Microscopic Foundations of Thermodynamics and Generalized Statistical Ensembles

PDF Version Also Available for Download.

Description

This dissertation aims at addressing two important theoretical questions which are still debated in the statistical mechanical community. The first question has to do with the outstanding problem of how to reconcile time-reversal asymmetric macroscopic laws with the time-reversal symmetric laws of microscopic dynamics. This problem is addressed by developing a novel mechanical approach inspired by the work of Helmholtz on monocyclic systems and the Heat Theorem, i.e., the Helmholtz Theorem. By following a line of investigation initiated by Boltzmann, a Generalized Helmholtz Theorem is stated and proved. This theorem provides us with a good microscopic analogue of thermodynamic entropy. ... continued below

Creation Information

Campisi, Michele May 2008.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 567 times , with 6 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Campisi, Michele

Provided By

UNT Libraries

Library facilities at the University of North Texas function as the nerve center for teaching and academic research. In addition to a major collection of electronic journals, books and databases, five campus facilities house just under six million cataloged holdings, including books, periodicals, maps, documents, microforms, audiovisual materials, music scores, full-text journals and books. A branch library is located at the University of North Texas Dallas Campus.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This dissertation aims at addressing two important theoretical questions which are still debated in the statistical mechanical community. The first question has to do with the outstanding problem of how to reconcile time-reversal asymmetric macroscopic laws with the time-reversal symmetric laws of microscopic dynamics. This problem is addressed by developing a novel mechanical approach inspired by the work of Helmholtz on monocyclic systems and the Heat Theorem, i.e., the Helmholtz Theorem. By following a line of investigation initiated by Boltzmann, a Generalized Helmholtz Theorem is stated and proved. This theorem provides us with a good microscopic analogue of thermodynamic entropy. This is the volume entropy, namely the logarithm of the volume of phase space enclosed by the constant energy hyper-surface. By using quantum mechanics only, it is shown that such entropy can only increase. This can be seen as a novel rigorous proof of the Second Law of Thermodynamics that sheds new light onto the arrow of time problem. The volume entropy behaves in a thermodynamic-like way independent of the number of degrees of freedom of the system, indicating that a whole thermodynamic-like world exists at the microscopic level. It is also shown that breaking of ergodicity leads to microcanonical phase transitions associated with nonanalyticities of volume entropy. The second part of the dissertation deals with the problem of the foundations of generalized ensembles in statistical mechanics. The starting point is Boltzmann's work on statistical ensembles and its relation with the Heat Theorem. We first focus on the nonextensive thermostatistics of Tsallis and the associated deformed exponential ensembles. These ensembles are analyzed in detail and proved (a) to comply with the requirements posed by the Heat Theorem, and (b) to interpolate between canonical and microcanonical ensembles. Further they are showed to describe finite systems in contact with finite heat baths. Their mechanical and information-theoretic foundation, are highlighted. Finally, a wide class of generalized ensembles is introduced, all of which reproduce the Heat Theorem. This class, named the class of dual orthodes, contains microcanonical, canonical, Tsallis and Gaussian ensembles as special cases.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2008

Added to The UNT Digital Library

  • Oct. 2, 2008, 4:41 p.m.

Description Last Updated

  • Dec. 4, 2013, 10:42 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 6
Total Uses: 567

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Campisi, Michele. Microscopic Foundations of Thermodynamics and Generalized Statistical Ensembles, dissertation, May 2008; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc6128/: accessed April 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .