

GENERAL PURPOSE PROGRAMMING ON MODERN GRAPHICS HARDWARE

Robert Fleming, B.Sc.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2008

APPROVED:

Robert Renka, Major Professor
Armin Mikler, Committee Member
Tom Jacob, Committee Member
Krishna Kavi, Chair of the Department of

Computer Science and Engineering
Oscar Garcia, Dean of the College of

Engineering
Sandra L. Terrell, Dean of the Robert B.

Toulouse School of Graduate Studies

Fleming, Robert. General Purpose Programming on Modern Graphics

Hardware. Master of Science (Computer Science), May 2008, 90 pp., 1 table, 3 figures,

references, 124 titles.

I start with a brief introduction to the graphics processing unit (GPU) as well as

general-purpose computation on modern graphics hardware (GPGPU). Next, I explore

the motivations for GPGPU programming, and the capabilities of modern GPUs

(including advantages and disadvantages). Also, I give the background required for

further exploring GPU programming, including the terminology used and the resources

available. Finally, I include a comprehensive survey of previous and current GPGPU

work, and end with a look at the future of GPU programming.

Copyright 2008

by

Robert Fleming

 ii

To Wanda and Cheesepuff, my partners in crime.

 iii

TABLE OF CONTENTS

Page

LIST OF TABLES AND ILLUSTRATIONS ..vi

Chapters

1. MOTIVATION .. 1
1.1 What Kinds of Computation Suit the GPU?..................................... 2
1.2 GPU Limitations .. 3
1.3 What This Document Contains.. 4

2. BACKGROUND MATERIAL .. 5

2.1 A Brief History of GPU Programmability.. 5
2.2 The Graphics Pipeline... 8
2.3 The GPU Programming Model .. 11

2.3.1 Stream Processing Terminology .. 13
2.4 Languages .. 14
2.5 Debuggers, Profilers, and Authoring Tools 16
2.6 Matrix Multiplication Example.. 18

2.6.1 GLSL Impementation ... 19
2.6.2 CUDA Implementation.. 25

3. SURVEY.. 31

3.1 GPGPU Rendering.. 31
3.1.1 Global Illumination.. 32

3.2 Image Processing ... 36
3.2.1 Volume Reconstruction .. 38

3.3 Audio... 39
3.4 Computational Geometry .. 40
3.5 GPU Algorithms and Data Structures.. 42

3.5.1 Mathematics ... 43
3.5.2 Data Structures .. 50
3.5.3 Sorting.. 51

 iv

3.6 Simulation ... 53
3.6.1 Cloth... 53
3.6.2 Crowd... 54
3.6.3 Fluid ... 55
3.6.4 Physics ... 58
3.6.5 GPUs in High-performance Computing, Networks, and

Clusters .. 63
3.6.6 Bioinformatics... 65

3.7 Previous Work... 66

4. CONCLUSION... 67

NOTES.. 69

Appendices

A. matrixMul_glsl.cpp ... 70

B. matrixMul_cuda.cu... 75

REFERENCES.. 79

 v

 vi

LIST OF TABLES AND ILLUSTRATIONS

Page

Tables

2.1 How Shader Models Relate to DirectX Versions .. 7

Figures

2.1 The OpenGL Graphics Rendering Pipeline .. 10

2.2 Computation C = A * B ... 29

3.1 Folding@Home Average Computations per Client ... 65

1

CHAPTER 1

MOTIVATION

Early graphics processing units of the 1980s and 1990s were built as 2D

accelerators. Common operations included bit blitting, which is a combination of two bit

maps using a raster op (for example: AND, OR). Today, GPUs are a cheap commodity

solution to having a data-parallel co-processor alongside the CPU. In their evolution as

processors, they became fully programmable in three stages of the graphics pipeline (§

2.2). In addition, they specialize in massively parallel scalar processing; modern GPUs

have up to 128 independent processors (NVIDIA 2006), whereas CPUs have, at the

desktop level, only reached 8 cores.

GPUs are also outpacing CPUs in terms of raw processing horsepower. At the

time of this writing, Nvidia's G80 is capable of a theoretical peak performance of 340

Gflops, compared to the almost 40 Gflops of Intel's Core 2 Duo processor (NVIDIA

2008, NVIDIA CUDA). GPU pixel processing is increasing at a rate of 1.7 times per

year, and vertex processing is increasing at a rate of 2.3 times per year, contrasted with

a 1.4 multiplier for CPU performance (Owens et al. 2005).

Recently, there has been an increasing interest in general purpose computation

on graphics hardware. The ability to work independently alongside the CPU as a co-

processor is interesting but not motivating enough to learn how to apply problems to the

graphics domain. However, with full programmability and the computational power of

GPUs outpacing CPUs (in terms of a price/performance ratio), the GPU has moved to a

place of being the primary processing unit for certain applications, with the CPU

managing data and direction of the GPU. This is motivation enough to learn how to

2

apply certain problems to the domain of computer graphics, thus we achieve general

purpose computation on graphics hardware.

1.1 What Kinds of Computation Suit the GPU?

GPUs were built primari ly as graphics processing units, and so we know that

they excel at computer graphics. To see what kinds of problems can be mapped well to

GPUs, we simply abstract computer graphics computation. Two key ideas in graphics

processing are data parallelism and independence. That is, GPUs efficiently operate on

streams of data where different elements of the stream are processed simultaneously

(parallelism). Also, each piece of data in the stream typically has little or no dependence

upon other data elements in the stream. Any problem that benefits from parallelization

and has mostly independent data would map well to GPU hardware.

We also know that GPUs operate almost exclusively on vectors of floating point

numbers. Any arithmetically intense problems would do well to take advantage of the

fact that the cost of GPU computation is decreasing more rapidly than the cost of

communication (memory bandwidth, caches) (Harris 2005). A good example of this is

finding the solution of a system of linear equations (Krüger and Westermann 2005).

Solving systems of linear equations maps well to GPU hardware because the ratio of

arithmetic operations to words transferred (where a word is the word-size of the

architecture; i.e. typically 32 bits) is very high.

3

1.2 GPU Limitations

Not all computation maps well to GPU programming, however. Unti l very recently,

GPUs lacked integer operations such as bit-shifts and bitwise logical operations (AND,

XOR). As a result they are not well-suited to fixed-point computation (though this is

typically not a downside as floating-point computation is available) and other integer-

heavy arithmetic. GPUs also lack efficient branching operations; only recently are they

capable of branching in the fragment processor and previously the vertex processor.

Typically, GPUs evaluate both sides of the branch and discard one (Owens et al 2005),

whereas CPUs historically excel at branch prediction.

Caches are typically small on GPUs, and memory-intensive computation is not

well-suited for mapping onto graphics hardware. While memory bandwidth may be high,

GPU vertex processors can only cache approximately 24 , in constrast with the

1-2 megabyte caches of newer CPUs. This is not to say GPUs don't access large

pieces of data in memory, but they typically don't read/write to memory in frequent

iterations (in fact, typical GPU programs read several times and write only once at the

end). The Nvidia Geforce 8800 GTX has 768 MB of on-card RAM and a peak memory

bandwidth of 86.4 GBps (NVIDIA 2006), clearly demonstrating apt memory computation

ability, but due to the structure of GPU programming, it is not suited for fast, successive

read/writes.

GPUs are further limited in floating point precision, with only the most recent

GPUs having full 32-bit IEEE 754 single-precision floats, whereas historically they have

done computation in 16 or 24-bit precision. Double-precision 64-bit floats are rumored

for an upcoming revision of Nvidia's Tesla line of GPUs, which will be built specifically to

4

address GPGPU (NVIDIA 2007). There is no indication of double-precision floats

reaching commodity graphics hardware any time soon. The current lack of double -

precision floats limits the adoption of GPU programming for many areas of scientific

computing and numerical computation.

Lastly, GPU programming is limited in that the problem of interest must be

mapped to the graphics programming model, with only a few abstractions available to

programmers familiar with the CPU model. Achieving good performance in GPU

programming requires in-depth knowledge of not only graphics programming, but also

modern hardware trends. This further limits the adoption of general purpose GPU

programming as new problem domains usually require an expert in the domain as well

as an expert in graphics programming.

1.3 What This Document Contains

This thesis introduces and covers all introductory aspects of general-purpose

computation on modern graphics hardware and provide instructions on how to further

obtain information on any specific or general sub-domain thereof. Chapter 1 provides

the motivation and impetus for GPGPU, followed by Chapter 2, which covers the

description and methodology for general-purpose computation on GPUs. Chapter 3 is a

comprehensive look at all current and previous general-purpose work done on GPUs,

with an emphasis on current work descriptions. Chapter 4 analyzes the future of the

industry.

5

CHAPTER 2

BACKGROUND MATERIAL

As an introduction to general-purpose computation on graphics hardware, this

section provides the necessary prerequisites. Section 2.1 is a quick history lesson,

followed by Section 2.2, which details the traditional graphics pipeline. Section 2.3

introduces the GPU programming model. Section 2.4 is a current look at all the tools

available for GPGPU programming. Finally, section 2.5 details an example GPGPU

program.

2.1 A Brief History of GPU Programmability

The Nvidia Geforce 256 was the first card to offload vertex transform and lighting

(T&L) from the CPU and onto the . This generation of card also introduced a

programmable method of combining textures and colors by way of such OpenGL

extensions as EXT_texture_env_combine and NV_register_combiners. While this

introduced greater flexibility than previous generations, it was not considered truly

programmable, because the number of combinations remained limited.

The first true programmability arrived with the DirectX 8 generation of graphics

cards. Cards in this generation include the Geforce 3, ATI Radeon 8500, and the

Geforce 4. On the OpenGL side of things, the programmability was first exposed via

vendor-specific extensions such as NV_vertex_program, but it was later available via

the multi-vendor ARB_vertex_program. This extension allowed full control over the

vertex transform stage of the graphics pipeline (§ 2.2). Around this time, the term shader

became prevalent as a way of denoting a program that runs on the graphics card. A

6

pixel shader (or fragment program, in OpenGL) is a program that runs on each

individual fragment processed, and a vertex shader (or vertex program) runs on each

vertex processed.

From this generation on, the programmability of GPUs was denoted with what

shader model they were capable of. The shader model is closely tied with what DirectX

version the GPU is capable of rendering in full hardware mode (without CPU

assistance), as shown in Table 2.1. Typically, with each generation of GPUs the two

main independent hardware vendors (IHV), ATI and Nvidia, would release OpenGL

extensions exposing the same functionality as DirectX.

With each shader model release, the programmability was typically increased by

several factors. For example, the maximum number of instruction slots changed. In pixel

shader 1.1 the maximum number of texture fetch instructions was 4, and the maximum

number of arithmetic instructions was 8. In pixel shader 2.0 this was increased to 32

texture fetches and 64 arithmetic operations. Pixel shader 3.0 increased the instruction

slots to a minimum of 512, and with loops and branching taken into account, the number

of executed instructions can be as high as 2^16. Pixel shader 4.0 increased the

available instruction slots to 2^16, with the executed instructions effectively unlimited.

Each generation was a huge improvement over the previous generation. Also, new

available registers and new instructions became available with every shader model

release. For instance, vertex shader 3.0 introduced the ability to do texture fetches in

the vertex shader, which enabled a whole range of new possibilities in GPGPU as

memory fetches so early in the pipeline were previously impossible.

7

With the introduction of the Geforce 8 and shader model 4.0, the programmability

of GPUs reached a whole new level with what is known as the unified shader model.

Under shader model 4.0, all three shader types, pixel, vertex, geometry, (§ 2.2) enjoy

the same instruction set. This is possible with the new scalar architecture of shader

model 4.0 hardware, where there is no longer specialized processors for shading pixels

and other processors for transforming vertices. Instead, there are general purpose

processors that can be scheduled to run any type of shading program. In the past, when

rendering a geometry-heavy scene, the pixel processors were mostly idle; likewise

when rendering a heavily post-processed scene, the vertex processors were

underutilized. Under the unified architecture, all resources can be used regardless of

the type of scene. This is discussed extensively in (NVIDIA 2006). Shader model 4.0

also introduced geometry shaders, a previously nonprogrammable stage of the graphics

pipeline, as well as true integer computation support on GPUs (including bitwise

operations).

DirectX
Version

Vertex
Shader
Version

Pixel Shader
Version

Geometry
Shader
Version

8.0 , 1.1 1.0, 1.1 n/a

8.1 1.2, 1.3, 1.4 1.0, 1.1 n/a

9.0 2.0 2.0 n/a

9.0a 2a, 2b 2.x n/a

9.0c 3.0 3.0 n/a

10.0 4.0 4.0 4.0

10.1 4.1 4.1 4.1

Table 2.1: How Shader Models Relate to DirectX Versions

8

2.2 The Graphics Pipeline

There are many resources available that explain the graphics rendering pipeline

in more detail, such as (Akenine-Möller and Haines 2002) and (Shreiner et all 2007), but

a brief explanation is included here for completeness. The following describes the

graphics pipeline as implemented in the OpenGL API. Illustration 2.1 should be used as

a guide when reading this section.

First, vertices are specified by the application, either with conventional attributes

such as position, color, and texture coordinates or by generic numbered attributes. Next,

they are transformed by either the fixed-function pipeline or by a vertex shader. Modern

graphics drivers usually implement the fixed-function pipeline via a generated vertex

shader. The fixed-function vertex transformation includes multiplying the vertex position

by the modelview, and projection matrices, as well as texture coordinate generation and

lighting calculations. A custom vertex shader has the option to do all or none of these

calculations.

The next step is primitive assembly, where vertices are assembled into primitives

specified by the application, such as triangles, points, or quads. If a geometry shader is

specified, it is executed once on each input primitive. The geometry shader is specified

with an output primitive type, which may or may not be different than the input

primitives. The geometry shader can emit new vertices, which are then assembled into

the output primitive type.

Optionally, the vertex colors are clamped to the range [0, 1], and flat shading can

be applied. Flat shading applies just one color to the entire primitive, as opposed to

smooth shading which interpolates the colors between each vertex.

9

Vertices are then clipped to the view volume in clip coordinates, and then

perspective division converts them to normalized device coordinates. The viewport

transformation step then converts vertices to window coordinates. Final color

processing refers to converting color values to fixed-point values. See the OpenGL

specification § 2.14.9 for further details (Segal and Akeley 2006). The primitive is

determined to be either front or back facing, which determines whether the front or back

color of a vertex is chosen.

Rasterization converts the primitive into a two-dimensional image, the output of

which is a fragment and an associated depth value. The fragment can be thought of as

a 'potential pixel,' as technically a pixel value is what gets written to the framebuffer, and

a fragment may be killed before it reaches the framebuffer. A pixel shader, or fragment

shader, is executed for each fragment generated. The shader may change any value

associated with that fragment, such as color or depth, except the final position in the

framebuffer is already determined at this point in the pipeline (final fragment position

may be manipulated earlier in the pipeline indirectly such as via a vertex shader). Some

final fragment operations such as the depth test, alpha test, stencil test, and blending

are done before the fragment is finally written to the framebuffer. Also, it is worth noting

that the "framebuffer" may or may not be the actual backbuffer (or frontbuffer, i.e. the

visible window) of the application, and indeed, many GPGPU programs are run without

rendering an image to the backbuffer. With modern hardware, it is possible to render

directly to texture memory, the results of which may be used in subsequent rendering

passes. This concept is critical to GPGPU programming.

10

Illustration 2.1: The OpenGL Graphics Rendering Pipeline

11

2.3 The Programming Model

The GPU programming model is a subset of a broader field called stream

processing. In stream processing, a set of input data (called a stream) is applied to a

series of operations (called a kernel), once for each element in the stream. The central

idea is that each element in the stream is independent from every other element,

allowing each element to be processed in parallel. When only one kernel at a time is

applied to the entire stream, it is called uniform streaming, which is a form of single-

instruction-multiple-data (SIMD), as opposed to multiple-instruction-multiple-data

(MIMD), or single-instruction-single-data (SISD), the latter of which is the execution

model of a typical single-core CPU. Modern CPUs have vector processors that utilize

the streaming SIMD extensions (SSE) instruction set, and are capable of, for example,

multiplying four floating point numbers against another four floating point numbers in a

single instruction. While this is SIMD, stream processing is the same concept at a much

larger level, with typical streams being millions of elements large, and kernels consisting

not just of a single multiply, but possibly hundreds of operations. For this reason, GPU

programming is sometimes called single-program-multiple-data, or SPMD.

Stream processing is a data-parallel methodology, as opposed to a task-parallel

methodology. An example of task parallelism is the CPU threading model: each task is

broken up into a thread of execution which may have completely different instructions

than any other thread, as well as possibly different data. In stream processing, the

instructions for each element of the stream are fixed (branching and looping aside); only

the data is different. Unlike task parallelism, which has the overhead of synchronization

issues to deal with (race conditions, locks, etc.), it is easy to demonstrate that the

12

effectiveness of a data-parallel device like the GPU can be increased simply by adding

more stream processing elements.

There are two important tenets in stream processing. First, compute intensity is

the number of arithmetic operations per memory access. Second, data parallelism

means that each stream element can be processed independent of any other. A high

level of data parallelism and compute intensity both indicate a good match for GPU

programming, because, as mentioned earlier, the cost of computation is decreasing

more rapidly than the cost of communication.

On GPUs, input streams typically mean a set of vertices sent by the application.

Output streams are usually 2D textures, or the framebuffer itself, which can be thought

of as a 2D texture. Kernels can mean either the vertex shader, geometry shader, or

pixel shader, depending on the desired number of output stream elements. The typical

GPGPU setup involves drawing a fullscreen quad such that the number of pixels in the

quad equals the number of desired times to execute the kernel body, which in this case

is implemented via a pixel shader. Optionally rendering the result into a texture to save

the results for future computations, it is possible to manipulate the viewport to ensure a

one-to-one mapping of output pixels to texels. Alternatively, the quad could be rendered

to the framebuffer and then copied to a texture, for architectures that do not support

render-to-texture (RTT). Regardless of the destination, texture or framebuffer, it is

essential to realize that, due to the structure of the graphics pipeline, the output memory

is write-only, and all other texture memory is read-only. This has led to a technique

called ping-ponging, where the result of one computation is used as the input for the

13

next computational pass, with the source and destination textures swapping at each

iteration.

2.3.1 Stream Processing Technology

There are a few common techniques in stream processing, the simplest of which

is called a map operation. A map simply applies the kernel function to each element in

the stream. As before, using a pixel shader as the kernel, a pixel is generated for each

element in the stream, producing the output stream.

A reduce operation produces a smaller output stream from a larger set. Typically,

the larger set is input for the reduction kernel, where multiple elements are read, but

only one element is written. This is usually implemented via a pixel shader that reads

from multiple textures before writing a single value. A reduce operation can be repeated

to condense a stream down to a desired si ze, potentially down to a single stream

element.

The two methods of stream communication are scatter and gather. While the

cost of communication is high compared to the cost of computation, not all algorithms

are possible with pure computation, and sometimes communication is necessary.

Gather is basically a random-access read, which in our case is typically sampling a

texture. Gather was previously only possible in the fragment processor, but in the most

recent GPU architectures it is available in all programmable stages of the graphics

pipeline (§ 2.2). Scatter is a random-access write into memory. The fragment processor

is incapable of scatter, as the location in memory of the output pixel is fixed at the time

14

of the shader's execution. To implement scatter on the GPU, a vertex or geometry

shader is written to manipulate the vertex's position, or generate new vertices on-the-fly.

2.4 Languages

The most important advancement towards GPGPU thus far has been the advent

of high-level shading languages. Previously, shaders had to be written in assembly that,

while standardized, still changed with each shading model iteration. High-level

languages enabled more complex algorithms to be expressed in easier-to-understand

syntax, just as in traditional CPU programming languages. The three primary high-level

shading languages are the OpenGL Shading Language (GLSL), Nvidia's C for Graphics

(Cg), and Microsoft's High Level Shading Language (HLSL). GLSL is OpenGL specific,

and HLSL is Direct3D specific, but Nvidia's Cg can be used with either API. All three

have slight syntactic differences, but with an understanding of one language, it is

relatively easy to transition to another shading language, assuming an existing

understanding of the API it is used in (either D3D or OGL). Indeed, Cg and HLSL were

developed by close collaboration between Nvidia and Microsoft, and the languages

remain nearly identical.

Emerging from the high-level shading languages, several efforts have been

made to program GPUs without the need to learn a graphics API, but instead using

traditional C or C++. While still in its infancy, these efforts, usually in the form of a library

rather than a new language (to take advantage of existing tools and technologies), have

come a long way towards making GPGPU programming more available and

approachable. First, the IHV specific solutions are Nvidia's Compute Unified Device

15

Architecture (CUDA) (NVIDIA 2008, NVIDIA CUDA), and ATI/AMD's Close-to-Metal

(CTM) (Advanced Micro Devices 2006). ATI is also releasing an evolution of CTM

called Compute Abstraction Layer (CAL), which promises to be higher-level than CTM,

which is a very low-level interface to the GPU. On the open-source side of things, there

is BrookGPU (Standford University Graphics Lab 2008), or simply Brook, which is a

combination of the Brook stream programming language, and the Brook runtime library.

Programs written in the Brook language (which is very similar to ANSI C) can be

compiled down to run on a number of backends, including Direct3D, OpenGL, and

CTM. The Brook compiler takes Brook language files (*.br) and compiles them into C++,

which (after compiled) then calls into the Brook runtime. Another open-source project is

LibSh (McCool and DuToit 2004), simply Sh, which embeds itself inside C++. Instead of

compiling a stream programming language into C++, the GPU programs in Sh are

simply C++ programs. These programs make calls into the Sh runtime, which then

dynamically takes the Sh operations and compiles them down first into an intermediate

language, then finally into GPU code that the Sh runtime handles transparently in the

backend. Both Brook and Sh are exposed as C or C++ libraries that provide an

abstraction to the GPU-specific languages. Brook has, until most recently, been an

inactive project for several years, and LibSh was abandoned as of August 2006. Most

development in GPGPU/stream programming languages (as opposed to GPU

languages, such as Cg/GLSL) has been in vendor-specific solutions, such as CUDA

and CTM, that are nevertheless available for free to encourage development.

Commercial stream programming languages remain few, with PeakStream (a spinoff of

Brook) acquired by Google in June 2007, and Rapidmind (RapidMind 2008, RapidMind

16

Homepage), a commercialization of LibSh. Rapidmind takes the idea of Sh even further,

with the backend runtime capable of executing on not only GPUs but multi -core CPUs

as well as STI's (an alliance of Sony, Toshiba, and IBM) Cell architecture. Lastly, it is

worth noting other stream programming languages such as MIT's StreamIt and projects

such as Intel's Ct that are built mainly for multi-core CPUs and do not seem to take

advantage of the extreme parallelism available in GPUs.

2.5 Debuggers, Profilers, and Authoring Tools

While stream programming languages are still developing, high-level shading

languages have been available and production-ready for years. What limits their

adoption, however, is not only the need to utilize a graphics API alongside the shading

language, to take advantage of the GPU, but also the availability of tools such as

debuggers and profilers.

Microsoft provides PIX, which allows profiling, optimizing, and debugging

Direct3D code. Unfortunately, when debugging vertex and pixel shaders, the code is

executed on the Direct3D reference rasterizer, which executes on the CPU. This is not

only slower but not the exact environment the shader code will eventually run under,

and relies instead on the quality of the reference rasterizer.

On the OpenGL side of things, there are many projects designed to trace and log

OpenGL calls, and generally intercept rendering commands and capture OpenGL state.

Examples include BunGLe, Graphic Remedy's gDEBugger, GLIntercept, spyGLass, and

Nvidia's GLExpert. While some of these, such as gDEBugger, allow setting b reakpoints

and debugging, none of them allow debugging shaders, which is of primary interest to

17

GPGPU programming. Two projects, Shadesmith and glslDevil (Strengert, Klein, and

Ertl 2007), allow debugging of shaders, and both execute on the target hardware

instead of software emulation. Shadesmith, however, only debugs fragment programs.

GlslDevil retrieves information directly from the hardware pipeline, and does so

transparently to the application (in other words, it does not require recompilation or

relinking of the executable being debugged). In addition, it supports geometry shaders

as well as vertex and fragment shaders.

Profiling information is readily available from IHV's, with Nvidia's

PerfHUD/NVPerfGraph, and ATI's GPU PerfStudio. NV's PerfHUD only supports

Direct3D, while ATI's PerfStudio supports both OpenGL and Direct3D. There is also

Nvidia's ShaderPerf and ATI's GPU ShaderAnalyzer for profiling shaders specifically,

with the former also only supporting D3D and the latter supporting both API's. OpenGL

profiling information can be acquired through some of the previously mentioned

OpenGL debuggers, such as gDEBugger.

Tools written specifically to help author shaders include Apple's OpenGL Shader

Builder, TyphoonLab's OpenGL Shader Designer, Nvidia's FX Composer, and ATI's

Rendermonkey. These tools provide a closed environment where shaders can be

applied to various geometries without the need to worry about the external API calls

(such as OpenGL or Direct3D), allowing quick turn-around between editing a shader

and seeing it's effects on the output. However, in the context of GPGPU programming,

these tools are not ideal, as many GPGPU programs aren't necessarily interested in

rendering output, and many require complicated setup aside from just rendering

geometry with textures.

18

While the number of debuggers and profilers may seem numerous, many have

shortcomings that show the immaturity of GPU and GPGPU programming tools. For

instance, many profilers aren't available for both graphics API's, and many debuggers

are not capable of debugging shaders, or are not capable of debugging on the actual

hardware. In addition, the relative infancy of GPGPU and stream programming

languages means that existing debuggers and profilers can not yet be taken advantage

of. It is expected this will change rapidly with time, with the eventual sophistication of

GPU programming tools reaching that of CPU programming tools.

2.6 Matrix Multiplication Example

As an example of GPGPU programming, we explain how to do matrix

multiplication on the GPU using two sample implementations: one using the OpenGL

shading language, GLSL, and another using Nvidia's CUDA. We define the product of

two matrices A and B, where A is an m by n matrix, and B is a n by p matrix, to be C =

A * B, where C is an m by p matrix. The entry ci ,j denotes the value of C at position (i, j),

where

for each pair i, j where 0 ≤ i ≤ m and 0 ≤ j ≤ p. To simplify things, we assume square

matrices of size [dim, dim], and therefore m = n = p = dim. Consider the following C++

code for computing C on the CPU:

19

Here we store A, B, and C in one-dimensional arrays where the element cy,x is

accessed via C[y * dim + x]. Now we demonstrate how to perform this same

computation using the GPU.

2.6.1 GLSL Implementation

The prerequisite before any OpenGL commands can be passed to the GPU is,

first, a valid OpenGL context must be acquired. This is window-system specific, but

many libraries exist to program this in a cross-platform way; for our purposes we used

the GLFW library (GLFW Project 2008). The full source code for our GLSL sample,

including initialization code and any functions not explicitly defined here, can be found in

Appendix A. Our GLSL implementation will compute C on the GPU by storing A, B, and

C as textures, and then render to C with a GLSL fragment shader that computes each

element ci ,j. We first define our matrix dimensions and then allocate space on the GPU

for A, B, and C as textures:

 const int dim = 7;
 GLuint A_gpu_data = createTexture(dim);
 GLuint B_gpu_data = createTexture(dim);
 GLuint C_gpu_data = createTexture(dim);

 void matrixMul_cpu(float* C, float* A, float* B, const int dim) { void matrixMul_cpu(float* C, float* A, float* B, const int dim) {
 for (int i = 0; i < dim; ++i) {
 for (int j = 0; j < dim; ++j) {
 float sum = 0;
 for (int k = 0; k < dim; ++k) {
 sum += A[i * dim + k] * B[k * dim + j];
 }
 C[i * dim + j] = sum;
 }
 }
 }

20

The function createTexture() returns a single- , floating-point texture of size

[dim, dim] that is suitable for storing our matrices. We use the variable C_gpu_data to

refer to C in texture memory, and the variable C_cpu_data to refer to C in main

memory. Next, we allocate space on the CPU for our matrices and randomly assign

values to A and B:

We next transfer the data of A and B from main memory to texture memory:

The zeros in the function glTexSubImage2D() refer to mipmap levels and x-, y-offsets

within the array, which we would set if we did not want to transfer the entire array. For

more details about this and any other OpenGL function refer to the OpenGL man pages

(Khronos Group 2007). Note that A_cpu_data and B_cpu_data are no longer needed,

and can be released using free() should we choose to. In order to render to the texture

C_gpu_data we need to create a framebuffer object, which can be thought of as an off-

screen window, and attach our texture as its main color buffer:

 glBindTexture(GL_TEXTURE_RECTANGLE_ARB, A_gpu_data);
 glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 0, 0, dim, dim, GL_LUMINANCE,
 GL_FLOAT, A_cpu_data);
 glBindTexture(GL_TEXTURE_RECTANGLE_ARB, B_gpu_data);
 glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 0, 0, dim, dim, GL_LUMINANCE,
 GL_FLOAT, B_cpu_data);

 float* A_cpu_data = (float*) malloc(dim * dim * sizeof(float));
 float* B_cpu_data = (float*) malloc(dim * dim * sizeof(float));
 float* C_cpu_data = (float*) malloc(dim * dim * sizeof(float));
 random_fill(A_cpu_data, dim * dim);
 random_fill(B_cpu_data, dim * dim);

21

In the OpenGL shading language, shaders are created and attached to program

objects, which can be thought of as containers for shader programs (for example,

holding one of each of a vertex shader, and a fragment shader). In our case, we need

only a single fragment shader, and opt to use the fixed-function vertex processing.

Shaders are passed to OpenGL as text strings, which can be read from disk, or included

in the source directly. We store our fragment shader source in the string

fShaderSource, which we will discuss later.

A key idea in GPGPU computing when rendering to textures is to spawn the fragment

shader once for each destination element; in our case, once for each texel of C. Thus,

since a fragment shader is executed once for each input pixel, we must generate one

pixel per texel of C. The following code creates this 1:1 mapping:

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(0.0, dim, 0.0, dim);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glViewport (0, 0, dim, dim);

 const char* fShaderSource = //discussed later
 GLuint fShader = glCreateShader(GL_FRAGMENT_SHADER);
 glShaderSource(fShader, 1, &fShaderSource, NULL);
 glCompileShader(fShader);
 GLuint program = glCreateProgram();
 glAttachShader(program, fShader);
 glLinkProgram(program);

 GLuint fbo = 0;
 glGenFramebuffersEXT(1, &fbo);
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
 GL_TEXTURE_RECTANGLE_ARB, C_gpu_data, 0);

22

Next, we must tell OpenGL where we are rendering to (the framebuffer object we

attached C to), what textures we would like access to while rendering, and what

program object (that contains our fragment shader) we would like to be active . We also

pass some information to our fragment shader; namely, dim and the locations of A and

B, by specifying them as uniform parameters. In GLSL, uniform parameters are

variables which do not change per primitive; in our case, they never change.

Finally, to invoke our fragment shader once for every texel in C we draw a screen-sized

quad:

Our quad is of size [dim, dim] and is screen-sized due to the viewport specified above

(which defines the size of our OpenGL screen). Note the texture coordinates of the quad

are unnormalized and are of the range [0, dim]. Normalized texture coordinates are of

the range [0, 1]. Now we examine our fragment shader, which we stored in

fShaderSource, which performs the matrix multiplication:

 glBegin(GL_QUADS);
 glTexCoord2f(0, 0); glVertex2f(0, 0);
 glTexCoord2f(dim, 0); glVertex2f(dim, 0);
 glTexCoord2f(dim, dim); glVertex2f(dim, dim);
 glTexCoord2f(0, dim); glVertex2f(0, dim);
 glEnd();

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
 glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
 glClear(GL_COLOR_BUFFER_BIT);
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_RECTANGLE_ARB, A_gpu_data);
 glActiveTexture(GL_TEXTURE1);
 glBindTexture(GL_TEXTURE_RECTANGLE_ARB, B_gpu_data);
 glUseProgram(program);
 glUniform1i(glGetUniformLocation(program, "A"), 0);
 glUniform1i(glGetUniformLocation(program, "B"), 1);
 glUniform1i(glGetUniformLocation(program, "dim"), dim);

23

We used the OpenGL extension ARB_texture_rectangle to allow our matrices to be any

dimension in size; usually, OpenGL texture sizes are to be a power of two.

Another benefit of using texture rectangles is it allows us to sample textures using

unnormalized texture coordinates. A and B are of type uniform sampler2DRect, which

means they are two-dimensional texture rectangles whose values do not change. They

are sampled (i.e. read from texture memory) via the function texture2DRect(), which

takes as parameters the texture name, and, for two-dimensional textures, a floating-

point pair (s, t). The function returns four floating-point numbers in the form of a vec4 (a

GLSL data type), from which we are only interested in the first element (with

the .r). The texture2DRect() function always returns four floats; it is up to the user to

access the valid members that are returned. In our case, since A and B are single-

channel textures, only the first element is valid; the rest are undefined. The texture

coordinates that we generated for our quad are accessed natively in the shader via the

variable gl_TexCoord[0]. These coordinates are automatically interpolated across the

face of the quad, with gl_TexCoord[0].s varying in the x direction of the texture, and

gl_TexCoord[0].t varying in the y direction. Our fragment shader calculates a single

 #extension GL_ARB_texture_rectangle : enable
 uniform sampler2DRect A;
 uniform sampler2DRect B;
 uniform int dim;
 void main() {
 float sum = 0.0;
 for (int i = 0; i < dim; ++i) {
 float a = texture2DRect(A, vec2(i, gl_TexCoord[0].t)).r;
 float b = texture2DRect(B, vec2(gl_TexCoord[0].s, i)).r;
 sum += a * b;
 }
 gl_FragColor.r = sum;
 }

24

value of C; namely, ci ,j where (i, j) is (s, t). Our loop runs from 0 to dim and sums the

products of the elements of A and B, with A being sampled along the current row, and B

being sampled along the current column. Note that the shader is executed once per

pixel, with the current pixel in column s and row t. Therefore, the variable

gl_TexCoord[0].st is a constant unique to each pixel during the shader's execution.

Our resultant texture, C, is also a single-channel texture; therefore we store the result in

the first channel of the output color (indicated by gl_FragColor.r).

We usually wish to access the results of our computations back on the CPU in

main memory. In order to transfer C back to the CPU we do the following:

The result of the matrix multiplication can be indexed at (y, x) via the array

C_cpu_data[y * dim + x].

Our implementation has a few limitations; namely, it is limited in that dim * dim

must be a valid texture size. On current hardware, this limits us to matrices of size 8192

by 8192. Also, our implementation rendered to a single-channel floating-point texture

(specifically, a GL_LUMINANCE texture, see Appendix A for details), which must be a

valid render target under both the video card and the driver in order to work. This is not

widely supported (our test system used an Nvidia 8800 GT under Linux). Fortunately,

rendering to a four-channel floating-point texture is more widely supported, and our

matrix multiplication example can be optimized by packing two by two submatrices of A

and B into the four color channels red, green, blue, alpha (RGBA) of their respective

textures. This approach and more optimizations can be found in the work of Hall et al.

 glReadBuffer(GL_COLOR_ATTACHMENT0_EXT);
 glReadPixels(0, 0, dim, dim, GL_LUMINANCE, GL_FLOAT, C_cpu_data);

25

(Hall, Carr, and Hart 2003). Our implementation is intended for didactic purposes only.

The full listing can be found in Appendix A.

2.6.2 CUDA Implementation

Our CUDA implementation performs the same computation as our GLSL

implementation: C = A * B, for matrices of size [dim, dim]. CUDA introduces some new

terminology: the host is referring to the CPU, and host memory refers to main memory,

or RAM. The device refers to the GPU, and device memory refers to texture memory, or

sometimes called global memory when using . Instead of a fragment shader

performing the multiplication, our kernel is written in a dialect of C++. Each kernel

invocation is executed over a grid, which can be thought of as our computational

domain and range. This maps well to our example, which has both a domain and range

of size dim. The grid is broken up into blocks, sometimes called thread blocks, because

each block is further broken up into threads. Each thread can be thought of as a pixel,

on each of which our fragment shader executed on. In this case, each thread calculates

an element ci ,j of C. We refer to the size of each block as BLOCK_SIZE, which is

optimally chosen to be a multiple of the number of symmetric multiprocessors (SM) on

the . By breaking up our computational domain into a multiple of the number of

multiprocessors, we ensure that each SM is uti lized; splitting it up less, for instance,

would not utilize the full capability of the GPU.

We start by defining our matrix dimensions, the size in memory of a matrix, and

allocating space on the GPU for each matrix:

26

Note that C_gpu_data is not a texture in this example, but simply a one-dimensional

array of floats, exactly like its CPU counterpart. Next, we allocate space on the CPU for

our matrices and randomly assign values to A and B:

We upload A and B to the GPU:

Before we execute our kernel, we need to specify the number of threads per block, and

the number of blocks to split our grid into. This is done using a CUDA-specific datatype

called dim3. One approach might be to just execute one block with dim by dim threads:

Note that the third component of a dim3 is not used in our case. This does not take

advantage of all the multiprocessors we have available, however, as each block is

executed on one SM. Luckily, CUDA limits the number of threads per block to 512,

 dim3 threadsPerBlock(dim, dim);
 dim3 blocksPerGrid(1, 1);

 cudaMemcpy(A_gpu_data, A_cpu_data, mem_size, cudaMemcpyHostToDevice);
 cudaMemcpy(B_gpu_data, B_cpu_data, mem_size, cudaMemcpyHostToDevice);

 float* A_cpu_data = (float*) malloc(mem_size);
 float* B_cpu_data = (float*) malloc(mem_size);
 float* C_cpu_data = (float*) malloc(mem_size);
 random_fill(A_cpu_data, dim * dim);
 random_fill(B_cpu_data, dim * dim);

 const int BLOCK_SIZE = 14;
 const int dim = BLOCK_SIZE;
 const int mem_size = dim * dim * sizeof(float);
 float *A_gpu_data, *B_gpu_data, *C_gpu_data;
 cudaMalloc((void**) &A_gpu_data, mem_size);
 cudaMalloc((void**) &B_gpu_data, mem_size);
 cudaMalloc((void**) &C_gpu_data, mem_size);

27

which would limit us to matrices of size 512 by 512, which we would rather avoid.

Alternatively, we could execute dim by dim blocks each with one thread:

This relieves the 512 by 512 limitation, and allows us to implement matrix multiplication

on the GPU using the exact same syntax as the CPU implementation:

The keyword __global__ refers to a function which is called from the host, but executed

on the device. This function is called using the following syntax:

Unfortunately, by only using one thread per block, we are not utilizing all 8 stream

processors available to each symmetric multiprocessor. In order to take full advantage

of the hardware we need to break up the problem into appropriate chunks for each SM

as well as each of the stream processors available per SM. We choose the number of

threads to be a multiple of the number of SM, which we indicated earlier as

 matrixMul_gpu<<< blocksPerGrid, threadsPerBlock >>>(
 C_gpu_data, A_gpu_data, B_gpu_data, dim
);

 __global__ void matrixMul_gpu(float* C, float* A, float* B, const int dim) {
 for (int i = 0; i < dim; ++i) {
 for (int j = 0; j < dim; ++j) {
 float sum = 0;
 for (int k = 0; k < dim; ++k) {
 sum += A[i * dim + k] * B[k * dim + j];
 }
 C[i * dim + j] = sum;
 }
 }
 }

 dim3 threadsPerBlock(1, 1);
 dim3 blocksPerGrid(dim, dim);

28

BLOCK_SIZE, and we choose the number of blocks by dividing our computational

domain by the size of each block:

We execute our kernel with the same syntax as above (we have only changed

threadsPerBlock and blocksPerGrid) with the following function call:

Using the same syntax as the CPU implementation for our GPU implementation no

longer works. Instead, we define it as follows:

The keyword __global__ indicates this function is executed on the device, which means

the one-dimensional arrays C, A, and B are actually in GPU memory. The variable

blockDim refers to the dimensions of the block, and is a special variable accessible

inside CUDA kernels (much like the aforementioned gl_TexCoord[0] accessed inside

our fragment shader). In our case, blockDim.x and blockDim.y are both of size

BLOCK_SIZE. The variable blockIdx refers to the index of the current block being

 __global__ void matrixMul_gpu(float* C, float* A, float* B, const int dim) {
 float sum = 0.0;
 for (int i = 0; i < dim; ++i) {
 float a = A[dim * blockDim.y * blockIdx.y + dim * threadIdx.y + i];
 float b = B[blockDim.x * blockIdx.x + dim * i + threadIdx.x];
 sum += a * b;
 }
 C[dim * blockDim.y * blockIdx.y +
 blockDim.x * blockIdx.x +
 dim * threadIdx.y + threadIdx.x] = sum;
 }

 matrixMul_gpu<<< blocksPerGrid, threadsPerBlock >>>(
 C_gpu_data, A_gpu_data, B_gpu_data, dim
);

 dim3 threadsPerBlock(BLOCK_SIZE, BLOCK_SIZE);
 dim3 blocksPerGrid(dim/BLOCK_SIZE, dim/BLOCK_SIZE);

29

executed; similarly, the variable threadIdx refers to the current thread being executed.

Our loop sums the products of a and b by indexing A along the current row and B along

the current column. Unlike our GLSL sample which indexed into A and B using texture

coordinates we passed to the shader, we have full access to these two-dimensional

matrices stored in one-dimensional arrays. We also have full write access to global

memory; although we don't uti lize it, it is possible to write to A and B just as we write to

C. Note the only difference between C and the other two matrices is the assignment of

random values before launching the kernel; no special setup was required to write to C.

In our GLSL sample, both A and B were read-only. Illustration 2.2 shows the

computation for a single thread block and a single thread.

Illustration 2.2 Computation C = A * B

30

Our CUDA implementation also faces several limitations. Matrix dimensions are

required to be a multiple of BLOCK_SIZE in order for our algorithm to work.

Necessarily, it also requires the latest Nvidia hardware (G80+), as CUDA was just

released within the last year. Our implementation does not take advantage of the 16kb

shared memory available to each block (which is faster than accessing global memory);

however, an example in the CUDA SDK does so, and it also extends to non-square

matrices. This shared memory is only exposed via CUDA; it is not available to the

graphics APIs. Just as with our GLSL implementation, this example is for illustration

purposes only. For high-performance matrix multiplication, Nvidia provides CUBLAS: an

implementation of the Basic Linear Algebra Subprograms (BLAS) on top of CUDA. More

information on CUBLAS, the CUDA SDK, and the CUDA toolkit can be found on Nvidia's

website (NVIDIA 2008, Nvidia Cuda Zone), and the CUDA programming guide (NVIDIA

2008, NVIDIA CUDA). The full listing for our CUDA example can be found in Appendix

B.

31

CHAPTER 3

SURVEY

In this section we provide a comprehensive overview of all current work in

general-purpose computation on graphics hardware. In section 3.1 we take a look at the

classic GPGPU problem: real-time rendering and visualization. In section 3.2 we look at

image processing algorithms which naturally map to the GPU. In section 3.3 we find

some unusual uses of the GPU with audio processing, and in section 3.4 we look at

computational geometry. Section 3.5 is a combination of both low-level mathematical

methods used in general-purpose GPU programming as well as high-level data

structures, the combination of which provides a solid algorithmic background for many

of the other applications in this survey. Section 3.6 explores many simulations currently

being done on graphics cards, some but not all of which also have a visual component.

In section 3.7 we finish the survey with directions to more information that this paper

might not have covered, as well as previous surveys conducted.

3.1 GPGPU Rendering

It seems odd to generalize computation on graphics hardware and then turn

around and use it for real-time rendering, but that's exactly what some of the earliest

GPGPU applications did. As rendering became more sophisticated the necessity to

model reality more exactly became computationally costly. Utilizing the GPU's stream

processing power to do expensive lighting and shadowing calculations became an

obvious evolutionary step. The closeness of the simulation and the rendering, in that

they are both on the GPU, became an advantage as well. As GPGPU languages evolve

32

and they become capable of accessing the hardware in more efficient ways than the

traditional graphics pipeline (at least when it comes to general computation), it is

expected that graphics APIs will be relegated to rendering the result of more expensive

computations done by more suitable, more general languages.

3.1.1 Global Illumination

Global illumination refers to a group of methods used to simulate realistic lighting

effects. It usually refers to a combination of direct illumination and indirect illumination,

where the former is the contribution of light coming directly from a light source, and the

latter taking into account light which has been reflected from other objects in the scene.

There are many algorithms that can be used to approximate global illumination; of

notable interest are those approximations which can be computed in real-time on the

GPU.

3.1.1.1 Radiosity

In traditional radiosity as described in computer graphics, the scene is broken up

into patches, each with coefficients (called form factors) describing how well each patch

can see each other patch. These coefficients are used in a series of linear equations

which, when solved, describe the diffuse energy leaving each patch. Radiosity is view-

independent and does not describe effects such as specular lighting and reflections,

which depend on the viewer's position. Once the energy (or resultant color, if visualized)

is calculated, the scene may be viewed from any position without the need to

recalculate the radiosity. An introduction to radiosity can be found in (Goral et al. 1984).

33

Coombe et al. (Coombe, Harris, and Lastra 2004) were the first to implement the

entire radiosity algorithm on the GPU. Utilizing a progressive radiosity solution, which

computes the coefficients on the fly to avoid O(n2) storage space of the equations,

Coombe et al. modify the traditional radiosity algorithm in a few subtle ways to make it

suitable for the SIMD nature of GPU computing. The scene is not subdivided into

patches, but instead textures are used to store the radiosity component for each piece

of geometry. Normally, in a subdivided scene the patches would be tested for visibility

and radiosity (effectively the diffuse energy of the surface) would be assigned to each

visible polygon. Instead, the texels of each polygon are tested for visibility, thus mapping

well to a fragment program on the GPU.

In addition, a company called Geomerics claims to have an implementation of a

real-time radiosity simulation on the GPU that includes not just a model of diffuse

energy off of surfaces but also bounced specular highlights (Geometrics 2007).

3.1.1.2 Ray-tracing

While radiosity is a view-independent algorithm that models diffuse energy, ray-

tracing is very much view-dependent. Classical Whitted ray-tracing is an extension of

ray-casting, where rays are cast from the eye-point into the scene, one per pixel, and,

once intersected with an object, the shading of that pixel is determined by the

interaction between the surface material and the lights in the scene. Whitted ray-tracing

extends the algorithm by casting three additional types of rays once they hit an object in

the scene: refraction, reflection, and shadow rays. Since the primary rays originate from

the viewer's position, ray-tracing is not a view-independent algorithm, and the shading

34

of each pixel must be recalculated if the view changes. This is made up for by the fact

that shadows, reflections, and refractions are much easier to calculate than with other

rendering methods.

Ray-tracing on the GPU has been a difficult topic to implement, as typically it is

very branch-heavy computation, and also the classic algorithm is presented using

recursion, which is not possible on modern GPUs. Purcell was the first to implement a

ray-tracer entirely on the GPU, with no part of the algorithm done by the host processor

(Purcell 2004). Purcell accelerated the ray intersection computations by utilizing a

uniform 3D grid. Each ray was tested for intersection only against geometry in its

current grid cell, before being extended to the next, nearby cell. This model was later

followed by Christen (Christen 2005), and Karlsson & Ljungstedt (Karlsson and

Ljungstedt 2004). Both Christen and Karlsson & Ljungstedt found their GPU

implementations to be comparable but not yet faster than professional CPU

implementations, such as Mental Images' "Mental Ray," now owned by Nvidia. Christen

notes, at the time of his writing, the limited total memory available on graphics cards

might have been a limiting factor.

In an attempt to improve the GPU ray-tracing algorithm, Thrane and Simonsen

(Thrane and Simonsen 2005) investigated alternatives to the uniform 3D grid

partitioning scheme. They tested the uniform grid, kd-tree, and BVH (bounding-volume

hierarchy) implementations. They found that the traditional uniform grid was the slowest,

with the kd-tree showing some improvement, but the BVH proving the fastest when all

three are traversed on the GPU. The reason for this is because the BVH traversal is

simpler than the others, as it contains only one branch (and GPUs were not very

35

efficient at branches at the time), and that this promotes low divergence in the execution

paths of the various kernels (fragment programs), and therefore has good cache

utilization.

Building upon Thrane and Simonsen's BVH work, Carr et al. (Carr et al. 2006)

rebuild the threaded hierarchy for each frame entirely on the GPU, thus allowing for

dynamic geometry and dynamic level-of-detail (LOD). The term threaded hierarchy

refers to a technique in which two pointers are added to each node: a hit pointer

referring to the first child, and a miss pointer referring to the next sibling. This avoids the

traditional traversal reliance on branches and a stack, allowing it to be efficiently

streamed to the GPU. Carr et al. conclude that their BVH stored in a geometry image

accelerates GPU-based ray-tracing to where it is competitive with other high-

performance ray-tracers.

Recent work by Robert et al. (Robert, Schoepke, and Bieri 2007) shows a

performance increase of almost a factor of two compared to a CPU-based kd-tree

accelerated ray-tracer by utilizing a hybrid technique combining the GPU and CPU.

They introduce the object intersection buffer (OIB) which circumvents the need for an

acceleration structure (such as the aforementioned BVH or uniform grid) for reducing

the number of intersection tests for primary rays. Secondary rays such as reflection and

refraction rays are computed on the CPU which exploits the parallelism between the

GPU acting as a co-processor and the CPU. Shadow rays are avoided altogether and

shadow mapping, commonly used in non-ray-traced rendering, is used as an

alternative.

36

Szirmay-Kalos et al. (Szirmay-Kalos et al. 2005) approximate reflection and

refraction rays by utilizing the distance stored in the texels of an environment map, and

thus are able to simulate ray-tracing without actually tracing rays. The results produce

multiple reflections and refractions comparable to ray-traced scenes, and the

implementation is suitable for real-time simulations such as games. Additional

information can be found in (Szirmay-Kalos, Aszodi, and Lazányi 2006).

3.2 Image Processing

Image processing in our context refers to digital image processing, and can

involve simple operations such as image resizing and scaling, or more complicated

algorithms such as principle components analysis (PCA). Digital image processing

techniques are used for a variety of things such as image classification, pattern

recognition, and feature extraction. Recent work involves utilizing the GPU for real-time

video image processing, but the speedup provided by hardware -acceleration is also

helpful in offline computations, particularly for large data sets.

An example of such real-time video processing is the work by Fischer (Fischer

2006), whose dissertation contributes to the area of augmented reality in three specific

ways. Augmented reali ty systems display computer-generated information on top of

images from the real world, likely captured by a camera or webcam. The ARGUS

framework is an augmented reality system used in the medical field for surgical

navigation. Fischer extends this framework with a hybrid tracking system, a user

interaction library, and a method for calculating the occlusion of rendered objects by a

patients' anatomy. Using this extension, it is possible to render a virtual chair partially

37

occluded by a real-world table in front of it. The second contribution involves something

coined stylized augmented reality, in which, after the real-world scene is rendered,

optionally with virtual objects next to real objects (hence augmented), the scene is post-

processed on the GPU to create effects such as cartoon rendering, or the impression

that the scene was painted with a paint brush. Edge detection filters are also possible

as a post-process. The third contribution involves a new rendering method for the

display of hidden structures in iso-surfaces and polygonal models.

Static image processing remains an important topic, with one of the oldest

possibly being image denoising. In (Kharlamov and Podlozhnyuk 2007), Kharlamov &

Podlozhnyuk uti lize Nvidia's GPGPU language CUDA to implement two popular

denoising algorithms: K Nearest Neighbors (KNN) and Non Local Means (NLM). They

found that while KNN maps well to GPU hardware, NLM is memory-bound where

memory accesses are typically implemented as texture fetches on GPUs. They propose

a solution that uti lizes CUDA's shared memory model that assumes weights within

blocks of pixels are constant, for small pixel blocks (such as 8x8). This reduces the

number of texture fetches so that (modified) NLM approaches the speed of KNN, and

can actually be combined with KNN to achieve even better visual results. Even despite

the decreased performance of the original NLM, all three algorithms are capable of

running as a real-time filter (used on video, for example) on modern graphics hardware,

specifically Nvidia's Geforce 8.

Mathematically, a convolution is an operator that takes two functions and returns

the amount of overlap. In image processing, convolutions are useful for certain

algorithms such as edge detection, image smoothing, or image blurring. Podlozhnyuk

38

(Podlozhnyuk 2007, Image Convolution with CUDA) implements a separable

convolution filter, also using CUDA. The results show that by uti lizing CUDA's shared

memory, they achieve twice the performance versus an implementation using standard

texture fetches. This is a good example of GPGPU languages advancing past general-

purpose GPU processing done using traditional GPU languages. For 2D convolution

kernels, a separable approach tends to be less than optimal. Instead, FFTs are used to

calculate the discrete fourier transformation more efficiently in (Podlozhnyuk 2007, FFT-

based 2D Convolution). An additional implementation of FFTs on GPUs can be found in

(Marichal-Hernandez, Rodriguez-Ramos, and Rosa 2007), where Marichal-Hernandez

et al. use FFTs for wave-front reconstruction in adaptive optics systems.

Another possible filtering kernel is the Gaussian, which is computed on the GPU

in (Turkowski 2007). Turkowski's implementation is analogous to polynomial forward

differencing as he computes the polynomial coefficients on the fly and incrementally.

With each state update the coefficients are recalculated with just one vector instruction.

3.2.1 Volume Reconstruction

Volumetric reconstruction involves the creation of 3D models from 2D source

material, such as images or pictures. Hornung & Kobbelt introduce a GPU-based

reconstruction method (Hornung and Kobbelt 2006) that solves many of the restrictions

of previous methods, such as the matching of surface patches, and biased consistency

estimation. The improvement over a CPU-based software approach is massive, with an

example 126 image set with 16 million voxels reconstructed in 856 minutes on the CPU

compared to just 82 minutes on the GPU. The results showed that the data transfer to

39

and from the GPU was the main bottleneck, and predicted an estimated four times

performance increase for texture sizes of 40962, with the maximum available at the time

being only 20482. Since then, the current maximum texture size has increased to 81922.

For comparison, a recent CPU-based approach is explained in (Habbecke and Kobbelt

2007).

3.3 Audio

Sound cards have transformed from external plug-in cards to being integrated

into most modern motherboards, and have not followed the exponential growth curve

that graphics cards have enjoyed. Yet, processing the acoustics of a complex virtual 3D

scene remains computationally expensive. A few novel approaches using the GPU for

audio processing and acoustic simulations have emerged.

Audio processing is a specialized form of digital signal processing (DSP), and

using the GPU as a digital signal processor to process audio was seen in Gallo &

Tsingos (Gallo and Tsingos 2004) and Whalen (Whalen 2005). Whalen notes that many

audio processing algorithms, such as bandpass, multi-tap delay, and reverb are iterative

methods that require output from previous computation, and are therefore unsuitable for

parallelization, or at the very least must be implemented using multiple passes.

Ray-tracing techniques have been adopted for computing room acoustics and

sound wave propagation, as seen in Jedrzejewski (Jedrzejewski and Marasek 2004)

and Röber et al. (Röber, Kaminski, and Masuch 2007). Jedrzejewski traced 214 rays

uniformly distributed on the source sphere with all rays propagating until reaching 10

reflections. The CPU implementation took 0.5 seconds to compute, whereas the GPU

40

implementation took only 32 milliseconds, with half of the time spent uploading

transferring textures to the GPU. Röber et al. subdivided the scene into a uniform 3D

grid to reduce the number of sound ray-object intersections. They note future

improvements could possibly include different acceleration structures to reduce the

number of intersections even further. Techniques involving different acceleration

structures for GPU-based ray-tracing can be found in § 3.1.1.2.

3.4 Computational Geometry

Computational geometry is the study of problems stated in terms of geometry

(i.e. points, lines, etc) and can be divided into two main categories: combinatorial

computational geometry, sometimes called algorithmic geometry, and numerical

computational geometry, sometimes called geometric modeling. Problems in

combinatorial computational geometry are many; some examples include convex hull

calculation, Delaunay triangulation, line segment intersection, and point-in-polygon

tests. Geometric modeling is also called computer-aided geometric design (CAGD), and

involves curve and surface modeling. Since many applications of computational

geometry involve visualizing the result of computation, it is only natural to attempt to

move that computation over to the GPU where it is closer to being rendered, and to

benefit from the extreme parallelism available.

Early GPU work in computational geometry involved mesh tessellation.

Boubekeur & Schlick (Boubekeur and Schlick 2005) implement an on-the-fly tesselator

by linearly interpolating between three vertices. Their implementation of the curved

point-normal (PN) triangle involves a constant amount of data to be transferred to the

41

GPU, regardless of the target refinement. The main impetus for their algorithm is the

lack of dynamically generated vertices on the GPU. Since then, with the introduction of

the geometry shader, that is no longer the case. However, the geometry shader is not

primarily a tessellation unit, with the maximum number of floating-point dynamic outputs

at the time of this writing being only 1024 (with 8 bytes per vertex this only allows 128

vertices generated) per geometry shader invocation. In the future, it is expected that

dedicated tessellation hardware will allow much more dynamic output generated entirely

on the GPU.

Rong & Tan (Rong and Tan 2006) compute an approximation to the Voronoi

diagram of a set of two-dimensional seeds and claim the difference is hardly visible to

the naked eye. They implement an algorithm called jump flooding on the GPU which

they use to compute the Voronoi diagram approximation, as well as an approximation to

the distance transform of a set of 2D seeds, in constant time. They give a CPU

implementation of their jump flooding algorithm for higher dimensions, with the reason

given that the GPU cannot render into 3D textures. Since then, with the advent of

shader model 4 and Direct3D 10, this has also changed. This makes a jump flooding in

three dimensions implementation on the GPU likely with future work.

Real-time surface deformation and manipulation remains a difficult problem that

has recently seen progress thanks to modern GPU technology. Marinov et al (Marinov,

Botsch, Kobbelt 2007) perform multiresolution deformations of large meshes almost

completely independent of CPU performance, thus taking advantage of the faster

advancement of GPUs in relation to CPUs. The method involves approximating the

normal field of the deformed mesh using a small number of attributes passed per vertex.

42

It is stated that simple recomputation of vertex normals by local averaging is impossible

due to lack of neighboring vertex information, but with the advent of the geometry

shader this approach is possible. In Zhou et al. (Zhou et al. 2007) a solution is proposed

for interactive manipulation of subdivision surfaces, including surfaces with geometric

textures and displaced subdivision surfaces. The heart of their algorithm involves a shell

deformation solver, which replaces the common iterative solver for handling the highly

nonlinear data of deformed subdivision surfaces. The algorithm is stable and uses only

local operations, making it suitable for GPU implementation. The accompanying video

demonstrates the instability of previous solvers, and shows the GPU algorithm being fed

motion-capture data that dynamically deforms the models in real-time.

Aiger & Kedem (Aiger and Kedem 2008) set out to solve a geometric pattern

matching problem called the largest common pointset (LCP) problem. The LCP problem

reduces to searching for the depth in a polytopes arrangement, which they compute

using depth peeling on the GPU. They demonstrate an application of the algorithm with

real-time object recognition in which a given geometry model can be detected in a gray-

scale image regardless of translation and scaling of the model.

3.5 GPU Algorithms and Data Structures

Many GPGPU techniques are attempts at mapping traditional algorithms and

data structures to GPUs so that the computational horsepower and extreme parallelism

can be taken advantage of. In section 3.5.1 we take a look at general mathematical

problems as well as specific subdomains like cryptography and financial calculations. In

section 3.5.2 we touch upon higher-level data structures being mapped to the GPU, as

43

opposed to low level data structures such as arrays (textures). Section 3.5.3 looks at

sorting structures on GPUs.

3.5.1 Mathematics

General mathematics on the GPU covers a wide range, from abstract

computation to more practical computation. Banterle & Giacobazzi (Banterle and

Giacobazzi 2007) implement the octagon abstract domain efficiently on the GPU, which

they then used to create an abstract program analyzer. The octagon abstract domain

provides a way to represent a system of inequalities of the form , where x

and y are program variables and c is a constant (which can be real, rational, or integer)

automatically inferred. Their implementation involves difference bound matrices (DBM)

which map one-to-one with 2D textures. The static analyzer performs many operators

on the GPU, including union, intersection, assignment, widening, test guard operator,

and emptiness test. Many tests see a speedup compared to the CPU implementation,

but they state their main bottleneck is the reduction check when performing a widening

or emptiness test operation. They state this bottleneck could be alleviated with random

writes, which (scatter) can be done with the vertex processor or with a GPGPU

language such as CUDA or CAL. Another optimization desired is to increase the size of

octagons by using hierarchal techniques such as page textures, which can be

implemented using a dependent texture lookup.

In (Harris, Sengupta, and Owens 2007), Harris et al. present a parallel

implementation of the all-prefix-sums operation, commonly known as scan. The all-

prefix-sums operation takes a binary associative operator with identity I, and an array

44

of n elements and returns the array

. For example, with being multiplication, a

scan on the array [2, 5, 3, 1, 8] would return [0, 2, 10, 30, 30]. It is said that there are

many applications for scan, including sorting, polynomial evaluation, lexical analysis,

and building histograms. In particular, Harris et al. demonstrate scan in use for

summed-area tables, stream compaction, and radix sort. Their parallel algorithm is

work-efficient in that it does asymptotically no more work than a sequential scan. They

benchmark several implementations of the parallel scan, and aside from the GPU

speedup over the CPU implementation, the CUDA version outperforms the OpenGL

version by up to a factor of seven. This is because CUDA exposes on-chip shared

memory, thread synchronization, and scatter writes into memory which are not available

in fragment programs (though scatter is at least possible in a vertex program).

Another application of scan is seen in (Lessig 2007), where Lessig computes

eigenvalues of a tridiagonal symmetric matrix using a bisection algorithm. Lessig pays

particularly close attention to which areas of memory certain operations take place in

with two different implementations for different sized matrices: one for matrices of size

5122 which can fit entirely into CUDA's shared memory cache of 16 KB (for the G80

series), and one for arbitrarily large matrices.

3.5.1.1 Random Number Generation

There are many types of pseudo-random number generators (PRNG) and

distributions on which to generate the numbers, the classical combination being the

linear congruential generator (LCG) on a uniform distribution. Many PRNGs require

45

high-precision integer arithmetic which, up until recently, GPUs have lacked (usually

only obtaining 24 bits of integer precision in a 32 bit floating point number, because

integers were not natively supported). Thus, Pang et al. (Pang, Wong, and Heng 2006)

proposed a cellular automata (CA) based PRNG that does not require high-precision

integer arithmetic or bitwise operations. Testing their CA based PRNG on the GPU

against an LCG PRNG on the CPU they achieved on average a ten times speedup, with

better results when more numbers are generated (due to GPU-CPU bandwidth, a single

random number generated is less efficient than a CPU approach).

With the advent of natively supported integer computation on GPUs, Howes &

Thomas (Howes and Thomas 2007) make heavy use of bitwise operations with their

hybrid LCG + Tausworthe generator. The period of a generator is how long until the

generator must loop and start repeating itself; with their hybrid approach they achieve a

period of 2121, compared to a period of 232 for a typical LCG. Howes & Thomas also

demonstrate how to map uniformly distributed random numbers to other distributions,

such as a Gaussian distribution. They use a Box-Muller transform for this task, which,

while typically not used in CPU implementations, maps well to the GPU due to no

branches, looping, or memory fetches, but instead is very math-heavy. A Wallace

Gaussian generator is also demonstrated for generating Gaussian distributed random

numbers directly without first generating them on a uniform distribution and then

transforming them. Finally, these PRNGs are applied to two different pricing option

models: Asian and Lookback (more GPU financial calculations in § 3.5.1.5). For raw

random number generation, they found the GPU implementation on average achieved a

46

26x speedup, with up to a 59x speedup for the Asian pricing option, and a 23x speedup

for the Lookback option.

Another popular generator option is the Mersenne twister, which was not used in

(Howes and Thomas 2007) due to having a large state that must be updated

sequentially. However, Podlozhnyuk (Podlozhnyuk 2007, Parallel Mersenne Twister)

parallelizes the Mersenne twister by launching several instances with different initial

states, computed using (Matsumoto and Nishimura 1998), and sharing the common

state between all threads. They also transform the uniformly distributed random

numbers using a Box-Muller transformation, but into a normal distribution instead of a

Gaussian one.

3.5.1.2 Cryptography

Cryptography on the graphics card was introduced by Cook et al. (Cook et al.

2005), which concluded that symmetric key encryption was unsuitable for

implementation on GPUs. The experiment implemented the block cipher AES algorithm

using OpenGL. Since then, GPUs have evolved and a number of architectural

improvements have surfaced.

Moss et al. (Moss, Page, and Smart 2007) chose to implement the public-key

(a.k.a. asymmetric key) RSA algorithm using a residue number system (RNS). Despite

most researchers ignoring expensive public-key algorithms and instead opting for

(usually) more speedy symmetric key algorithms, Moss et al. managed to get a 3x

speedup over the CPU implementation. They note that the various overheads

associated with GPU computation (such as transferring data to the GPU) requires a

47

large number of parallel exponentiations in order to break-even or surpass the speed of

a CPU implementation. This is a common realization in GPGPU programming.

With the introduction of shader model 4.0 and Nvidia's G80 we saw a number of

improvements that fix the problems concluded by Cook et al, notably the introduction of

natively supported integer stream processing. Yamanouchi (Yamanouchi 2007)

implemented the AES symmetric key algorithm using a number of Nvidia-specific

OpenGL extensions that are nevertheless expected to eventually become multi-vendor

extensions. The key extension used in their algorithm is the transform feedback

extension (Woolley and Carter 2008), which allows the output of the geometry shader to

be redirected into buffer objects as vertex attributes, and optionally not computing the

rest of the pipeline (§ 2.2).

3.5.1.3 Floating-point

Current GPUs do not conform exactly to the IEEE 754 floating-point standard,

but come extremely close; the most modern of which differ only in their use of specials

(NaNs, Inf) (Cebenoyan 2005). Even still, GPUs have only recently achieved full single-

precision floating-point arithmetic, and double precision is still only on the horizon. A

number of attempts at emulating higher precision floats using the GPU have arrived as

a result: Göddeke et al. (Göddeke, Strzodka, and Turek 2007), Thall (Thall 2006), Graça

& Defour (Da Graça and Defour 2006). Emulating extended precision floats goes back

as far as Dekker (Dekker 1971). Of particular note, Göddeke et al. conclude that using

mixed-precision calculations on the GPU for finite element discretizations can achieve

the same accuracy as doing the entire calculation in double precision, but with a

48

speedup of 4-5x. The same calculations done using just single precision proved

instable.

3.5.1.4 Histograms

A histogram is a table of frequencies; in image processing a histogram usually

represents the number of times a pixel value fits within a certain range, defined by that

bin, for n bins. Histograms are often used in image post-processing (§ 3.2), such as

tone mapping operators for high-dynamic range images. To calculate a histogram

sequentially on the CPU for a 1D image of m pixels for n bins, consider the following

pseudocode:

As we know, the GPU does data-parallel processing, so this algorithm does not

efficiently map directly to the GPU. There are a number of approaches to re -mapping it

to the GPU. Early work in Green (Green*05) involves using occlusion queries to count

the number of pixels in a bin, and as such requires n passes for n bins. The resultant

histogram is stored in system memory since the final summation is done on the CPU. In

addition, it introduces a trade-off in which you choose between either synchronization

between the CPU and the GPU in order to read-back the query, or a lag of several

frames before the query result is available, neither o f which is ideal. Fluck et al. (Fluck

et al. 2006) divide the input image into n tiles for n bins, where each pixel of a given tile

must read values from every other pixel in the same tile. A reduction operation (§ 2.3.1)

 for (int i = 0; i < n; ++i)
 histogram[i] = 0;

 for (int i = 0; i < m; ++i)
 histogram[image[i]]++;

49

is then performed to sum up local histogram tiles, which takes O(log m) passes for an

input image of size m.

The previous methods used a gather approach, where the input image is read in

several places before summed in each bin. Scheuermann & Hensley (Scheuermann

and Hensley 2007) introduce a scatter approach to GPU histogram collection. First they

read the input image using either vertex texture fetch (VTF) or render-to-vertex-buffer

(R2VB) depending on the IHV (at the time, Nvidia hardware supported VTF while ATI

hardware supported R2VB, but neither supported the alternative). Then, using the

scatter capability of modern vertex processors, the vertex position is altered depending

on where to bin the input pixel, and then they use additive blending to accumulate the

resulting histogram in the output render target. This approach builds the histogram

using an arbitrary number of bins in a single rendering pass. Run time was constant

with regards to histogram size; instead, the performance was bounded by input image

size. It also has an advantage in that the histogram is computed and collected entirely

on the GPU, and can perform post-processing effects without first transferring any

information back to the CPU.

Another similar scatter approach by Diard (Diard 2007) uses the geometry

shader to emit vertices which result in fragments being rendered at the correct location

to bin a certain input texel, also using blending to accumulate the result in a single pass.

The approach is flexible in that a single geometry shader invocation can process the

input image, but to further take advantage of the parallelism available the input image is

divided into tiles, with each tile being processed by a geometry shader. The size of each

tile can be optimized depending on the desired number of geometry shader invocations,

50

with careful attention paid to the number of maximum scalar outputs available in a GS

(1024 at the time of this writing).

An approach using CUDA, similar to Fluck et al., is explored in (Podlozhnyuk

2007, Histogram Calculation in CUDA). Since additive blending is not available care

was taken to use atomic writes for the final histogram collection. When atomic writes

were not available, a final accumulation of sub-histograms pass was necessary.

3.5.1.5 Economics and Finance

Computational finance is an area of programming for financial risk management;

it uses numerical methods to aid in the prediction of option prices as well as other

financial and economic decisions. Option pricing on the GPU was introduced by Kolb &

Pharr (Kolb and Pharr 2005). Nvidia's CUDA SDK has several examples of using the

GPU for specific option pricing methods. Among these are Black-Scholes (Podlozhmyuk

2007, Black-Scholes Option Pricing), the binomial option pricing model (Podlozhnyuk

2007, Binomial Option Pricing Model), and Monte Carlo option pricing (Podlozhnyuk and

Harris 2007), the latter of which uses a parallel version of the Mersenne Twister (§

3.5.1.1). The implementations noted careful memory usage on the G80 was necessary

for optimal performance, such as fitting as much as possible into shared memory versus

global memory.

3.5.2 Data Structures

While we have discussed mapping simple data structures to the GPU, such as

mapping arrays to textures, we have not yet discussed higher-level data structures. The

51

most comprehensive work in this area is Lefohn's dissertation (Lefohn 2006), and prior

work (Lefohn, Kniss, and Owens 2005). Lefohn introduces Glift, a generic, abstract C++

template library for creating, accessing, and traversing parallel random-access data

structures on the GPU. It is modeled after the standard template library (STL), a part of

the C++ Standard Library, in that it provides a separation between algorithms and data

structures, allowing interchangeable and reusable code. Glift abstracts GPU data

structures into four areas: physical memory, programmable address translation (i.e.

abstracting a 2D texture and indexing into it as if it was a 4D array), virtual memory, and

iterators. Using policy-based C++ template design (Alexandrescu 2001) Glift allows

useful abstractions that perform almost as efficiently as hand-coded alternatives in

OpenGL and Cg, but allows much more succinct code than the hand-written alternative.

Lefohn describes GPU versions of a stack, octree, and quadtree in terms of generic Glift

components. They then demonstrate four specific applications that use complex data

structures: octree 3D paint, adaptive shadow maps, resolution-matched shadow maps,

and a novel depth-of-field algorithm. Constructing these applications is made easier

using the Glift abstraction, and Glift itself is one step closer to an efficient, high-level

C++ standard library for GPUs.

3.5.3 Sorting

Sorting algorithms are usually a first step to structures that are then used for

searching or other database operations. Previous work involved in GPU-based sorting

can be found in (Govindaraju et al. 2004), (Govindaraju, Raghuvanshi, and Manocha

2005), (Gamma Research Group, GPUSort), and (Kipfer and Westermann 2005).

52

Recent work by Gress & Zachmann (Gress and Zachmann 2006) presents GPU-

ABiSort: an adaptive bitonic merge sorting algorithm that achieves an optimal time

complexity of O((n log n)/p) for sorting n values with p stream processing units. The

algorithm uses efficient linear stream memory accesses and is scalable up to n / log n

stream processing units. Comparing their implementation versus both a CPU reference

implementation as well as the GPUSort system mentioned above Gress & Zachmann

manage a speedup of over 2.5 times the CPU implementation. For an n of 1048576

GPUSort manages 173 ms compared to a time of 165 ms for GPU-ABiSort. They used

the ping-ponging technique (§ 2.3) and describe an efficient mapping of 1D sorting

structures to 2D textures to circumvent the size limitation provided by 1D textures at the

time.

Govindaraju et al. (Govindaraju et al. 2006) break the PennySort price-

performance benchmark with their recent update of GPUSort dubbed GPUTeraSort.

The PennySort benchmark is a competition for how many 100-byte records you can sort

for a penny, with GPUTeraSort managing a record 60GB. The competition is further

broken down into the Daytona and Indy categories, for which GPUTeraSort qualifies for

both, and achieves a 4 times performance improvement, and 1.4 times performance

improvement, respectively. Govindaraju et al. improve upon their previous bitonic sorting

algorithm with a hybrid radix-bitonic sorting algorithm that outperforms previous GPU-

based sorting algorithms by 3 to 6 times. For comparison with GPU-ABiSort,

GPUTeraSort has a computational complexity of O((n log2 n) / 2). Some of the

limitations of GPUTeraSort are that it prefers fixed-sized keys, as opposed to variable-

53

sized keys, since it is based on radix sort, and that it does not perform as well as

adaptive algorithms (such as GPU-ABiSort) on almost sorted data.

3.6 Simulation

Simulation is a natural choice for GPGPU applications. In many cases, it is

desirable to only visualize the result of complex physical simulations. In these cases,

moving the computation over to the GPU where it is closer to being rendered eliminates

the typical bottleneck of data transfer and can also readily take advantage of the

parallelism available. In the following sections we examine GPU-powered simulations of

cloth, crowds and automatons, fluid dynamics, and physical simulations. We also take a

look at some large, multi-GPU applications in section 3.6.5, and finish up with a look at

the specific domain of bioinformatics.

3.6.1 Cloth

Early work for cloth simulations on the GPU can be found in (Wloka 2001),

(Green 2003, Nvidia cloth sample), (Green 2003, Stupid OpenGL Shader Tricks), and

(Meggs 2005). With the introduction of shader model 3.0, Zeller (Zeller 2005) and

(Zeller 2006) modeled cloth as a network of particles subject to external forces (gravity,

wind, drag) held together by a series of constraints including spring and collision

constraints. Particle positions and normals were stored in floating-point textures which

were updated by a series of pixel shader passes and rendered dynamically using a VTF

in the vertex shader. The particle motion was updated using Verlet integration and the

constraints were resolved by a relaxation step at each iteration. The system was flexible

54

enough to describe fixed and free-motion particles and thus allowed the cloth to be "cut"

dynamically. Zeller updated their work in (Zeller 2007) when shader model 4.0 became

available. The primary differences in the new model are particle positions are now

stored in vertex buffers instead of textures, and are updated using vertex and geometry

shaders instead of pixel shaders. This is possible due to the stream-out functionality of

Direct3D 10, which works similarly to the transform feedback (Khronos Group 2007)

OpenGL extension mentioned previously in § 3.5.1.2 Cryptography.

3.6.2 Crowd

Recently there has been an interest in crowd simulation and agent-based

modeling on the GPU in order to take advantage of the increased flops compared to

CPUs. Zioma (Zioma 2006) manages to compute path-finding information on the GPU,

but does not compute any artificial intelligence; it is strictly for navigation. Millán et al.

(Millán, Hernandez, and Rudomin 2006) compute character behavior on the GPU by

using finite-state machines (FSM). They store three different types of texture maps:

agent-space maps, which contain agent information (position, state), world-space maps,

which contain information on the environment so that charac ters may interact with it,

and FSM maps, which contain information on each state and transitions between states.

These texture maps are sampled in a fragment shader and then updated each iteration.

To render the agents a combination of level-of-detail (LOD), imposters (basically

rendering an image of the agent instead of the agent itself), and OpenGL pseudo-

instancing was used. They achieved up to 256 thousand agents simulated and

animated interactively at a rate between 6 and 15 frames per second. They claim the

55

main disadvantage with the approach is editing the FSM texture map must be done by

hand in order to program agent behavior, and that a tool built to automate this

procedure would help immensely.

D'Souza et al. (D’Souza, Lysenko, and Rahmani 2007) simulate and visualize

agents at a rate of over 50 updates per second for a population of just over 2 million

agents. Instead of encoding agent behavior in a FSM texture map, it is programmed

directly using fragment shaders. Texture maps for agent and environment information

are still used. Agent interaction with the environment uses a scatter approach, which

they accomplish with a VTF in the vertex shader. In all, agent movement, growback,

replacement, mating, and pollution formation/diffusion are modeled using shaders. They

claim their prototype system outperforms high-performance computing (HPC) clusters

as the 2 million agent simulation was done using a single graphics workstation with an

Nvidia Geforce 8800.

3.6.3 Fluid

Computational fluid dynamics (CFD) is a vast and difficult subject involving

solving the Navier-Stokes equations (NSE), a set of nonlinear partial differential

equations which describe single-phase fluid flow. An introduction to CFD can be found

in (Anderson 1995). Solving these equations is computationally expensive and

approximations formed by simplifying the equations (by removing terms) are common.

An unconditionally stable solver for the NSE was introduced in (Stam 1999), with

previous methods requiring very small time steps to remain stable. This permitted larger

time steps which pushed CFD into the realm of real-time simulations. Fluid simulations

56

on the GPU are numerous, some early work of which can be found in (Foster and

Fedkiw 2001), (Y. Liu, X. Liu, and Wu 2004), and (Harris 2004) and many others. A few

of the most recent are described here.

Sander et al. (Sander, Tatarchuk, and Mitchell 2006) utilize early-z culling to

efficiently reduce the amount of work necessary to solve simplified (no viscosity term)

NSE in two dimensions. Early-z culling involves taking advantage of the z-buffer to skip

costly pixel shaders. An extension of the algorithm to three dimensions is described.

Rapidmind (RapidMind 2008, Real-time Fluid Simulation) has a demonstration of a

water volume based on (Maes, Fujimoto, and Chiba 2006), in which Maes et al.

describe an optimization to heightfield-based water simulations. In these simulations the

water is animated in three dimensions but the fluid flow is not calculated in all three

dimensions.

The Navier-Stokes equations are modeled under an assumption that the fluid is

incompressible, and viscous. Removing the viscosity term yields the Euler equations,

which are compressible and inviscid. In computer graphics, fluids are often still held to

be incompressible (volume does not change) even when solving the Euler equations.

Brandvik & Pullan (Brandvik and Pullan 2008) recently implemented two and three

dimensional Euler solvers on the GPU using Brook and CUDA (respectively). For a grid

size of 300,000 nodes they achieved a speedup of 29 times the CPU implementation for

the 2D equations, and a 16 times speedup for 3D.

A comprehensive introduction to the NS equations in terms of computer graphics

and game programming can be found in (Bridson and Müller-Fischer 2007). Bridson &

Müller-Fischer describe the equations, provide an overview of numerical simulation and

57

advection algorithms, and provide methods for making the fluid incompressible. They

describe different kinds of fluid effects that can be achieved such as smoke and water,

and introduce the different real-time water simulations used in computer graphics, such

as procedural water, heightfield-based water, and smoothed particle hydrodynamics.

Finally, Crane et al. (Crane, Llamas, and Tariq 2007) simulate and render 3D

fluids in real-time, including animation and simulation specifics for water, fire, and

smoke. Their GPU implementation discretizes space using a Eulerian discretization, and

they map grid cells in the computational domain directly to voxels in a 3D texture. Slices

of three-dimensional textures can be rendered into and updated using a pixel shader

since shader model 4.0. Fluid interaction with solid objects (such as the boundary

encapsulating the fluid) are dealt with by denoting solid voxel cells, and modifying the

boundary conditions of the fluid equations so that fluid is allowed to flow along the

surface of a solid but not through it. Boundary information is stored in 3D textures that

can be updated for dynamic obstacles (solids). Voxelization of solid obstacles is

updated by rendering the input mesh into slices of a 3D texture using an orthogonal

projection and near plane values equal to the depth of the current slice. This allows

dynamic solid obstacle updates each frame. Additional terms are kept depending on

whether the fluid modeled is smoke, fire, or water. For smoke, density and temperature

values are kept and computed using the same advection equation used for velocity. Fire

requires a quantity called a reaction coordinate which is described by an equation from

(Nguyen, Fedkiw, and Jensen 2002). With water, the interaction between the air and the

water surface is modeled using the level set method described in (Sethian 1999), which

only requires an additional scalar value at each grid cell, mapping well to the GPU.

