2 < K >t=< p2/m >t is positive

definite, below the critical energy there necessarily is a region of negative slope, that

is negative heat capacity. The appearance of a negative heat capacity is associated

with a convex dip in the entropy (see Fig. 5.5) which signals the approach to the

separatrix from below. Such convexity appears necessarily because limE→E−c
∂S(E)

∂E
=

limE→E−c
1

T (E)
= +∞.

It is important to notice that using the surface entropy would lead to a drastically

different result. In this case the entropy, instead of having a discontinuous jump,

would diverge! Furthermore the temperature would be calculated as TΩ = Ω/Ω′,

2The idea that microcanonical phase transitions are associated to sudden open-up of phase space

has been expressed also in Ref. [48]
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which might not tend to zero at the critical energy! Note also that TΩ is not propor-

tional to the average kinetic energy and can be negative. Therefore, in agreement with

Ref. [50] we believe that surface entropy is not suited for low dimensional systems

with broken ergodicity.

The volume entropy could be used to address microcanonical phase transitions in

small dimensional systems with either long- or short- range interactions, like the φ4

model, chains of particles interacting via Lennard-Jones potential [55] or the Hamil-

tonian Mean Field model [56]. All these models are expected to undergo a breaking of

ergodicity [55, 57]; thus there are separatrix trajectories and possible phase transitions

that the volume entropy can detect.

One of the most well-known no-go theorems of statistical mechanics says that it

is impossible to have phase transitions in 1D chains of particles interacting via short

ranged forces [58]. Our result is seemingly in contrast with that theorem. Indeed,

that theorem says that the canonical partition function Z(β) is analytical. This does

not preclude the microcanonical volume integral Φ(E) from being non-analytical. In

other words the theorem says that it is impossible to have canonical phase transitions

in 1D chains, thus leaving open the possibility of microcanonical phase transitions.

As a matter of fact the existence of a microcanonical phase transition in the 1D chain

studied above confirms that the two ensembles are nonequivalent.

The advantage of using the volume entropy is that it provides a good mechanical

analogue of thermodynamic entropy even for small system, thus accounting properly

for the finite-size effects. As the development of technology is allowing experimen-

talists to probe the thermodynamic behavior of smaller and smallers systems, this

is becoming an increasingly important task. The main limitation of the present ap-

proach is that it is restricted to classical statistical mechanics, and thus it does not

account for quantum-mechanical phenomena. More work in this direction is certainly

necessary.
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Recently also Dunkel and Hilbert have pointed out the importance of adopting

the volume entropy instead of surface entropy [59]. They studied the thermodynamic

behavior of few simple models of interacting particles inside a box. They studied

the square-well interaction potential (which is exactly solvable [60]), the diatomic

Lennard-Jones molecule (exactly solvable), many particle Lennard-Jones chains as

well as the Takahashi gas [59]. The more interesting feature that appears when dealing

with many degrees of freedom is the appearance of oscillations in the T (E) graph.

Each oscillation corresponds to one particle jumping from the bound state to the

free state. The graphs show a low-energy smooth cluster phase region, an oscillatory

intermediate region, corresponding to the phase transition whose extension can be

understood as the latent heat, and a high-energy smooth region corresponding to the

gas phase.

The idea of non-analyticity of microcanonical entropy as a signature of phase

transitions appears also in the work of M. Kastner et.al. [61]. These authors have

put forward a very useful equation that relates the degree of non-analyticity of the

microcanonical entropy with the order of the saddle points in the potential energy

landscape. According to [61] the order of non-analyticity of the microcanonical en-

tropy increases with the number of degrees of freedom so no phase transition should be

observable in macroscopic isolated systems. The authors argue that these may result

from the dense accumulation of many non-analytical points in the thermodynamic

limit.
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CHAPTER 6

OPEN ISSUES IN NONEXTENSIVE THERMODYNAMICS

Around 20 years ago a generalization of the standard Gibbs-Boltzmann statis-

tics was proposed by C. Tsallis [62]. The generalization scheme proposed by Tsallis

was based on the adoption of a generalized Shannon’s informational entropy, which,

when maximized under the constraints of normalization and average energy, leads

to deformed exponential statistics. Since then, the corresponding generalized ther-

mostatistics, also named non-extensive thermodynamics, has proved to be a very

powerful tool of investigation within the most diverse fields.

Many authors have addressed two problems connected with the employment of

Tsallis nonextensive thermostatistics. The first is that of providing a theoretical

foundations other than the information-theoretical one. The second is that of defining

an even larger class of ensembles which include the former ones. This second part of

the dissertation will address both these two problems.

First we are going to study the mechanical foundations of Tsallis ensembles. In

order to do so, we shall return again to Boltzmann’s work on the heat theorem [12].

Thus as in First part of the dissertation we are taking again the fundamental equation

of thermodynamics:

(95)
dE + PdV

T
= exact differential = dS

as our starting point. Boltzmann used the heat theorem as a criterion to assess

whether a certain statistical ensemble provides a mechanical model of thermodynam-

ics, and called the ensembles that satisfy such a criterion orthodes. In Chap. 7 we

shall provide a definition of orthode and we will see that Tsallis ensembles satisfy the

orthodicity requirements, not only microcanonical and canonical ensembles.
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Other interesting properties of Tsallis ensembles are investigated in Chap. 8. By

slightly modifying an already present theorem due to Almeida [63], we show that they

describe the behavior of (possibly small) classical systems in contact with finite heat

baths. We also prove that in the limit of infinite bath heat capacity (thermalization)

the Tsallis ensemble reduces to the canonical one, and that, in the limit of null heat

capacity (thermal insulation), they reduce to the microcanonical one as well. This

allows us to reconsider the standard derivation of the microcanonical ensemble from

a maximum entropy principle.

Finally, in Chap. 9 we generalize further and show that the family of Tsallis

ensemble is a subset of a more general class of orthodes that we shall call dual orthodes.

Canonical, microcanonical, Tsallis and Gaussian ensembles all belong to the class of

dual orthodes. We also address questions concerning their equivalence.
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CHAPTER 7

TSALLIS ENSEMBLES AND THE HEAT THEOREM

7.1. Definition of Orthode

The idea on which Boltzmann’s notion of orthode is based is quite simple. Con-

sider a generic statistical ensemble of distributions, ρ(z; λ0, λi) parameterized by one

“internal” parameter λ0 and a given number of “external” parameters λi i = 1, 2, 3, ....

The symbol z denotes the phase space point vector z = (p1, p2, ..., pn, q1, q2, ..., qn).

We assume the system to be Hamiltonian with Hamilton function of the form H =

K(p) + ϕ(q; λi). The Hamiltonian depends explicitly on the external parameters, λi

i = 1, 2, 3, ..., which are also called “generalized displacements”. For the sake of sim-

plicity, we consider only one external parameter λ1 = V . This may be, for example,

the volume of a vessel containing the system. The kinetic energy is assumed to be of

the form K(p) = p2

2m
. Then we define the macroscopic state of the system by the set

of following quantities:

(96)

Uρ
.
= 〈H〉ρ “energy”

Tρ
.
=

2〈K〉ρ
n

“doubled kinetic energy per degree of freedom”

Vρ
.
= 〈V 〉ρ “generalized displacement”

Pρ
.
=

〈−∂H
∂V

〉
ρ

“generalized conjugated force”,

where 〈·〉ρ denotes the average over the given ensemble ρ. Now let the parameters

λ0, V change by infinitesimal amounts, and calculate the corresponding change in the

macroscopic state. If the state changes in such a way that the fundamental equation

of thermodynamics, namely

(97)
dUρ + PρdVρ

Tρ

= exact differential,
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holds, then we say that the ensemble provides a good mechanical model of thermody-

namics. Equation (97), that is the heat theorem (Statement 1 in Chap. 2), expresses

the fact that the heat differential δQ admits an integrating factor (T−1), whose physi-

cal interpretation is that of reciprocal absolute temperature (namely doubled average

kinetic energy per degree of freedom). Correspondingly the function that generates

this exact differential is interpreted as the physical entropy S of the system. The en-

sembles that satisfy Eq. (97) were called orthodes by Boltzmann [12] (see also [2] and

[3] for modern expositions). Boltzmann proved that microcanonical and canonical

ensembles are orthodes, and placed this fact at the very heart of statistical mechan-

ics. After introducing Tsallis ensembles in the next section, we are going to review

the proofs of orthodicity of canonical and microcanonical ensembles and prove that

Tsallis (escort) ensembles are also orthodic.

7.2. Definition of Tsallis (Escort) Ensembles

The Tsallis escort ensembles of indices q ≤ 1 can be parameterized either via U, V

or β, V and are defined as

(98) ρq(z; ¤, V ) =
[1− β(1− q)(H(z; V )− U)]

q
1−q

Nq

,

where

(99) Nq(¤, V ) =

∫
dz [1− (1− q)β(H(z; V )− U)]

q
1−q .

The symbol “¤” has to be replaced by either U or β according to the parametrization

adopted. In the (U, V ) parametrization, one first fixes U and then adjusts β in such

a way that:

(100) U = 〈H〉ρq
,

In this parametrization Eq. (100) defines the function β(U, V ). In the (β, V ) parametriza-

tion, β is fixed instead and U is adjusted accordingly, in such a way that Eq. (100)

defines the function U(β, V ).
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We shall refer to the possibility of two distinct parameterizations as a property of

duality. Therefore we shall say that Tsallis escort ensembles are dual ensembles.

Let us explain why we are interested in the distributions (98) with index q ≤ 1.

According to the established theory of nonextensive thermodynamics, the probability

distribution function of a nonextensive system is obtained via maximization of Tsal-

lis entropy (Sts
.
=

∑
pq

i−1

1−q
) subject to constraints on normalization (

∑
pi = 1) and

escort-averaged energy (
∑

pq
i εi∑
pq

i
= U). The result of the maximization procedure is the

Tsallis ensemble (pi = N−1
q [1− β(1− q)(εi − U)]

1
1−q ) [64]1. The rule for the calcula-

tion of average quantities is that the escort version of the distribution pi should be

employed. This is defined as Pi =
pq

i∑
pq

i
[64]. In other words, according to the theory

of nonextensive thermodynamics, averages should be calculated over the distribution

Pi = N−1
q [1− β(1− q)(εi − U)]

q
1−q , or, in the continuum case, over the distribution

in Eq. (98)2. If we want to study the foundations of nonextensive theory adopting

Boltzmann’s method, then we must check the orthodicity of the escort ensemble (98)

because this is the ensemble that we have to employ when defining the state of the

system (96). As we will see below, we are interested in q ≤ 1, because this is a

necessary condition for orthodicity of the corresponding escort ensemble. But first

let us recall the proofs of orthodicity of the canonical and microcanonical ensembles

7.3. Orthodicity of the Canonical Ensemble

The canonical ensemble is parameterized by one internal parameter, usually indi-

cated by the Greek letter β, and the external parameter V :

(101) ρc(z; β, V ) =
e−βH(z;V )

Z(β, V )

1Note that the quantities pi U , Nq β introduced here correspond respectively to p̃
(nor)
i Ũ (nor),

Z̃
(nor)
q and β∗ of Ref. [64]. Note also that β does not correspond to the Lagrange multiplier used in

the Tsallis maximum entropy principle.

2Note the exponent 1
1−q of pi, as opposed to the exponent q

1−q of Pi.
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where

(102) Z(β, V )
.
=

∫
dze−βH(z;V ),

The following function:

(103) Sc(β, V ) = βUc(β, V ) + ln Z(β, V )

generates the heat differential, and therefore is the entropy associated with the canon-

ical orthode. To prove that, we have to calculate the partial derivatives of Sc:

(104)
∂Sc

∂β
= Uc + β

∂Uc

∂β
− 〈H〉c = β

∂Uc

∂β

(105)
∂Sc

∂V
= β

∂Uc

∂V
− β

〈
∂H

∂V

〉

c

= β
∂Uc

∂V
+ βPc

where the symbol < · >c denotes average over the canonical distribution (101) and the

state definition (96) has been used. Further according to the canonical equipartition

theorem3

(106)

〈
pi

∂H

∂pi

〉

c

=
1

β

where i counts the degrees of freedom. Therefore, by comparison with (96), Tc = 1
β
.

Combining Eqs. (104)-(106) together we get:

(107) dS = β

(
∂Uc

∂β
dβ +

∂Uc

∂V
dV + PcdV

)
=

dUc + PcdVc

Tc

,

which proves that the canonical ensemble is an exact orthode.

7.4. Orthodicity of the Microcanonical Ensemble

Let us recall the definition of the microcanonical ensemble from Chap. 3. The

microcanonical ensemble is parameterized by (U, V ):

(108) ρmc(z; U, V ) =
δ(U −H(z; V ))

Ω(U, V )

3In this work we do not adopt the rule that repeated indices are summed
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where δ denotes Dirac’s delta function and

(109) Ω(U, V )
.
=

∫
dzδ(U −H(z; V ))

denotes the density of states or structure function [1]. Then the generalized Helmholtz

theorem of Chap. 3 tells us that the volume entropy

(110) Smc(U, V ) = ln

∫
dzθ(U −H(z; V ))

generates exactly the heat differential. Note that the microcanonical equipartition

theorem of Eq. (15) is essential in proving the generalized Helmholtz theorem.

7.5. Tsallis Escort Ensembles are Exact Orthodes

In order to prove orthodicity of Tsallis escort ensembles of Eq. (98) let us first

introduce the following quantity:

(111) Nq(¤, V )
.
=

∫
dz [1− (1− q)β(H(z; V )− U)]

1
1−q .

As we have seen above, the proof of orthodicity of an ensemble is based on the

corresponding equipartition theorem (Eq. (106) for the canonical ensemble and Eq.

(15) for the microcanonical one). Interestingly there exists a Tsallis equipartition

theorem as well [65]:

(112) Tq =

〈
pi

∂H

∂pi

〉

ρq

=
1

β
.

The proof of this formula is based on the well known fact that, as a consequence of

Eq. (100) one has:

(113) Nq(¤, V ) = Nq(¤, V ).

Using the Tsallis equipartition of Eq. (112) and Eq. (113) we can prove that the

following quantity

(114) Sq(¤, V ) = lnNq(¤, V )
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generates the heat differential both in the U, V and β, V parameterizations. Let us

treat the U, V case first. Remember that within this parametrization β is a function

of U, V . Therefore:

∂Nq

∂U
=

∂

∂U

∫
dz [1− (1− q)β(H − U)]

1
1−q

=

∫
dz [1− (1− q)β(H − U)]

q
1−q

[
− ∂β

∂U
(H − U) + β

]

= −Nq
∂β

∂U
〈H − U〉ρq + Nqβ = Nqβ =

Nq

Tq

(115)

and

∂Nq

∂V
=

∂

∂V

∫
dz [1− (1− q)β(H − U)]

1
1−q

=

∫
dz [1− (1− q)β(H − U)]

q
1−q

[
∂β

∂V
(U −H)− β

∂H

∂V

]

= Nq
∂β

∂V
〈U −H〉 −Nqβ

〈
∂H

∂V

〉
= NqβP = Nq

Pq

Tq

(116)

where according to the general state definition of Eq. (96) Pq =
〈

∂H
∂V

〉
ρq

and U = Uq.

Then, combining Eqs. (112), (115) and (116) together, we obtain:

(117) dSq =
dNq

Nq

=
dUq + PqdV

Tq

,

which proves orthodicity in the U, V parametrization.

Similarly, within the β, V parametrization one has U = U(β, V ), and thus:

∂Nq

∂β
=

∂

∂β

∫
dz [1− (1− q)β(H − U)]

1
1−q

=

∫
dz [1− (1− q)β(H − U)]

q
1−q

[
−(H − U) + β

∂U

∂β

]

= −Nq〈H − U〉+ Nqβ
∂U

∂β
=
Nq

Tq

∂U

∂β
,(118)

and

∂Nq

∂V
=

∂

∂V

∫
dz [1− (1− q)β(H − U)]

1
1−q

=

∫
dz [1− (1− q)β(H − U)]

q
1−q

[
β

∂U

∂V
− β

∂H

∂V

]
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= Nqβ
∂U

∂V
−Nqβ

〈
∂H

∂V

〉
=
Nq

Tq

(
∂U

∂V
+ Pq

)
.(119)

Therefore, we obtain:

(120) dSq =
dNq

Nq

=

∂U
∂β

dβ + ∂U
∂V

dV + PqdV

Tq

.

However, dU is

(121) dU =
∂U

∂β
dβ +

∂U

∂V
dV,

so Eq. (120) becomes:

(122) dSq =
dUq + PqdV

Tq

which proves the orthodicity of Tsallis ensembles within the β, V parametrization.

7.6. Remarks

7.6.1. Duality

The fact that two parameterizations are available for the Tsallis escort ensembles

can be thought of as a duality property that these ensemble (98) do not share with

the canonical and microcanonical ensembles. Furthermore it suggests that the Tsallis

ensemble can be thought of as a hybrid ensemble, in between the canonical and the

microcanonical ensemble. In fact, we see in the Chap. 8 that the Tsallis escort

ensembles interpolate between canonical and microcanonical ensembles as q ranges

from 1 to −∞.

7.6.2. Connection with Rényi Entropy

It is important to point out that the mechanical treatment we have presented

above is independent and alternative to the standard information theoretic approach.

We have considered an ensemble and verified whether it is an orthode, adopting the

same procedure used by Boltzmann, much before any information-theoretic approach
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was developed. The entropy associated with the Tsallis escort orthodes, i.e., Eq.

(114), coincides with the Rényi entropy [66]

(123) Sa[ρ] =
1

1− a
ln

∫
dzρ(z)a

of order a = 1/q calculated over the power-law distribution in Eq. (98). This fact

follows straightforwardly from Eq. (113). In the Chap. 8 we show that, on the

other hand, the constrained maximization of the 1/q-Rényi entropy leads back to the

q-Tsallis escort ensembles in Eq. (98).

7.6.3. Mechanical Additivity

It is known that the Rényi entropy is an extensive and additive quantity [67],

where the qualifier “additive” refers to the factorization of probabilities. Adopting

a mechanical viewpoint rather than information theoretic, we may ask whether the

Rényi entropy of Eq. (114) is additive in a mechanical sense, referring rather to the

decomposition of the system into two noninteracting sub-systems with Hamiltonian

H1 and H2 with H = H1 + H2. Then it is easy to see that if the canonical entropy

is additive (thanks to the factorization of the exponential (e−β(H1+H2) = e−βH1e−βH2)

[1]). The entropy in Eq. (114), is not, because the power-law does not factorize.

7.6.4. Exact Orthodicity

In our view, it is very important to stress that Eq. (117) holds independent of the

number of degrees of freedom of the system, i.e., the ensemble (98) is an exact orth-

ode. In summary, the main result found here states that the Tsallis escort ensemble

provides a mechanical model of equilibrium thermodynamics even for low dimensional

systems. Exact orthodicity is not an exclusive feature of the Tsallis ensemble, as mi-

crocanonical and canonical ensembles are exact orthodes too. Therefore, in principle,

all three ensembles are potentially valid for describing low dimensional systems. The

result proved above holds for interacting Hamiltonians, without restriction to ideal

systems. In these cases one should first check that the function β(U, V ) exists and is

differentiable. Whether the result also holds for systems with long-range interactions,
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like in the Hamiltonian Mean Field model introduced by Antoni and Ruffo [56], is a

very interesting problem which deserves further studies.

7.6.5. Free Energy

Due to orthodicity, namely the fact that standard thermodynamic relations exist

among the quantities U, P, T, V, S, one can construct the thermodynamic potentials

as usual by means of Legendre transformations. For example, the free energy is given

by:

(124) F = U − TS = U − T lnNq.

This expression is in agreement with the results of Ref. [68, see Eq. (29)] where

the free energy is derived from the requirement that it should be expressed as a

function of the physical temperature β−1. Here, Eq. (124) is obtained by adopting

Boltzmann’s general method, namely by proving that the heat theorem holds within

the Tsallis escort ensemble. Our approach is a very fundamental and unifying one.

Thanks to Boltzmann’s concept of orthodicity, Tsallis escort ensembles have been

framed within the general theory of statistical ensembles beside the microcanonical

and the canonical ensembles.

7.6.6. Connection with Tsallis Entropy

Let us now focus on the connection of this work with the standard nonextensive

approach where the leading role is played by the Tsallis entropy. It is quite simple

to show that, for any monotonic C1 function g(x), the quantity Nqg
′(Nq)β is an

integrating factor for dE + PdV and the associated entropy is S(g) = g(Nq). In fact,

using Eqs. (115) and (116) would lead to

(125) dS(g) = Nqg
′(Nq)β(dE + PdV ).

Using the condition that the integrating factor is the average kinetic energy, i.e., β,

leads us to Nqg
′(Nq) = 1, which returns us back to the logarithmic entropy S =

logNq + const. On the other hand, using the condition that the integrating factor is
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equal to the Lagrange multiplier used in the Tsallis maximization procedure, which

in our notation would read βL = βN 1−q
q , leads to the Tsallis entropy form:

(126) Sts
q (Nq) = α(N 1−q

q − 1) + const = lnq Nq + const

where the symbol lnq(x) indicates the q-deformed logarithm [69]. Therefore

(127) dSts
q = βLδQ

This fact has also been acknowledged very recently in [70]. The present approach

makes evident that the quantity δQ = dE + PdV admits infinitely many different

integrating factors associated with as many different entropies. The Tsallis entropy is

the one associated with the integrating factor βL. Therefore, using the Tsallis entropy

the thermodynamic relations would still hold, even though the integrating factor

would not coincide with the average kinetic energy. Nonetheless, the fact that the

Lagrange multiplier βL does not have such a straightforward physical interpretation

as the quantity β, also poses some questions regarding the physical interpretation

of the associated entropy (126) too. On the contrary, the fact that the logarithmic

entropy S = lnN is associated with the physical temperature i.e.,

(128) dS = βδQ,

makes it the ideal candidate to play the role of physical entropy or Clausius entropy

within the nonextensive framework.
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CHAPTER 8

MORE ON TSALLIS ESCORT ENSEMBLES

8.1. Interpolating between Canonical and Microcanonical Ensembles

As anticipated in Chap. 7, the Tsallis escort ensembles of Eq. (98) have an

interesting duality property: they can either be parameterized through U, V or β, V .

In addition, regardless of the parametrization adopted, these ensembles are exact

orthodes. This duality suggested that they are a sort of hybrid of the microcanonical

and canonical ensembles. This is true not only from a qualitative point of view but

also from a quantitative one.

As is well known, the ensemble (98) is indeed a generalization of the canonical one

to which it tends when q goes to 1. In fact, from the properties of the q-exponential

[69], we have:

(129) lim
q→1

ρq =
e−βH

Z
= ρc, lim

q→1
S[q] = βU + ln Z = Sc.

Note that, in this limit the explicit dependence of the distribution ρq on U disap-

pears, namely the duality property is lost in the limit q → 1, and the only possible

parametrization is the (β, V ) one.

In a similar manner, the microcanonical orthode is a special case of the Tsallis

orthode recovered in the limit q → −∞, in which case the explicit dependence on β

disappears. In this limit, again, the duality is lost and the only possible parametriza-

tion is the (U, V ) one. Considering the q-exponential function:

(130) eq(x) =





0 1 + (1− q)x < 0

[1 + (1− q)x]1/(1−q) 1 + (1− q)x ≥ 0
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Figure 8.1. Plot of q-exponential (Eq. 130) for large negative values

of q. The function tends to the Heaviside step function.

it is easily seen that:

(131) lim
q→−∞

eq(x) =





0 x < 0

1 x ≥ 0
= θ(x).

This fact is illustrated in Figure 8.1. Therefore the Rényi entropy of Eq. (114) tends

to the microcanonical entropy, that is the volume entropy of Eq. (8), when q goes to

−∞

(132) lim
q→−∞

S[q] = Smc,

where we have used the fact that θ(βx) = θ(x) for β > 0. Furthermore, the Tsallis

ensemble (98) is expressed in terms of the “derivative” of the q-exponential

(133) e′q(x) =





0 1 + (1− q)x < 0

[1 + (1− q)x]q/(1−q) 1 + (1− q)x ≥ 0

which tends to a Dirac delta function. This is graphically illustrated in Fig. 8.2. A
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Figure 8.2. Plot of q-exponential derivative (Eq. 133) for large neg-

ative values of q. The function approaches a Dirac delta function.

simple way to prove this result is to consider the Fourier transform of the function e′q:

(134) ê′q(ω) = e−iωαq
Γ(αq + 1)

(−iωαq)αq

where for simplicity we have used the notation αq = 1/(1 − q) and Γ is the Gamma

function. Now it is easily seen that, in the limit q → −∞ (αq → 0+), ê′q(ω) → 1

which is the Fourier transform of the Dirac delta. Therefore the function e′q(x) tends

to the delta function. From this it follows that the distribution ρq tends to the

microcanonical distribution of Eq. (12):

(135) lim
q→−∞

ρq =
δ(U −H(z; V ))∫
δ(U −H(z; V ))

= ρmc

It is evident that, due to the property δ(βx) = β−1δ(x), in the limit q → −∞, the

explicit dependence on β disappears. This is understood also based on the fact that

the distribution is extremely peaked, so the average of H always equals U , regardless

of the value taken by β.
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The microcanonical equipartition theorem also is recovered in the limit q → −∞.

For finite q’s, thanks to Eq. (113), we have Nq = Nq hence, from Eq. 112

(136) Tq =
1

β
(finite q’s).

Therefore the canonical equipartition theorem (see Eq. 106) is trivially recovered for

q = 1. Nonetheless, when q goes to infinity, the relation Nq = Nq stops holding. In

facts we have

(137) lim
q→−∞

Nq = Φ , lim
q→−∞

Nq =
1

β
Ω

so that limq→−∞ T [q] = Ω
Φ

-namely the microcanonical equipartition theorem of Eq.

(15) is recovered as well.

8.2. Interpretation: Finite Heat Baths

We shall now investigate the physical meaning of Tsallis escort hybrid statistics.

In other words, we shall ask ourselves in what physical situation we expect to observe

them. It is well known that the microcanonical ensemble describes the statistical

properties of isolated systems whereas the canonical one describes the properties of

systems in contact with a heat bath. Both ensembles apply to two ideal (nonetheless

very useful) cases: that of a system in contact with a heat bath with infinite capacity

(the temperature is fixed) and that of an isolated system, namely a system in contact

with a bath with null heat capacity (the energy is fixed). Between these two extremal

cases lie the physically realistic cases of systems in contact with finite heat baths,

where both energy and temperature are allowed to fluctuate. Therefore we find it

reasonable to expect such systems to obey Tsallis statistics of some order q, where q

accounts for the heat capacity of the bath. The idea of a finite heat bath is not new

in the context of nonextensive thermodynamics. It was first proposed in [71], and

then further developed in [63], although the limiting case of null heat capacity was

never investigated before. In particular Almeida [63] considered an isolated system

of total energy a composed of two non interacting subsystems: the system of interest
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(labelled by the subscript 1) and its complement, the bath (labelled by 2). The total

Hamiltonian splits into the sum of the two sub-system Hamiltonians, H = H1 + H2.

Using the density of states of the total system (Ω), and that of the bath (Ω2), one

can express the distribution law for the component 1 in its phase space as [1]:

(138) p1(H1) =
Ω2(a−H1)

Ω(a)
.

By defining the inverse temperature of the bath as β2
.
=

Ω′2
Ω2

, Almeida proved that the

bath heat capacity (C−1
V

.
= ∂

∂E2

1
β2

) is given by the expression CV = 1
1−q

, if and only

if:

(139)
Ω2(a−H1)

Ω2(a)
= eq(−β2(a)H1);

namely, if and only if p1(H1) ∝ eq(−β2(a)H1). Equation (139) was first put forward

by Abe and Rajagopal [72] as an asymptotic formula valid for H1 ¿ H2. The result

of Almeida constitutes an improvement and a clarification of the results of Ref. [72]:

an improvement because it shows that Eq. (139) holds exactly and a clarification

because it provides a physical interpretation of the power-law index 1
1−q

in terms of

the bath heat capacity CV .

Although Almeida’s theorem is in line with our interpretation based on finite heat

baths, we believe it to be still subject to further improvement. As Eq. (139) shows,

Almeida’s theorem leads to a form of Tsallis distribution expressed in terms of eq

rather than the form investigated here expressed in terms of e′q. The latter would

correspond to the escort version of the former. As the reader can easily notice the

microcanonical distribution is not a special case of the eq-type distribution. In order

to improve the theorem we notice that the definition β2
.
=

Ω′2
Ω2

adopted by Almeida is

not consistent with the microcanonical equipartition prescription of Eq. (15). If one

adopts the correct definition

(140) β2
.
=

Ω2

Φ2
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of the bath’s temperature, namely if one replaces Ω2 with Φ2, then Almeida’s theorem

would read: CV = 1
1−q

⇔ Φ2(a−H1)
Φ2(a)

= eq(−β2(a)H1). By taking the derivative of the

latter with respect to H1, we obtain the following:

Theorem 3.

(141)
Ω2(a−H1)

Ω2(a)
= e′q(−β2(a)H1)

if and only if

(142) CV
.
=

(
∂

∂U2

1

β2

)−1

=
1

1− q
.

Now we notice that β2(a) is the inverse physical temperature that the bath would

have if it were isolated and its energy were a. Thanks to Eq. (142) such tem-

perature is given by 1
β2(a)

= (1 − q)a. Instead, in the physical situation under

study, the bath is in contact with system 1 and its average energy U2 is smaller

than a. The actual temperature in the composite system may be expressed by

1
β

= (1 − q)U2. Therefore β(a) = βU2/a, hence Eq. (141) may be rewritten as

p1(H1) ∝
[
1 +

(
a

U2
− 1

)
− (1− q)βH1

] q
1−q

. Using the relation a = U1 + U2 then p1

would read exactly as the Tsallis escort distribution of Eq. (98).

In summary, the theorem says that if the heat capacity of the bath is CV = 1
1−q

,

then the component 1 obeys the Tsallis escort distribution law of Eq. (98) of index

q. This theorem is consistent with our physical interpretation, according to which q

should account for the finiteness of the bath heat capacity. In particular it reproduces

well the two limiting cases: if q → 1 then CV goes to infinity, namely we are in the case

of an infinite bath, and accordingly we get the canonical ensemble. If q → −∞ then

CV → 0, namely we are in the isolated case, and accordingly we get the microcanonical

ensemble. By substituting Eqs. (136) and (142) into Eqs. (98) and (114), we are

finally in the position to rewrite the distribution law for system 1 and its entropy in
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terms of physical quantities as:

ρCV
(z; U, V ) =

[
1− (H(z;V )−U)

CV T

]CV −1

NCV
(U, V )

(143)

SCV
(U, V ) = ln

∫
dz

[
1− (H(z; V )− U)

CV T

]CV

,(144)

where for simplicity we dropped the subscript 1.

8.3. Fluctuations in the Tsallis Escort Ensemble

Calculation of fluctuations of energy for systems obeying Tsallis escort statistics

is interesting. Let us first assume that the system of interest has a power law density

of states:

(145) Ω(E) = const× Eγ−1

which is tantamount to assuming that the heat capacity at constant volume of the

system is γ. Let us denote by c the constant heat capacity at constant volume of the

bath. According to Eq. (143), the system is distributed according to:

(146) ρc(E)Eγ−1dE = N−1
c

[
1 +

γ

c

(
1− E

U

)]c−1

Eγ−1dE

where U = γT and we have the cut-off condition:

(147) E < U

(
1 +

c

γ

)
.
= U.

It is straightforward to check that:

(148) 〈E〉 = U.

We are interested in the relative square fluctuation σ2, defined as
〈(U−E)2〉

U2 =
〈E2〉−U2

U2 .

One has:

(149)
〈
E2

〉
=

∫ U

0

[
1 + γ

c

(
1− E

U

)]c−1
Eγ+1dE

∫ U

0

[
1 + γ

c

(
1− E

U

)]c−1
Eγ−1dE

= U2 (γ + c)(1 + γ)

γ(1 + γ + c)
.

So the relative squared fluctuation is:

(150) σ2 =
〈E2〉 − U2

U2
=

c

γ

1

1 + γ + c
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It is worth examining some limiting cases:

c À γ: In this case σ2 ' 1
γ
. This correspond to the canonical case (infinite

heat bath), where, as is well known, the relative square fluctuation of the

energy of the system goes as the inverse of the number of degrees of freedom

in the system.

c ¿ γ: In this case σ2 ' 0. This correspond to the microcanonical case (absent

heat bath)

c ' γ À 1: In this case σ2 ' 1
γ+c

. This correspond to the gaussian case where

both system and bath consist of a very large number of constituents (see

Sec. 9.3.2). In this case the relative square fluctuation of the system goes as

the inverse of the total number of degrees of freedom of system plus bath,

i.e., c + γ.

It is evident that our distinction between system and bath is purely arbitrary. Indeed

one could consider the system as the bath and the bath as the system of interest and

all our reasonings would equally well apply. Thus by labelling our two subsystems as

subsystem 1 and 2 one can express the fluctuations of both in terms of their respective

heat capacities c1 and c2. Evidently:

σ2
1 =

c2

c1

1

1 + c1 + c2

(151)

σ2
2 =

c1

c2

1

1 + c1 + c2

.(152)

More physical insight can be gained from the two equations above, if we re-express

them as:

σ1

σ2

=
c2

c1

(153)

σ1σ2 =
1

1 + c1 + c2

.(154)
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Using the notation ∆E1,2 =
√〈

E2
1,2

〉− U2
1,2, and noting that, because of thermal

equilibrium, U1/c1 = U2/c2 = T , Eq. (153) says that:

(155) ∆E1 = ∆E2

That is, the absolute fluctuations in the two systems are identical. In order to un-

derstand Eq. (155) let us first consider the limiting situation in which system 1 is

much larger than system 2. This means that system 1 is almost in a microcanonical

condition and system 2 is almost in a canonical one. System 1 absolute fluctuations

are small because of the microcanonical condition, whereas system 2 absolute fluctu-

ations are small because its share of the total energy is small. The same happens if

we exchange 1 and 2. The other limiting situation is that in which the two systems

have the same heat capacity, in which case they trivially must have the same absolute

fluctuations. Eq. (153) says that for all the intermediate cases, the two fluctuations

will keep adjusting so as to remain balanced. In the end, the physical reason for Eq.

(155) is quite simple. Since the two systems form an isolated system, a temporary

change in the energy of one is accompanied by the same and opposite change of the

other, in such a way that the total energy remains constant.

Eq. (154), expresses an interesting Complementarity Relation, which resembles

Heisenberg’s relations between fluctuations of position and momentum in quantum

mechanical coherent states of minimal indeterminacy. Eq. (154) says that the product

of the relative fluctuation of the two subsystems is constant and determined by the

total heat capacity c1+c2. The larger the relative fluctuations in system 1, the smaller

in system 2 and vice-versa.

8.4. Information-Theory and Tsallis Ensembles

8.4.1. Tsallis Escort Ensembles Maximize Rényi Entropy

Let us now investigate on the information-theoretic basis of Tsallis escort ensem-

bles. As we have pointed out above, the physical entropy associated with them, Eq.

(114), coincides with the 1/q-order Rényi entropy (see Eq. 123) calculated over the
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Tsallis escort distribution, Eq. (98). It is quite striking to see that, on the other

hand, the Tsallis escort ensembles (98), are obtained from the maximization of the

1/q-order Rényi entropy

(156) S 1
q
[ρ] =

q

q − 1
ln

∫
dzρ(z)1/q

under the two constraints on the normalization and average energy. The variation of

the following functional, obtained with the method of Lagrange multipliers:

F [ρ] =
q

q − 1
ln

∫
dzρ1/q − λ

(∫
dzρ− 1

)
− β

(∫
dzHρ− U

)
(157)

leads to:

(158)
ρ

1−q
q

(q − 1)
∫

dzρ1/q
− λ− βH = 0

from which it is easily inferred that

(159) ρ ∝ [λ + βH]
q

1−q .

Multiplying Eq. (158) by ρ and integrating over dz as described in [64, 73] leads to:

(160) λ =
1

q − 1
− βU

which combined with (159) leads exactly to the power-law ensemble (98). In this way

the information-theoretic approach and the mechanical one are connected reciprocally

through a closed loop. Therefore the Tsallis escort ensembles have the same two-fold

foundation (i.e., information-theoretic and mechanical) that the canonical ensemble

has. This point is illustrated in Fig. 8.3.

8.4.2. Information Theoretic justification for Maximum Rényi Entropy Principle

The maximum entropy principle (MEP) of Eq. (157) arises naturally if the Shore

and Johnson axioms [74, 75] are considered. In the traditional approach of Shannon,

adopted also by Rényi, one sets a few axioms that the information measure should

satisfy and then finds the appropriate entropy form that satisfy the axioms in question.

Shore and Johnson were the first who shifted the focus of information theory from the
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Figure 8.3. Two-fold foundations of Tsallis escort ensembles: me-

chanical (based on Boltzmann’s orthodes method) and information-

theoretic (based on the maximum Rényi entropy principle)

information measure to the MEP itself. Thus they axiomatized the inference rule,

according to which, a prior probability r, which represents the initial knowledge of the

system is updated to a posterior probability p when new information, in the form of

linear constraints I, is gained. Shore and Johnson expressed this using the notation:

(161) p = I ◦ r.

The updating procedure is what we apply when using the MEP. We start from a flat

distribution, and we update it to a new distribution which accounts with the least

possible bias for the information contained in the constraints on average energy and

normalization. Shore and Johnson set the following five axioms:

• Axiom I (Uniqueness): If the same problem is solved twice, then the same

answer is expected to result both times.

• Axiom II (Invariance): The same answer is expected when the same problem

is solved in two different coordinate systems, in which the posteriors in the

two systems should be related by the coordinate transformation.
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• Axiom III (System Independence): It should not matter whether one ac-

counts for independent information about independent systems separately

in terms of their marginal distributions or in terms of the joint distribution.

• Axiom IV (Subset Independence): It should not matter whether one treats

independent subsets of the states of the systems in terms of their separate

conditional distributions or in terms of the joint distribution.

• Axiom V (Expansibility): In the absence of new information, the prior (i.e.,

the reference distribution) should not be changed.

The interested reader may find a exhaustive discussion of the meaning and reason-

ability of these axioms in Ref. [76]. These five axioms select an equivalence class of

inference rules rather than a single rule. For example, if the rule “maximize H under

the constraint I” satisfies the axioms, then all the rules of the type “maximize H ′

under the constraints I” will satisfy the axioms if H and H ′ have the same maxima.

In this case we say that the two rules are equivalent. Thus the rule “maximize H

under the constraints I” is equivalent to any rule of the type “maximize f(H) under

the constraints I”, if f is a strictly monotonic function. According to the original

works of Shore and Johnson, the five axioms are satisfied by any rule equivalent to

the rule “maximize − ∫
p(x) ln p(x) under the constraints I”. Later on Uffink found

a flaw in their proof and proved that the following theorem holds indeed [76]:

Theorem 4 (Shore-Johnson-Uffink). An inference rule satisfies all five axioms, if and

only if it is equivalent to one of the rules

“maximize Hα under the constraint I”

where

(162) Hα[p, r]
.
=

[∫
dxp(x)αr(x)1−α

] 1
1−α

.

If we assume the prior probability r to be flat, then the theorem evidently tells

that any inference rule equivalent to the rule
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“maximize Hα[p] under the constraint I”,

where

(163) Hα[p]
.
=

[∫
dxp(x)α

] 1
1−α

satisfies the five axioms. If we take the logarithm of Hα[p] we immediately recognize

the Rényi entropies of Eq. (123). Therefore the interpolating maximum entropy

principle in Eq. (157) satisfies the five axioms (see also [77]). This can be seen as

a justification of the interpolating MEP based on few very general and reasonable

consistency requirements that any maximum entropy principle should satisfy.

It is equally evident that, by taking the deformed logarithm of order α (defined

as lnα(x) = 1−x1−α

1−α
) of Hα, the maximization of Tsallis entropy

(164) Sα[p] =
1− ∫

dxp(x)α

1− α

satisfies the five axioms as well. This can be seen as an important justification of the

maximum Tsallis entropy principle, which, since its very introduction [62], has found

many applications. Nonetheless Tsallis entropy does not seem suitable in this specific

context concerning systems in equilibrium with finite heat baths, because Eq. (164)

does not interpolate correctly. In fact, as α → 0 it tends to lnα Φ. Instead ln Φ is the

correct equilibrium microcanonical entropy.

8.5. New insights into the Microcanonical Entropy Principle

So far we have seen that the Tsallis escort distributions (98) interpolate between

canonical and microcanonical ensemble. They maximize the 1/q-order Rényi entropy,

and they represent the physical situation of a system in contact with a finite heat

bath. This allows us to take the limits q → 1 and q → −∞ in the maximum Rényi

entropy principle of Eq. (157) and interpolate between a canonical maximum entropy

principle (cMEP)and a microcanonical maximum entropy principle (µcMEP).
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8.5.1. Canonical MEP

Let q → 1 in Eq. (157). As is well known [66], Rényi entropy of order 1 is nothing

but Shannon’s entropy, thus Eq. (157) becomes:

F [ρ] = −
∫

ρ ln ρ− λ

(∫
dzρ− 1

)
− β

(∫
dzHρ− U

)
(165)

whose maximization (see for example [18]) is the canonical ensemble.

8.5.2. Microcanonical MEP

It is more interesting, though, to consider the limit q → −∞. In this limit the

integrand ρ1/q tends to 1. We have to be careful with the integration domain at

this point, because if the integration is carried over the whole space R6n, the integral

would diverge. Instead, if one considers that the domain of integration is bounded

by the condition that the system’s energy does not exceed the total energy of system

plus bath, which is fixed, we obtain the following cut-off condition:

(166) H(z) ≤ U +
T

1− q

where U is the system’s average energy and T/(1 − q) = CV T is the bath’s average

energy. Now if q goes to 1, the right hand side of Eq. (167) goes to ∞ and the

integration domain becomes R6n for the canonical case. Instead, for q tending to −∞
the cut-off becomes

(167) H(z) ≤ U.

Thus the microcanonical distribution maximizes the following:

F [ρ] = ln

∫

H≤U

dz− λ

(∫
dzρ− 1

)
− β

(∫
dzHρ− U

)
(168)

(the explicit maximization of the functional in (168) is carried in appendix B). Thus

we obtain the µcMEP in the form of constrained maximization of the volume entropy

of Eq. (8) with the normalization constraint and the average energy constraint. This

is in contrast with the traditional derivation of the microcanonical ensemble from a

maximum entropy principle. According to the commonly accepted derivation, in order
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to obtain the microcanonical distribution one should maximize Shannon information

under the only constraint on normalization1

(169) δ

[
−

∫

H=U

dzρ ln ρ−
(

λ

∫

H=U

dzρ− 1

)]
= 0

which leads to the following constant distribution:

(170) ρ(z) =
1

Ω(U)
.

The assumption underlying this procedure is that the point z already belongs to

the surface of energy U . Maximizing the Shannon information over such surface

then leads to a flat distribution which says that all the states on the surface are

equiprobable. The maximum entropy principle in (169) leads to the principle of

a priori equi-probability. With some abuse of notation this is often referred to as

the microcanonical ensemble. The notation is abused because strictly speaking the

microcanonical ensemble is defined on the whole phase space and it constrains the

system state to lie on a certain surface of constant energy as in Eq. (12). Instead

in using Eq. (169) one assumes the states to be already belonging to some constant

energy surface. The microcanonical distribution is assumed in Eq. (169) rather than

derived from it. Our µcMEP, instead derives the condition of constant energy from

the maximization of the proper microcanonical entropy, that is, the volume entropy

of Eq. (8).

1Without loss of generality we now switch to the discrete case, which is more common in

literature
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CHAPTER 9

GENERALIZED DUAL ENSEMBLES

Let us now move to generalize Tsallis escort ensemble and define a new class of

ensembles that satisfy the requirements of the heat theorem.

9.1. Definition of Dual Orthodes

So far we have seen how the Tsallis escort ensembles of index q ≤ 1 are orthodes

with a special duality property. We have also mentioned that the microcanonical and

canonical ensembles are two special instances of Tsallis escort ensembles. Now we shall

see that the property of orthodicity can be proved for a general class of ensembles that

share with the Tsallis escort ensemble the fact that both U and β appear explicitly

in their expression. They can be considered as parameterized by either U, V or β, V ,

depending on which parameter is kept fixed and which one is adjusted in such a way

that U =< H >. We shall call these ensembles dual ensembles.

The generalization is purely formal, in the sense that we shall assume that all the

integrals and derivatives written exist. Further we shall assume that, for given U, V

(or β, V ), the equation U =< H > admits a solution β(U, V ) (or U(β, V )) which is

of class C1. These are conditions that must be checked, a posteriori, on a case by

case basis, depending on the explicit form of the Hamiltonian and of the distribution.

Thus, let us consider a generic ensemble of the form:

(171) ρ(z; U, V ) =
f [β(U −H(z; V ))]

G(U, V )
,

where G and β are assumed to be differentiable functions of U, V . This means that

we are adopting the (U, V ) parametrization, alternatively we could have adopted the

β, V parametrization if G and U are assumed to be differentiable functions of (β, V ).
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In the (U, V ) parametrization The values of G and β are fixed by the two constraints

(172) G(U, V ) =

∫
dzf [β(U −H(z; V ))]

and

(173) U =

∫
dzH(z; V )ρ(z; U, V ).

Throughout this section the symbol < · >ρ denotes average over the dual distribution

(171). Consider now a differentiable function F (x) such that F (x) > 0, F ′(x) = f(x),

and define the following function:

(174) Sρ(U, V )
.
= lnG(U, V ),

where

(175) G(U, V )
.
=

∫
dz, F [β(U −H(z; V ))]

and all the integrals are extended to the definition domain D of the distribution ρ. We

shall also assume that a cut-off condition exists such that F is null on the boundary

∂D of the domain D:

(176) F [β(U −H(z; V ))]z∈∂D = 0,

which is of central importance for the theory that we are developing. Let us define

the macroscopic state:

(177)

Uρ
.
= 〈H〉ρ = U

Tρ
.
=

2〈K〉ρ
n

Vρ
.
= V

Pρ
.
=

〈−∂H
∂V

〉
ρ
.

Before proving that the ensembles of the form (171) are orthodes let us state the

following generalized equipartition theorem:

79



Theorem 5. In the U, V parametrization the average of pi
∂H
∂pi

is1:

(178)

〈
pi

∂H

∂pi

〉

ρ

=
1

β(U, V )

G(U, V )

G(U, V )
.

In the β, V parametrization the average of pi
∂H
∂pi

is:

(179)

〈
pi

∂H

∂pi

〉

ρ

=
1

β

G(β, V )

G(β, V )

The proof is provided in Appendix C.1. It involves writing the integral expression

of the quantity
〈
pi

∂H
∂pi

〉
ρ
, integrating by parts over pi and using the cut-off condi-

tion (176). The proof structure is the same as the structure of the proof of Tsallis

equipartition theorem of Ref. [65].

Comparing with the macroscopic state definition (177), the generalized equipar-

tition theorem can be reexpressed as the following compact formula :

(180) Tρ =
1

β

G
G

where it is intended that Eq. (178) is used in the U, V parametrization and Eq. (179)

in the β, V one. Equation (180) tells that for generic dual statistics the quantity β

might not coincide with the inverse physical temperature. Let us now evaluate the

partial derivatives of the entropy function in Eq. (174):

∂Sρ

∂Uρ

=
1

G
∂

∂U

∫
dzF (β(U −H))

=
1

G
∫

dzf(β(U −H))

[
∂β

∂U
(U −H) + β

]

= −G

G
∂β

∂U
〈H − U〉ρ +

G

G β =
1

Tρ

.(181)

In order to obtain the last equality we used the first definition in (177) and Eq. (180).

∂Sρ

∂Vρ

=
1

G
∂

∂V

∫
dzF (β(U −H))

=
1

G
∫

dzf(β(U −H))

[
∂β

∂V
(U −H)− β

∂H

∂V

]

1The label i counts the degrees of freedom. Repeated indices are note summed.
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=
G

G
∂β

∂V
〈U −H〉ρ − G

G β

〈
∂H

∂V

〉

ρ

=
Pρ

Tρ

.(182)

In order to obtain the last equality we used the first and fourth definitions in (177)

and Eq. (180). From Eqs. (181) and (182) we get:

(183) dSρ =
dUρ + PρdVρ

Tρ

Therefore the differential dUρ+PρdVρ

Tρ
is exact and the entropy is given by Eq. (174).

This implies that the ensembles of the form (171) are orthodes, namely they provide

good mechanical models of thermodynamics. In Appendix C.2 we provide a proof that

the heat theorem is also satisfied if the alternative β, V parametrization is adopted.

The proof is essentially the same as for the Tsallis case (see Sec. 7.5). Thus, we

have found that the class of orthodes, whose known representatives have been for

more than one century only a few (canonical, microcanonical, grand-canonical and

pressure ensemble [2]) is indeed quite vast and can include other statistics.

9.1.1. Recovery of known cases

9.1.1.1. Canonical. The canonical ensemble is a very special case of dual orthode

where the parameter U does not appear explicitly in the expression of the distribution.

This case is obtained with the choice:

f(x) = F (x) = ex.

In this case we get

(184) ρ(z; β, V ) =
eβ(U−H)

∫
dzeβ(U−H)

=
e−βH

∫
dze−βH

.

The average energy U cancels in the last term of (184). In this sense we refer to

the canonical ensemble as a case of “hidden dual orthode”. The canonical entropy is

recovered by taking the natural logarithm of G =
∫

dzeβ(U−H) :

S(β, V ) = βU + ln

∫
dze−βH
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Note also that, from Eqs. (172) and (175), G = G in this specific case, therefore

the generalized equipartition theorem (180) gives Tρ = 1
β
. In this way the canonical

equipartition theorem (106) is recovered too.

9.1.1.2. Microcanonical. The microcanonical ensemble is recovered with the choice

f(x) = δ(x)

F (x) = θ(x)

From the properties of the Dirac delta the distribution in Eq. (171) is:

(185) ρ(z; U, V ) =
δ(β(U −H))∫
dzδ(β(U −H))

=
δ(U −H)∫
dzδ(U −H)

.

As with the canonical case (184), the last term in (185), does not depend explicitly

on β, hence the microcanonical case is also a case of “hidden dual statistics”. The

microcanonical equipartition theorem (15) is also recovered. From (180) one gets:

(186) Tρ =
1

β

G
G

=

∫
dzθ(U −H)∫
dzδ(U −H)

=
Φ

Ω
,

where we have used the relations θ(ax) = θ(x) (for a > 0) and δ(ax) = a−1δ(x).

9.1.1.3. Tsallis (escort). The Tsallis escort case is recovered with the choice

f(x) = [1 + (1− q)x]
q

1−q(187)

F (x) = [1 + (1− q)x]
1

1−q

(188)

In this case one finds G = Nq and G = Nq in Eqs. (172) and (175), so from Eq. (180)

the Tsallis equipartition theorem (112), is recovered:

(189) Tρ =
1

β

G
G

=
1

β

Nq

Nq

.