58

Storage requirements for the simulation are 41 bytes per cell and rendering requires an

additional 20 bytes per pixel, much of which can be shared amongst multiple

simultaneous fluid simulations. Rendering of the fluid is done by ray-marching through

the 3D texture representing the fluid and accumulating densities before compositing

with the final scene.

3.6.4 Physics

More sophisticated physical simulations are starting to see increased demand

lately as the market demands more than just visual realism but interaction as well. While

the subject of physical simulation is as large and difficult as fluid dynamics, in this

section we focus primarily on Newtonian dynamics.

Traditionally the domain of CPUs, adoption of physics on the GPU has been slow

for a number of reasons. First, the game industry drives a large part of the research

done in graphics technology and graphics chipsets, and while graphics in games can

scale depending on the end user's hardware, the gameplay is largely the same on every

platform because it is difficult to scale. Thus, many physical effects in games have

largely been relegated to eye-candy and visual results that don't affect gameplay (which

might negatively affect sales), as seen with the release of Havok FX. However, Havok

FX was quietly canceled as Havok was acquired by Intel. Second, and more

importantly, the computational power required for intensive real-time rigid body

simulations was simply not available until recently. Combined with the market demand

of increased interaction as well as visual realism, we fully expect physics on the GPU to

increase in momentum in the coming .

59

There are a number of recent n-body simulations on the GPU (Nyland, Prins, and

Harris 2007), (Stock and Gharakhani 2008), (Laeuchli 2008). An n-body simulation is a

system in which each body interacts with all other bodies. For example, in astrophysics,

an n-body simulation might be a series of particles, each representing a star cluster,

planet, or galaxy, and affect each other via gravitational forces. Nyland et al. solve the

all-pairs n-body problem using a Geforce 8 and CUDA. The all-pairs problem refers to

calculating all O(n2) interactions between the bodies, as opposed to approaches which

approximate the contribution of large numbers of particles that are far away, which can

reduce the complexity to O(n log(n)) (Darden and Pedersen 1993). The GPU is more

memory constrained than arithmetically limited, so to evaluate the matrix of all n2 force

interactions they parallelize one axis of the matrix (n rows) and compute sequentially

the other axis (n columns). To further reduce memory usage computation is done on

tiles, which are square regions of the n2 matrix of size p2 (for p << n), in which only

space for 2p particle descriptions is needed to describe p2 interactions by reusing p

descriptions in later computations. Each tile is computed by a thread block which is

further broken down into a thread per row. In effect, Nyland et al. manage to keep

memory usage down (to keep from being bandwidth constrained) and by constantly

feeding the arithmetic units data they achieve nearly the peak theoretical performance

of the Geforce 8800 GTX. At 128 processors of 1.35 GHz each with one flop per cycle

per processor the GTX is capable of 172.8 gigaflops, but for multiply-add instructions

(MAD) the theoretical peak doubles as two flops per clock cycle is possible. In their all-

pairs n-body simulation, Nyland et al. manage over 200 gigaflops for n of size 214,

claiming a performance improvement of over 50 times an optimized CPU

60

implementation, and 250 times faster than their own reference CPU implementation.

They contrast with their previous n-body simulation attempt (Nyland, Prins, and Harris

2004) that used Cg and OpenGL, in which all data was either read-only or write-only

(see ping-ponging, § 2.3), and required O(n2) memory.

Harada (Harada 2007) bui lt a rigid-body simulation capable of rendering 16,384

chess pieces at a rate of 44 frames per second. Initially, the method involves generating

particles from rigid-bodies by discretizing space around the rigid body and then

extracting the solid voxels by way of depth-peeling. These particles are then inserted

into a uniform 3D grid in order to compute particle collisions. By using a grid voxel size

capable of holding at most one particle, the number of checks a single particle must do

to calculate collisions is optimum at 33. The number of particles per rigid body is

adjustable, thus allowing for a tradeoff between speed (low number of particles) and

accuracy depending on the application. Collision reaction between particles is computed

using the discrete element method (DEM), which is a repulsive force modeled by a

linear spring, and a damping force modeled by a dashpot (Mishra 2003). After the

reactions are computed, linear momentum of the rigid body is computed by summing

the forces acting on the particles of that rigid body. Angular momentum is the same, but

requires the positions of the particles relative to the center of mass of the body. Position

and rotation (using a quaternion) of the rigid body are then calculated by integrating

from momentum. Finally, new particle positions are calculated relative to the new rigid

body position and quaternion, and the simulation repeats. The uniform grid, rigid body

positions and quaternions, as well as particle data are all stored using 2D textures.

Using a particle method approach to rigid-body dynamics has a number of advantages,

61

notably that collisions are easy and fast, and map well to the GPU. The disadvantage is

that the uniform grid structure takes up GPU memory whether particles occupy the

space or not (with the trade-off obviously being speed of collision calculations). Harada

briefly mentions how the rigid body particle simulation could be combined with a

smoothed particle hydrodynamics simulation in which rigid bodies and fluid particles can

interact with each other in the same unified system.

3.6.4.1 Collision Detection

An important, and costly, part of any physical simulation is the collision detection.

In the previous section we saw a particle-based collision scheme, but it is expensive to

compute accurately in that the more complex an object gets the more particles it

requires to accurately represent it. Sometimes we would wish to compute collisions for

arbitrary convex objects. Previous work in collision detection on the GPU includes many

works by UNC's Gamma group (Gamma Research Group, Collision Detection), in which

many are image-based algorithms that rely on screen-space overlap tests between

objects. Sathe (Sathe 2006) uses another approach using cube maps to compute

collision detection, but only returns a binary (true/false) result as to whether a collision

occurred or not. Ideally, we would like to compute not only collision detectio n, but also

point of contact (or penetration depth) and collision response, that may later be used by

a physical simulation.

Collision detection is commonly broken up into two phases: the broad phase, and

the narrow phase. The goal of the broad phase is to quickly cull non-colliding pairs

using cheap intersection tests, whether by use of spatial subdivision, or cheaper, more

62

coarse collision-only meshes (with the fine mesh reserved for rendering purposes), so

that the potentially colliding set is minimized. During the narrow phase collision tests

find the exact time and point of contact, which is much more computationally costly, with

the idea being that the broad phase culled the majority of potential collisions, leaving the

narrow phase the job of calculating only necessary collisions.

Le Grand implemented the broad phase step using CUDA in (Le Grand 2007).

They describe the sort and sweep (Baraff and Witkin 1997) and spatial subdivision

approaches to the broad phase, and further showed how to parallelize spatial

subdivision. The collision cells are then sorted using a parallel version of radix sort.

Traversing the sorted list and doing a bounding volume overlap test results in a list of

potential collisions suitable for the narrow phase. The results tested the algorithm with

Gauss-Seidel physics with 30,720 potentially colliding objects. The algorithm reduced

450,000,000 potential collisions down to 203,000 on average.

Kipfer (Kipfer 2007) chose to accelerate the narrow phase of collision detection

by implementing a parallel version of Lemke's algorithm for solving the linear

complementarity problem (LCP; not to be confused with largest common pointset, §

3.4). First, an introduction to physics is given followed by an explanation of determining

and resolving contact points. Then, linear programming, LCP, and quadratic

programming are briefly covered. Convex distance calculation is touched upon before

introducing Lemke's algorithm and its parallel implementation in CUDA. The results are

compared against an optimized CPU LCP solver capable of 21,000 distance queries per

second, with the GPU implementation capable of 69,000 queries per second on a

Geforce 8800.

63

3.6.5 GPUs in High-performance Computing, Networks, and Clusters

The idea of incorporating GPUs into cluster computing was demonstrated as

early as (Fan et al. 2004), where Fan et al. incorporate 32 GPUs into a CPU cluster,

increasing its theoretical peak performance by 512 gigaflops. By comparison, a mere

four years later, a single Nvidia G80 is capable of a theoretical peak of 340 gigaflops by

itself (Chapter 1). To this end, both major graphics card IHVs have introduced headless

GPUs in an attempt to enter the HPC market.

Seamans & Alexander (Seamans and Alexander 2007) built a prototype virus

scanning system to see if the GPU could act as a cheap commodity version of a high-

end network processor. They drew many comparisons of a modern GPU to Intel's

IXP2800 network processor, namely the highly data-parallel algorithms and high speed

memory subsystems. The prototype lacked the features of many mature virus scanning

products and libraries, such as regular-expression signatures and MD5 hash

comparisons. They compared their prototype against the open source ClamAV library

and omitted the features their prototype lacked before doing performance benchmarks.

The results show a 27x speedup when no matches were found versus up to an 11x

speedup in the worst case when all possible signatures were matches, stating that the

reason for the performance difference was the time taken to transfer information back to

the CPU in the case of a match.

Deschizeaux & Blanc (Deschizeaux and Blanc 2007) also built a prototype but

this time for seismic processing of the earth's subsurface. The oil and gas industry

processes terabytes of image data from seismic surveys, and the prototype was built to

estimate the feasibility of GPUs in clusters. The sound wave propagation is modeled

64

through a finite-difference algorithm applied in the frequency domain. They found a

speedup ranging from 8x to 15x for their CUDA kernels compared to an optimized CPU

version. They state that the main drawback is the transfer speed between the GPU and

the CPU over the PCIe bus, and conclude that GPUs have the potential to disrupt the

price/performance of typical CPU clusters.

Göddeke et al. (Göddeke et al. 2008) analyzed the addition of GPU code to a

parallel multigrid solver used for finite element simulations. They took the finite element

package FEAST and found that by modifying less than 1% of the code they achieved a

speedup of two to three times for large problems. Rather than replace the solver they

simply added additional paths depending on if the node in the cluster has a capable

GPU, allowing for heterogeneous high performance computing. They found that system

bandwidth is the most important performance factor for linear system solvers. While the

GPU they used had only single-precision floating point numbers avai lable they used a

mixed precision emulation approach that allowed them to achieve the same accuracy as

the CPU solvers using double-precision (§ 3.5.1.3).

Finally, it is worth noting the increasing prevalence of GPUs in distributed

computing projects, such as the Folding@Home project, which released its GPU client

in October of 2006 (Pande 2006). Unfortunately, the GPU client is only available for

Windows computers with ATI graphics cards at the time of this writing. They found that

the average GPU donated provides 60 times the performance of the average CPU

donated (Elsen et al. 2006) (also see Illustration 3.1 below).

65

Illustration 3.1: Folding@Home Average Computations per

3.6.6 Bioinformatics

While Folding@Home is technically under the umbrella of bioinformatics and

computational biology, in this section we focus on single workstation projects.

Charalambous et al. (Charalambous, Trancoso, and Stamatakis 2005) did some early

work translating parts of RAxML, a program for phylogenetic tree inference, to the GPU.

They profiled the OpenMP version of RAxML and found a single loop that accounted for

over 50% of the execution time. After converting this loop over to the GPU they found a

3x speedup for the loop itself and a 1.2x speedup for the overall application, which

shows promising results for porting the rest of the computationally heavy loops over to

the GPU.

Recent work by Manavski & Valle (Manavski and Valle 2008) used CUDA to

accelerate the Smith-Waterman sequence alignment algorithm. Unlike the heuristic

approaches used in SSEARCH and BLAST they manage to implement the exact Smith-

Waterman algorithm with no approximations. In addition, after extensive benchmarking

66

they found that their CUDA implementation was 18x faster than an OpenGL

implementation, 3x faster than an optimized SIMD version, 30x faster than SSEARCH

and 2.4x faster than BLAST.

3.7 Previous Work

Aside from the information presented here one can find many resources on

general-purpose computation on GPUs at GPGPU.org, as well as the websites of both

Nvidia and ATI. Other surveys of GPGPU work include the seminal work of Owens et al.

(Owens et al. 2005), which was later updated in (Owens et al. 2007).

67

CHAPTER 4

CONCLUSION

We have introduced the concept of general-purpose computation on graphics

hardware, and provided the tools and information for further investigation. In our

example, we illustrated the difficulties involved in implementing a simple algorithm on

the GPU using modern GPU and GPGPU programming methods. Until the tools and

libraries available for GPU programming reach the sophistication of those in CPU

programming, these difficulties of implementation will remain. In exchange for this

difficulty, the computational horsepower and parallel capabilities of GPUs provide an

order of magnitude more performance. In our survey, we detailed research which either

outperforms its CPU counterpart or is impossible to implement using the CPU. Many of

these benefit simply by using parallel algorithms which are inappropriate for traditional

serial processors. However, CPUs are becoming more parallelized every year. Intel is

rumored to have plans for a discrete GPU, code named Larrabee, which is predicted to

compete with Nvidia and ATI's offerings. It will use a derivative of the x86 instruction set

for its shader cores, as opposed to a custom-made instruction set that attempts to abide

by the IEEE 754 standard for floating-point arithmetic (currently employed by Nvidia and

ATI). Simultaneously, it is expected that GPUs will increase their programmability;

possibly exposing more parts of the graphics pipeline to shader programs. As a third

side, STI's Cell architecture combines several lightweight processing cores with a GPU

and connects them with a high-bandwidth 20GB/s bus.

Currently, GPUs have emerged as the dominant data-parallel coprocessor by

achieving the highest performance (in terms of Gflops) as well as the best

68

price/performance ratio. However, with the increased generality of GPUs and the

parallelization of CPUs it is uncertain which will surface as the dominant stream

processor. We predict that stream processing languages will become more mature and

will become the preferred programming platform for both desktop computing and

supercomputing. Forward looking platforms, such as the Rapidmind framework, abstract

all three architectures (GPU, CPU, Cell). Will GPGPU form the basis for future stream

processing in light of the parallel programming revolution?