Canonical and microcanonical cases are both included in the family of Tsallis dis-

tributions as special cases corresponding to the values q = 1 and q = −∞, as from

Chap. 8.
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For future reference, let us remember that we have Nq = Nq for finite q’s. There-

fore Eq. (189) becomes:

(190) Tq =
1

β
|q| < ∞.

9.2. Derivation of the Ideal Gas Thermodynamics

In the ideal gas case the potential energy ϕ(z; V ) is a box potential which con-

strains the coordinates to lie in an interval of measure L = V
1
3 , where we assume

for simplicity a cubic box of volume V . The box potential reduces the integration

over the configuration space to a domain of measure V n/3, where n = 3N is the total

number of degrees of freedom and N is the number of particles. The Hamiltonian

is purely kinetic: H =
∑3N

i=1
p2

i

2m
. Assuming that the function β(U, V ) exists, the

equation of state is obtained from Eq. (182), namely ∂Sρ

∂V
= Pρ

Tρ
:

∂Sρ

∂V
=

1

G
∂

∂V

∫ V 1/3

0

dnq

∫
dnpF [β(U −H(p))]

=
1

G
∂

∂V
V n/3

∫
dnpF [β(U −H(p))]

=
n

3

1

V
(191)

from which the standard ideal gas law is easily obtained:

(192) PρVρ =
n

3
Tρ = NTρ

The fact that the standard ideal gas law is found to hold for any dual statistics should

not be surprising since it generalizes a result already found within the nonextensive

thermodynamics [68] (see also the recent work of [78]). Let us now focus on the form

of the function β(U, V ) in the ideal gas case. Using the standard change of variable

[1] p2

2m
= e, dnp = cne

n
2
−1de, followed by the change of variable y = βe, the condition

< H >= U is expressed as:

(193) I(A, n)
.
=

∫ y(A)

0

dyy
n
2
−1(A− y)f(A− y) = 0
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where A = βU , and y is a cut-off possibly infinite and possibly depending on A. We

shall refer to Eq. (193) as the energy constraint equation. From such equation it is

easily inferred that, if for a given number of degrees of freedom n, a solution An of

(193) exists, then the function β(U, V ) exists and is given by:

(194) β =
An

U
.

For example, within the canonical ensemble one has β = n
2U

. In the ideal gas case

< K >= U , so, from the definition of macroscopic state (177) one has

(195) Tρ =
2U

n
.

Because of orthodicity we have ∂Sρ

∂U
= 1

Tρ
= n

2U
for any dual ensemble. This implies

that the entropy is:

(196) Sρ(U, V ) =
n

2
ln U +

n

3
ln V + const

Therefore the standard ideal gas thermodynamics is recovered for any dual orthode.

This means that the canonical or microcanonical statistics are not the only statistics

necessary to obtain the ideal gas thermodynamics. On the contrary, ordinary ther-

modynamics may follow from nonordinary ensembles that belong to the class of dual

orthodes.

As the generalized equipartition theorem (180) suggests, in general the standard

relation Tρ = 1
β

does not hold. For example, from Eqs. (194) and (195), one easily

finds the following formula:

(197) Tρ =
1

β

n
2

An

.

By comparison with the Eq. (180), one also deduces that

(198)
G
G

=
n
2

An

.
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The previous formula can also be derived directly by considering the explicit expres-

sion of G (we adopt the U, V representation),

(199) G(U, V ) = cnV
n
3

∫ U

0

dee
n
2
−1F [An(1 + e/U)]

where U is the cut-off energy value. Equation (198) follows after an integration by

parts and the definition of U from Eq. (177).

9.3. Examples

9.3.1. Tsallis Escort Ensembles

As an illustration of the theory let us first apply it to the Tsallis escort orthodes

of indices q ≤ 1. As we will see, this is a quite special case that can be worked

analytically. The ensembles are (we adopt the U, V representation):

(200) ρq(z; U, V ) =

[
1− β

αq
(H(z; V )− U)

]αq−1

N(U, V )
,

where for simplicity we have adopted the notation αq = 1
1−q

2. The cut-off condition

(see Eq. (167)), H ≤ U + αq

β
, is dictated by the fact that the expression within square

parentheses has to be non-negative. In this case the energy constraint integrals (193)

can be evaluated analytically:

(201) Iq(A, n) = −
(n

2
− A

) (A + αq)
αq+n/2−1

α
αq
q

Γ(αq + 1)Γ(n
2
)

Γ(n
2

+ αq + 1)
.

The solutions An,q of the equations Iq(A, n) = 0 are An,q = n
2
, no matter the value of

q. Therefore one finds, from Eq. (194), the relation T [q] = 1
β
, which is in agreement

with the Tsallis equipartition theorem (see Eq. (190))

Using Eq. (194) one can express the Tsallis escort ensemble, in the ideal gas case,

as

ρq(z; U, V ) =

[
1 + (1−q)n

2
(1− H(z;V )

U
)
] q

1−q

∫
dz

[
1− (1−q)n

2
(1− H(z;V )

U
)
] q

1−q

2Note that, according to Eq. (142), αq represents the heat capacity of the bath
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where the U, V parametrization has been adopted. Alternatively, adopting the β, V

parametrization the Tsallis escort ensemble would be:

ρq(z; U, V ) =

[
1 + (1− q)(n

2
− βH(z; V ))

] q
1−q

∫
dz

[
1 + (1− q)(n

2
− βH(z; V ))

] q
1−q

.

Applying Eqs. (174) and (175) gives the entropy. In the U, V representation, it reads:

(202) S[q](U, V ) =
n

3
ln V + ln Ln,q(U) + ln cn,

where

(203) Ln,q(U) = U
n
2

∫ 1+ 2
n(1−q)

0

dxx
n
2
−1

[
1 +

(1− q)n

2
(1− x)

] 1
1−q

.

In agreement with Eq. (196), the dependence of the entropy on U is of the type n
2

ln U .

The integral Ln,q has been obtained by using the cut-off condition e = U
(
1 + 2

n(1−q)

)
,

and the change of variable x = e/U , where e denotes energy.

9.3.2. Gaussian Ensemble

Since the fundamental work of Khinchin [1] based on the application of the central

limit theorem, it is known that the distribution law for a large component of a large

Hamiltonian isolated systems of total energy a is well approximated by the following

Gaussian distribution:

(204) ρ =
eβ(a−H) exp

[
− (A1−H)2

2B2

]

normalization
,

where the quantities A1 and B2 being defined in terms of the Laplace transforms Zi(β)

of the structure functions Ωi(x) of the system (i = 1) and the heat bath (i = 2):

A1 = −d ln Z1

dβ
,

B2 =
d2 ln Z2

dβ2
.

According to Khinchin the quantity A1 is a good approximation to the average energy

U of the system (U−A1

U
= O( 1

N1
)), where N1 is the number of particles in the system).
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The width of the distribution, B2, can be expressed, in the case of an ideal gas bath

(see Chapter 5, Section 22 of Ref. [1]) as:

(205) B2 =
3N2

2β2
.

Here N2 denotes the number of particles in the bath. Hence the ensemble in Eq.

(204) can be re-expressed in the form of a dual ensemble:

(206) ρσ(z; U, V ) = eβ(U−H)
exp

[
− (β(U−H))2

2σ

]

G
,

where σ = 3N2

2
is indeed the heat capacity of the heat bath, namely σ plays the

same role here as the parameter αq = 1
1−q

in the Tsallis escort ensembles (see Eq.

(142)). The distribution goes rapidly to zero, correspondingly the cut-off boundary

is at infinity (in other words the domain of definition of (206) is R6N). The Gaussian

ensemble is reproduced with the choice:

f(x) = ex exp

[
−x2

2σ

]
(207)

F (x) =

√
πσ

2
e

σ
2

(
1 + erf

[
x− σ√

2σ

])
.(208)

The energy constraint condition (193) in this ensemble is

(209) Iσ(A) =

∫ ∞

0

dyy
n
2
−1(A− y)eA−y− (A−y)2

2σ = 0.

The solutions An,σ of this equation have been evaluated numerically for n = 10, 20, ..., 100,

σ = 2, 10, 20, and shown in Figure 9.1. For all the values of σ investigated, An,σ ' n
2
.

The large n behavior of An,σ is investigated in Appendix C.3. The entropy, in the U

representation is:

(210) S(U, V ) =
n

3
ln V + ln Yn,σ(U) + ln cn

√
πσ

2
e

σ
2

where

(211) Yn,σ(U) = U
n
2

∫ ∞

0

dxx
n
2
−1

(
1 + erf

[
An,σ(1− x)− σ√

2σ

])
−
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Figure 9.1. Solution of Eq. (209), for different values of σ and n

In agreement with Eq. (196), the dependence of the entropy on U is of the type

n
2

ln U . The integral Yn,σ has been obtained by using the change of variable x = e/U ,

where e denotes energy.

The Gaussian ensemble of Eq. (206) interpolates between canonical and micro-

canonical ensembles as does the Tsallis escort ensemble [79]. In fact, on one hand

f(x) → ex as σ → +∞, and, on the other f(x) → √
2πσδ(x) as σ → 0 (the vanishing

term
√

2πσ is not a problem because it will be cancelled with the normalization).

Furthermore, based on the fact that the Gaussian ensemble of index σ well de-

scribes the statistics of a large component of a large isolated system, we deduce that

it must well approximate the Tsallis statistics of index αq = σ in the case n, αq À 1.

This fact is illustrated in Figure 9.2, where we have plotted the unnormalized Tsallis
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Figure 9.2. Gaussian fit of Tsallis statistics for αq = 50, n = 60, U =

10. The dual Gaussian ensemble approximates Tsallis escort ensembles

for large values of n and αq

escort distribution
(
1 + n

2αq
(1− e

U
)
)αq−1

e
n
2
−1, for αq = 50, n = 60, U = 10, and fit-

ted it to the unnormalized gaussian statistics exp[A(1− e/U)− (A(1−e/U))2

2σ
]e

n
2
−1 with

U, σ,A as free parameters. The fit is very good (1 − R2 = O(10−4)) and the fitting

parameter matched quite well the expected values: σ = 48.36 ' αq = 50, U = 10,

A = 29.51 ' An=60,σ=50 = 29.63.

9.3.3. Fermi-like Ensemble

The theory developed so far allows us to construct mechanical models of ther-

modynamics with the most diverse types of distributions. For example one may ask

whether it would be possible to have an ensemble with a Fermi-like distribution. This

is possible for the ideal gas case. We will describe this ensemble as an illustration of

the theory, without discussing whether it really applies to some many-particle physical

system. The Fermi-like statistics uses the choice:

F (x) = ln(ex + 1)(212)
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Figure 9.3. Solution of Eq. (214) for different values of n.

f(x) =
1

e−x + 1
(213)

with no finite cut-off. The solutions An of the energy constraint equation (193):

(214) I(A, n) =

∫ ∞

0

dy
y

n
2
−1(A− y)

ey−A + 1
= 0

have been evaluated numerically and shown in Fig. 9.3 for the values n = 10, 20, ..., 100.

From the figure we see that, An ' n. This fact is analyzed in more details in Appendix

C.4

Adopting the (U, V ) parametrization, the ensemble is:

(215) ρ(z; U, V ) =

[
e−An(1−H(z;V )

U
) + 1

]−1

∫
dz

[
e−An(1−H(z;V )

U
) + 1

]−1
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or, alternatively in the (β, V ) parametrization:

(216) ρ(z; β, V ) =

[
e−An+βH(z;V ) + 1

]−1

∫
dz [e−An+βH(z;V ) + 1]

−1 .

Adopting the (U, V ) parametrization, the entropy in Eq. (174) is given by

(217) S(U, V ) = ln cn +
n

3
ln V + ln Jn(U),

where

(218) Jn(U) = U
n
2

∫ ∞

0

dxx
n
2
−1. ln

(
eAn(1−x) + 1

)
.

In agreement with Eq. (196), the dependence of the entropy on U is of the type

n
2

ln U . The integral Jn has been obtained by using the change of variable x = e/U ,

where e denotes energy.

9.4. Discussion

In this Chapter we addressed some fundamental issues raised recently in statisti-

cal mechanics, namely whether a theoretical basis can be provided for nonstandard

(i.e., neither canonical nor microcanonical) ensembles, which are often encountered

in the most diverse fields of physics. Other authors have addressed the same problem

and developed different approaches (see for example [80] and [81]). Here we used

Boltzmann’s original approach based on the “heat theorem”, in order to examine the

subject from another point of view. By generalizing the duality property observed in

Tsallis escort ensembles, we have been able to define a class of dual statistics, which

includes the Tsallis escort ensembles as particular cases. The generalization scheme

is represented in Fig. 9.4. Thanks to the proposed generalization it is possible to

provide a theoretical basis for many nonstandard statistics other than Tsallis’, such

as the gaussian and the Fermi-like statistics. For all such nonstandard orthodes the

heat theorem holds, namely the usual thermodynamic relations are recovered. In

this dissertation we have also provided a general formula for the entropy associated

with any dual orthode. This allowed us to obtain the expression of entropy for the
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Figure 9.4. Generalization scheme. Tsallis escort ensembles, Gauss-

ian ensembles, Fermi-like ensemble, and possibly other kinds of ensem-

bles belong to the class of dual orthodes. Canonical and microcanon-

ical are special instances of Tsallis and Gaussian ensembles. For large

systems (n >> 1) Gaussian and Tsallis escort ensemble coincide if

σ = 1
1−q

= CV >> 1.

Gaussian ensemble, which has never been done before. To use the same expression

as Gallavotti [2], all dual orthodes provide “mechanical models of thermodynamics”.

This result is not trivial since previously the only known orthodes were the micro-

canonical ensemble, the canonical ensemble and its variants like the grand canonical

ensemble and the pressure ensemble [2]. Despite the fact that the class of orthodes is

quite vast, the microcanonical and the canonical ensembles still play a special role in

statistical mechanics because they are cases of “hidden dual statistics”. They do not

rely on the employment of the energy constraint, which constitutes the mechanism

through which it is possible to construct nonstandard dual orthodes.
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The theory of dual orthodes allows us to generalize the definition of escort distribu-

tion. From Eqs. (187)(188), we see that the function f = F ′ generates the escort Tsal-

lis distribution, whereas F generates the ordinary Tsallis distribution. Thus, within

the framework of dual ensembles we can say that the distribution G−1f(β(U −H)) is

the escort version of the distribution G−1F (β(U −H)). This definition of generalized

ordinary and escort ensembles in terms of a function F and its derivative f is similar

to that introduced by Naudts in the definition of generalized exponential families [80].

We notice also a similarity with the work of Hanel and Thurner [81]. In the work of

Ref. [81] the generalized ensemble is of the form E(β(U − H) − γ). Although the

normalization is accounted for in a different way (i.e., through γ), in both cases the

dependence upon the Hamiltonian H comes through the same expression β(U −H).

One interesting result of the present work is that the classical ideal gas thermo-

dynamics follows from any dual ensemble, thus revealing that this occurrence is not

special for the standard statistics. This fact was already noticed for the Tsallis case

a few years ago [68], although its orthodicity was not yet clearly recognized. It also

suggests that there is a one-to-one correspondence of states obtained in different dual

ensembles, i.e. there is an equivalence of all dual ensembles. Such equivalence holds

no matter the number of degrees of freedom, and, of course, may break as one consid-

ers more realistic Hamiltonian models of systems with phase transitions. We also like

to stress that all dual orthodes are equivalent also in another sense, namely the sense

first investigated by Gibbs [17] for the canonical and microcanonical ensembles. In

the thermodynamic limit (n →∞) and for the free gas model, the canonical ensemble

is so peaked around the average energy value that it is practically undistinguishable

from the microcanonical one [18]. The same kind of equivalence occurs for any dual

statistics provided that An → ∞ in the thermodynamic limit, which is indeed the

case observed in the examples considered in this paper. This behavior is because the

distribution is expressed in terms of the quantity f
(
An

U−e
U

)
, which tends to the Dirac
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delta centered around U , times an unimportant proportionality factor:

(219) f

(
An

U −H

U

)
→ const× δ(U −H)

Equation (219) follows from the asymptotic formula h(kx) →
∫

dyh(y)

k
δ(x), as k →∞.
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CHAPTER 10

CONCLUSIONS AND PERSPECTIVES

10.1. Conclusions

Following the line of ideas of Boltzmann, in this dissertation we have taken the

heat theorem

δQ

T
= exact differential

and placed it at the very center of an investigation of the microscopic foundations of

thermodynamics and of statistical ensembles.

Although such line of ideas of Boltzmann is more than a century old, adopting it

proves to be extremely fruitful in addressing two topics which are nowadays still very

actual and debated. Those are the problem of reconciling the non time-reversal sym-

metric second law of thermodynamics with the time-reversal symmetric microscopic

law of motion, and the problem of providing a theoretical foundation for ensembles

other than the standard microcanonical and canonical ones.

We started by considering the Helmholtz theorem. According to this theorem the

thermodynamic relations hold mechanically (without probabilistic assumptions) in

the case of one-dimensional monocyclic systems. Thanks to a discrete picture of the

phase space, Boltzmann was able to apply Helmholtz theorem to multi-dimensional

ergodic systems, suggesting that the thermodynamic relations we observe in macro-

scopic systems at equilibrium are a direct consequence of the microscopic laws of

dynamics alone. Here we have reviewed Boltzmann’s argument and showed that,

using the language of the modern ergodic theory, it can be safely re-expressed on a

continuum phase space as a generalized Helmholtz theorem (GHT), which has been

readily proved. Along the way the agreement between the Helmholtz-Boltzmann

theory and that of P. Hertz (based on adiabatic invariance) has been revealed. Both
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theories, in fact, lead to define the entropy as the logarithm of the phase space volume

enclosed by the constant energy hyper-surface (volume entropy).

Armed with such a good mechanical analogue of entropy we studied its behavior

under non-quasi-static perturbations and found a very interesting result. Independent

of the system’s number of degrees of freedom, the expectation value of the volume

entropy can only increase under the unitary (quantum or classical) time-evolution,

provided the initial state is an equilibrium state at positive absolute temperature

and the system is non-degenerate. This can be considered as a novel rigorous proof

of the second law that is an improvement over previous attempts. In particular

it illuminates on the fact that time-reversal asymmetry stems at the level of the

equilibrium principle (that is the minus first law of thermodynamics) rather than at

the level of the second law. The asymmetry appears because we are looking only at

the evolution of a subset of all possible initial equilibrium states.

Based on the results presented in the first part of the dissertation we can say that

the macroscopically observed second law actually can be understood on the basis

of microscopic dynamics, without the need to invoke the thermodynamic limit. We

have also noticed that even phase transition can exist in microscopic systems. Thus

it seems that a whole new world of microscopic thermodynamics, completely similar

and analogous to the well known macroscopic thermodynamics is amenable to be

discovered, studied and observed.

Still following Boltzmann, in the second part of the dissertation we have applied

the heat theorem to the study of the foundations of statistical ensembles. We know

from Boltzmann that microcanonical and canonical ensembles satisfy the prescriptions

imposed by the heat theorem. Here we have seen that a class of ensembles (that

is Tsallis escort ensembles) that are at the basis of the recently developed field of

non-extensive thermodynamics, also satisfy those prescriptions. This provides such

ensembles with a mechanical foundation other than the usual information-theoretic

one from which they were first derived. Indeed we have seen that the two approaches
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(i.e., mechanical and information-theoretic) are mutually consistent with one another,

with Rényi entropy acting as a link. An interesting result that we have found is

that Tsallis escort ensembles interpolate between the canonical ensemble and the

microcanonical ensemble. This holds also for the associated Rényi entropies which

correctly interpolate between the canonical entropy and the microcanonical entropy

(that is the volume entropy). The physical explanation of this is that Tsallis escort

ensembles describe systems in contact with finite heat baths.

We concluded the dissertation by unfolding a general mathematical structure that

underlies the microcanonical ensemble, the canonical ensemble and the interpolating

Tsallis (escort) ensembles. That is, all these ensembles belong to the class of what

we called the dual orthodes. All its members satisfy the heat theorem and produce

the same ideal gas thermodynamic relations. The mathematical structure of the

dual orthodes captures in a unifying picture the fundamental features of canonical

and microcanonical ensembles and at the same time extends those to other types of

statistics, such as the Tsallis (escort) ones, the gaussian ones and possibly others.

10.2. Perspectives

Ideas, methods and results presented in this work are certainly amenable to further

investigation and development. For example it would be very interesting to apply

the general theory developed in Chap. 4 to some specific, possibly exactly solvable,

models. This could provide interesting information on the actual time dependence

of the entropy one should expect from an experimental test of the theory. It is

interesting to notice that the damped harmonic oscillator which is often considered a

prototype model of dissipative system, fits quite well in the theory developed in Chap.

4. In fact the damped harmonic oscillator is actually a Hamiltonian system with the

Hamiltonian depending explicitly on time:

H(x, p, t) = e−γt p2

2m
+ eγt k

2
x2
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Thus the expectation value of its volume entropy increases as it should be for a

dissipative system. A specific study might be devoted to the explicit calculation of

the function S(t) in Eq. (67) for an initial canonical equilibrium (if the initial state

has been realized by thermalization with an infinite bath) or an initial Tsallis escort

equilibrium (if it has been realized by thermalization with a finite heat bath).

In Sec. 4.6 we have discussed the role played by the initial equilibrium in the

second law. We have found that a law of entropy decrease exists for initial inverted

populations. We also have discussed the fact that the latter can only be created

artificially by spending a larger amount of entropy than that returned during the time

dependent perturbation. Our discussion on the thermalization with finite heat baths

of Sec. 8.2 suggests a possible way to create an inverted population at no entropic

cost. If we thermalize our system with a finite heat bath with constant heat capacity

CV < 1 then the resulting equilibrium distribution in Eq. (143) of our system will be

increasing !!! Such inverted population would have been created via thermalization,

in a spontaneous way, rather than via a forceful entropically expensive pumping like

in laser systems. This is just an hypothesis whose actual feasibility certainly needs

further investigation, both on the theoretical and experimental level.

Our statement according to which the entropy of a negative entropy system de-

creases is in evident disagreement with the standard understanding of negative tem-

perature thermodynamics according to which instead it increases [38]. Further studies

aimed at resolving this disagreement might turn out to be fruitful in improving the

general theory of thermodynamics of negative temperature systems as it is currently

understood.

In Chap. 5 we have addressed microcanonical phase transitions in small isolated

systems and observed that when the ergodicity breaks down the microcanonical en-

tropy becomes singular. Considering that perfect thermal isolation is not practically

possible, and that one might be in general interested in the thermodynamic behavior
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of a small system in contact with a small bath, it is meaningful to study the ther-

modynamics of such system in the Tsallis (escort) ensemble.1 It is expected that the

degree of non-analyticity of the associated Rényi entropy decreases with increasing

heat capacity of the bath and becomes zero for infinite bath, as required by Ruelle’s

Theorem [58]. This issue is certainly worth exploring.

In Chap. 9 we have introduced a quite wide class of generalized ensembles: the

dual orthodes. Their theoretical justification is based on the fact that they comply

with the requirements posed by the heat theorem. Some important questions are

still to be addressed. Gaussian, Tsallis, canonical and microcanonical ensembles are

known to describe certain physical situations of systems in thermal contact with heat

baths with constant heat capacity. But we know that constant specific heats actually

do not exist, and thus it is worth asking ourselves what would be the distribution

function of a system in contact with a bath with a certain temperature dependent

heat capacity CV (T ). Certainly this is an interesting question in its own right. It

would also be interesting to verify if such a distribution belongs to the class of dual

ensembles.

1This idea has been recently expressed also in Ref. [59].
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UNITARITY AND LINEARITY OF THE OPERATOR U

100



Let us prove Eq. (84). According to Liouville Theorem the Hamiltonian flow is

incompressible, i.e., it is volume preserving. This means that the phase space measure

(220)
dqdp

h3N

is preserved during the time evolution. Since dqdp
h3N = Ω(E)dE = dΦ (Eqs. (10) and

(14)), then the measure dΦ is also preserved. This implies that the time evolution

operator U (ti, tf ) is unitary, that is norm preserving:

(221)

∫
dΦU (ti, tf )f(Φ) =

∫
dΦf(Φ).

Further it implies that any distribution that is constant throughout the whole phase

space does not change in time, that is:

(222) U (ti, tf )1 = 1.

The operator U (ti, tf ) is evidently linear, thus:

∫
dΘA(Θ, Φ) =

∫
dΘU (ti, tf )δ(Θ− Φ) = U (ti, tf )

∫
dΘδ(Θ− Φ) = U (ti, tf )1 = 1

where we have used, in order, Eq. (80), linearity, the relation
∫

dxδ(x) = 1 and Eq.

(222).
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APPENDIX B

CONSTRAINED MAXIMIZATION OF VOLUME ENTROPY
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Let us first consider the discrete case. Maximization of the discrete counterpart

of Eq. (168) reads:

(223)
∂

∂pn


ln

∑

{n|En≤U}
1− λ

∑
n

pn − β
∑

n

Enpn


 = 0

hence we get:

(224) λ + βEn = 0.

Multiplying by pn and summing over n, we get (using the constraints
∑

pn = 1,
∑

pnEn = U):

(225) λ + βU = 0.

This implies that En = U , therefore any state that does not satisfy such relation will

have zero probability. Since there are gU states on the level of energy U , using the

principle of a priori equi-probability, the output of the maximization procedure will

be:

(226) pn =
δEn,U

gU

where δEn,U = 1 if En = U and δEn,U = 0 otherwise. That is, pn is the discrete micro-

canonical ensemble. The passage to the continuum is performed via the substitutions:

∑
→

∫
dz(227)

pn → ρ(z)(228)

gn → Ω(e)(229)

Using the substitutions (227), (228) and (229) the continuum µcMEP becomes:

(230) δ

[
ln Φ(U)− λ

∫
dzρ(z)− β

∫
dzρ(z)H(z)

]
= 0

where:

Φ(U)
.
=

∫

H≤U

dz =

∫
dzθ(U −H(z)).
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Eq. (230) then leads to the microcanonical ensemble

ρ(z) =
δ(U −H(z))

Ω(U)
.
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SOME CALCULATIONS REGARDING DUAL ENSEMBLES
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C.1. Proof of the Generalized Equipartition Theorem of Eq. (180)

Let us calculate explicitly the average value of pi
∂H
∂pi

.1 Regardless of the parametriza-

tion one has:

〈
pi

∂H

∂pi

〉

ρ

=
1

G

∫
dzpi

∂H

∂pi

f [β(U −H)]

= − 1

βG

∫
dzpi

∂

∂pi

F [β(U −H)]

= − 1

βG

[
[piF [β(U −H(z; V ))]]z∈∂D −

∫
dzF [β(U −H)]

]
.

(231)

Where we integrated by parts over pi to obtain the third line. From Eqs. (175) and

(176) it follows:

(232)

〈
pi

∂H

∂pi

〉

ρ

=
1

β

G
G

.

According to the parametrization adopted this would be either Eq. (178) or (179).

C.2. Proof of 0rthodicity in the β, V parametrization

In the β, V parametrization U is a function of (β, V ). Therefore F is a function of

(z; U, V ), and G (Eq. 175) and Sρ (Eq. 174) are functions of (β, V ). Let us calculate

the partial derivative of S with respect to β:

∂Sρ

∂β
=

1

G
∂

∂β

∫
dzF (β(U −H))

=
1

G
∫

dzf(β(U −H))

[
(U −H) + β

∂U

∂β

]

= −G

G 〈H − U〉ρ +
G

G β
∂U

∂β
=

1

Tρ

∂Uρ

∂β
,(233)

where we used the equation Uρ =< H >ρ from the state definition (177) and the

generalized equipartition theorem of Eqs. (180) and (232). Now, let us calculate the

1The label i counts the degrees of freedom. Repeated indices are note summed.
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partial derivative of S with respect to V :

∂Sρ

∂Vρ

=
1

G
∂

∂V

∫
dzF (β(U −H))

=
1

G
∫

dzf(β(U −H))

[
β

∂U

∂V
− β

∂H

∂V

]

= β
G

G
∂U

∂V
− G

G β

〈
∂H

∂V

〉

ρ

=
1

Tρ

∂Uρ

∂Vρ

+
Pρ

Tρ

,(234)

where we used the expression for Pρ from Eq. (177) and the generalized equipartition

theorem of Eq. (180) and (232). Combining these together we obtain the heat

theorem:

(235) dS =

∂Uρ

∂β
dβ + ∂Uρ

∂Vρ
dVρ + PρdVρ

Tρ

=
dUρ + PρdVρ

Tρ

.

C.3. Large n behavior of the Coefficients An,σ

Equation (209) can be recast in the following form:

(236)

∫ ∞

0

dygn(y)e−
(A−y)2

2σ = A

∫ ∞

0

dygn(y)y−1e−
(A−y)2

2σ

where

(237) gn(y)
.
=

y
n
2 e−y

∫∞
0

y
n
2 e−y

θ(y)

and θ is Heaviside’s step function. The Fourier transform of Eq. (237) is:

(238) ĝn(k) = (1− ik)−
n
2
−1

Using the formula limN→∞
(
1 + x

N

)N
= ex, we have:

(239) lim
n→∞

ĝn(k) = eik(n
2
+1)

therefore the inverse Fourier transform gives

(240) lim
n→∞

gn(y) = δ
(
y −

(n

2
+ 1

))
.
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Using this result, Eq. (236) becomes for very large n:

(241) A ' n

2
,

which does not depend on σ.

C.4. Large n behavior of the Coefficients An for the Fermi-like Case

Figure 9.3 suggests that, in the limit n → ∞, An ' n. In this appendix section

we provide a simple consistency argument to support the claim that An ' n. Let us

assume that for very large n, An ' n. Then we should have from Eq. (214):

(242)

∫ ∞

0

dy
y

n
2

ey−n + 1
' n

∫ ∞

0

dy
y

n
2
−1

ey−n + 1
.

Equating the first derivative of the integrand on the left hand side to zero, gives:

y =
n

2
(1 + en−y),

which is satisfied for y = n. This means that an extremum (a maximum as we will

see) is attained for y = n. The value taken by the integrand at the maximum is n
n
2

2

which increases very quickly. The second derivative, calculated at y = n, is:

(243)
1

4

[(n

2
− 1

)
n−

n
2
+1 − n

n
2

]

which tends to −∞ very quickly. This indicates that the integrand becomes very

sharply peaked around y = n as n increases. Therefore, as an approximation, we can

replace y with n, and see that y
n
2 ' ny

n
2
−1, thus getting Eq. (242).
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