NOTES

1 The vertex cache size can be queried via the Direct3D API.

2 The term GPU was first coined by Nvidia upon introducing of the Geforce 256.

3 Pixel and vertex shader version 1.0 are reference models and were never actually
implemented. Versions 1.1 were the first actual implementations.

4 Single-channel refers to a texture with only one color channel; for example, red,
instead of red, green, blue, and alpha (RGBA). However, here we are storing
floating-point numbers instead of color information in this channel.

5 It is possible to have non-power-of-two textures without using texture rectangles, but
they are indexed via normalized texture coordinates; here, we would prefer
coordinates in the range [0, dim], and thus we use texture rectangles.

6 A vec4’s elements may be accessed via .r, .g, .b, or .a or any combination thereof,
including .rgba or .rrgg, the latter of which accesses its elements multiple times (a
technique called swizzling).

7 CUDA also supports sampling textures, and therefore texture fi ltering, but by default
reads from global memory are unfiltered and treated as floating-point values.

8 In our case, the 8800 GT has 14 multiprocessors with 8 stream processors each, for
a total of 112 stream processors.

9 Pun intended.

10 Obtained from http://en.wikipedia.org/wiki/Image:F%40H_FLOPS_per_client.svg.
Licensed under the Creative Commons license which can be found at
http://creativecommons.org/licenses/by-sa/2.5/legalcode.

69

APPENDIX A

matrixMul_glsl.cpp

70

 1 // Compilation requirements:
 2 // - GLFW
 3 // - GLEW
 4 // Graphics card requirements:
 5 // - ARB_texture_rectangle
 6 // - ARB_texture_float
 7 // - GLSL capable
 8 // - EXT_framebuffer_object
 9 // - GL_LUMINANCE_32F_ARB must be a supported render target.
 10 // See the EXT_framebuffer_object specification for details.
 11 //
 12 // Compile with the command:
 13 // g++ matrixMul_glsl.cpp -lglfw –lGLEW
 14 #include <GL/glew.h>
 15 #include <GL/glfw.h>
 16 #include <stdlib.h>
 17 #include <stdio.h>
 18 #include <math.h>
 19
 20 GLuint createTexture(const int dim);
 21 void random_fill(float* data, int size);
 22 void print_matrix (float* data, const int dim);
 23 void matrixMul_cpu(float* C, float* A, float* B, const int dim);
 24
 25 // Computes C = A * B using a GLSL fragment shader,
 26 // where C, A, and B are square matrices of size [dim, dim].
 27 int main(int argc, char* argv[]) {
 28 srand(2008);
 29
 30 // Create an OpenGL context; see the GLFW documentation for details.
 31 glfwInit();
 32 glfwOpenWindow(2, 2, 8,8,8,8, 32, 0, GLFW_WINDOW);
 33 glewInit();
 34
 35 // Matrix dimensions are [dim, dim].
 36 const int dim = 7;
 37
 38 // Allocate space on the GPU for A, B, and C as textures.
 39 GLuint A_gpu_data = createTexture(dim);
 40 GLuint B_gpu_data = createTexture(dim);
 41 GLuint C_gpu_data = createTexture(dim);
 42
 43 // Allocate space on the CPU.
 44 float* A_cpu_data = (float*) malloc(dim * dim * sizeof(float));
 45 float* B_cpu_data = (float*) malloc(dim * dim * sizeof(float));
 46 float* C_cpu_data = (float*) malloc(dim * dim * sizeof(float));
 47
 48 // Assign random floats to A and B.
 49 random_fill(A_cpu_data, dim * dim);
 50 random_fill(B_cpu_data, dim * dim);

71

 51
 52 // Upload A and B to the GPU.
 53 glBindTexture(GL_TEXTURE_RECTANGLE_ARB, A_gpu_data);
 54 glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 0, 0, dim, dim, GL_LUMINANCE,
 55 GL_FLOAT, A_cpu_data);
 56 glBindTexture(GL_TEXTURE_RECTANGLE_ARB, B_gpu_data);
 57 glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 0, 0, dim, dim, GL_LUMINANCE,
 58 GL_FLOAT, B_cpu_data);
 59
 60 // Create a framebuffer object and attach C so that we can render to it.
 61 GLuint fbo = 0;
 62 glGenFramebuffersEXT(1, &fbo);
 63 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
 64 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
 65 GL_TEXTURE_RECTANGLE_ARB, C_gpu_data, 0);
 66
 67 // Our fragment shader does the actual matrix multiplication.
 68 const char* fShaderSource = " \
 69 #extension GL_ARB_texture_rectangle : enable\n \
 70 uniform sampler2DRect A; \
 71 uniform sampler2DRect B; \
 72 uniform int dim; \
 73 void main() { \
 74 float sum = 0.0; \
 75 for (int i = 0; i < dim; ++i) { \
 76 float a = texture2DRect(A, vec2(i, gl_TexCoord[0].t)). r; \
 77 float b = texture2DRect(B, vec2(gl_TexCoord[0].s, i)).r; \
 78 sum += a * b; \
 79 } \
 80 gl_FragColor.r = sum;\
 81 }";
 82
 83 // Create our GLSL program and fragment shader.
 84 GLuint fShader = glCreateShader(GL_FRAGMENT_SHADER);
 85 glShaderSource(fShader, 1, &fShaderSource, NULL);
 86 glCompileShader(fShader);
 87 GLuint program = glCreateProgram();
 88 glAttachShader(program, fShader);
 89 glLinkProgram(program);
 90
 91 // create a 1:1 mapping of pixels to texels
 92 glMatrixMode(GL_PROJECTION);
 93 glLoadIdentity();
 94 gluOrtho2D(0.0, dim, 0.0, dim);
 95 glMatrixMode(GL_MODELVIEW);
 96 glLoadIdentity();
 97 glViewport(0, 0, dim, dim);
 98
 99 // Render to C using A and B as textures
100 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
101 glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
102 glClear(GL_COLOR_BUFFER_BIT);
103 glActiveTexture(GL_TEXTURE0);
104 glBindTexture(GL_TEXTURE_RECTANGLE_ARB, A_gpu_data);
105 glActiveTexture(GL_TEXTURE1);

72

106 glBindTexture(GL_TEXTURE_RECTANGLE_ARB, B_gpu_data);
107 glUseProgram(program);
108 glUniform1i(glGetUniformLocation(program, "A"), 0);
109 glUniform1i(glGetUniformLocation(program, "B"), 1);
110 glUniform1i(glGetUniformLocation(program, "dim"), dim);
111
112 // Render a screen-sized quad which generates a pixel for every texel in C,
113 // and runs our fragment shader for each pixel. Note the unnormalized
114 // texture coordinates in the range [0, dim],
115 // which are accessed in our shader.
116 glBegin(GL_QUADS);
117 glTexCoord2f(0, 0); glVertex2f(0, 0);
118 glTexCoord2f(dim, 0); glVertex2f(dim, 0);
119 glTexCoord2f(dim, dim); glVertex2f(dim, dim);
120 glTexCoord2f(0, dim); glVertex2f(0, dim);
121 glEnd();
122
123 // Read back C from the GPU
124 glReadBuffer(GL_COLOR_ATTACHMENT0_EXT);
125 glReadPixels(0, 0, dim, dim, GL_LUMINANCE, GL_FLOAT, C_cpu_data);
126
127 // Print the results. The result now resides in the array C_cpu_data.
128 // C(y, x) is now accessible via C_cpu_data[y * dim + x]
129 // for 0 <= y <= dim, and 0 <= x <= dim.
130 printf("A on cpu\n");
131 print_matrix (A_cpu_data, dim);
132 printf("B on cpu\n");
133 print_matrix (B_cpu_data, dim);
134 printf("C computed on gpu\n");
135 print_matrix (C_cpu_data, dim);
136
137 // Recompute C on the cpu for verification.
138 free(C_cpu_data);
139 C_cpu_data = (float*) malloc(dim * dim * sizeof(float));
140 matrixMul_cpu(C_cpu_data, A_cpu_data, B_cpu_data, dim);
141 printf("C computed on cpu\n");
142 print_matrix (C_cpu_data, dim);
143
144 // Cleanup.
145 free(A_cpu_data);
146 free(B_cpu_data);
147 free(C_cpu_data);
148 glDeleteFramebuffersEXT(1, &fbo);
149 glDeleteTextures(1, &A_gpu_data);
150 glDeleteTextures(1, &B_gpu_data);
151 glDeleteTextures(1, &C_gpu_data);
152 glfwTerminate();
153 }
154
155 // Create a single-channel floating-point texture of size [dim, dim].
156 GLuint createTexture(const int dim) {
157 GLuint tex = 0;
158 GLenum texture_target = GL_TEXTURE_RECTANGLE_ARB;
159 GLenum texture_format = GL_LUMINANCE;
160 GLenum internal_format = GL_LUMINANCE32F_ARB;

73

161
162 glGenTextures(1, &tex);
163 glBindTexture(texture_target, tex);
164 glTexParameteri(texture_target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
165 glTexParameteri(texture_target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
166 glTexParameteri(texture_target, GL_TEXTURE_WRAP_S, GL_CLAMP);
167 glTexParameteri(texture_target, GL_TEXTURE_WRAP_T, GL_CLAMP);
168 glTexImage2D(texture_target, 0, internal_format, dim, dim, 0,
169 texture_format, GL_FLOAT, 0);
170 return tex;
171 }
172
173 void random_fill(float* data, const int size) {
174 for (int i = 0; i < size; ++i) {
175 data[i] = rand() / (float)RAND_MAX;
176 }
177 }
178
179 void print_matrix(float* data, const int dim) {
180 for (int i = 0; i < dim; ++i) {
181 for (int j = 0; j < dim; ++j)
182 printf("%g ", data[i * dim + j]);
183 printf("\n");
184 }
185 }
186
187 // Computes C = A * B on the CPU.
188 void matrixMul_cpu(float* C, float* A, float* B, const int dim) {
189 for (int i = 0; i < dim; ++i)
190 for (int j = 0; j < dim; ++j) {
191 float sum = 0;
192 for (int k = 0; k < dim; ++k) {
193 sum += A[i * dim + k] * B[k * dim + j];
194 }
195 C[i * dim + j] = sum;
196 }
197 }

74

APPENDIX B

matrixMul_cuda.cu

75

 1 // Compilation requirements:
 2 // - CUDA toolkit
 3 // - CUDA SDK is not required.
 4 // Graphics card requirements:
 5 // - Nvidia Geforce 8 or higher.
 6 //
 7 // Compile with the command:
 8 // nvcc matrixMul_cuda.cu -run –lcudart
 9 #include <stdio.h>
 10 #include <stdlib.h>
 11 #include <math.h>
 12 #include <cuda.h>
 13
 14 const int BLOCK_SIZE = 14;
 15
 16 void random_fill(float* data, const int size);
 17 void print_matrix (float* data, const int dim);
 18 void matrixMul_cpu(float* C, float* A, float* B, const int dim);
 19 __global__ void matrixMul_gpu(float* C, float* A, float* B, const int dim);
 20
 21 // Computes C = A * B using CUDA,
 22 // where C, A, and B are square matrices of size [dim, dim].
 23 int main(int argc, char* argv[]) {
 24 srand(2008);
 25
 26 // Matrix dimensions are [dim, dim].
 27 // Must be a multiple of BLOCK_SIZE.
 28 const int dim = BLOCK_SIZE;
 29
 30 // Size in memory of a matrix.
 31 const int mem_size = dim * dim * sizeof(float);
 32
 33 // Allocate space on the CPU.
 34 float* A_cpu_data = (float*) malloc(mem_size);
 35 float* B_cpu_data = (float*) malloc(mem_size);
 36 float* C_cpu_data = (float*) malloc(mem_size);
 37
 38 // Allocate space on the GPU.
 39 float *A_gpu_data, *B_gpu_data, *C_gpu_data;
 40 cudaMalloc((void**) &A_gpu_data, mem_size);
 41 cudaMalloc((void**) &B_gpu_data, mem_size);
 42 cudaMalloc((void**) &C_gpu_data, mem_size);
 43
 44 // Assign random floats to A and B.
 45 random_fill(A_cpu_data, dim * dim);
 46 random_fill(B_cpu_data, dim * dim);
 47
 48 // Upload A and B to the GPU.
 49 cudaMemcpy(A_gpu_data, A_cpu_data, mem_size, cudaMemcpyHostToDevice);
 50 cudaMemcpy(B_gpu_data, B_cpu_data, mem_size, cudaMemcpyHostToDevice);
 51
 52 dim3 threadsPerBlock(BLOCK_SIZE, BLOCK_SIZE);
 53 dim3 blocksPerGrid(dim/threadsPerBlock.x, dim/threadsPerBlock.y);

76

 54
 55 // One grid of thread blocks is launched with the specified number of
 56 // threads per block.
 57 matrixMul_gpu<<< blocksPerGrid, threadsPerBlock >>>(
 58 C_gpu_data, A_gpu_data, B_gpu_data, dim
 59);
 60
 61 // Read back C from the GPU.
 62 cudaMemcpy(C_cpu_data, C_gpu_data, mem_size, cudaMemcpyDeviceToHost);
 63
 64 // Print the results. The result now resides in the array C_cpu_data.
 65 // C(y, x) is now accessible via C_cpu_data[y * dim + x]
 66 // for 0 <= y <= dim, and 0 <= x <= dim.
 67 printf("A\n");
 68 print_matrix(A_cpu_data, dim);
 69 printf("B\n");
 70 print_matrix(B_cpu_data, dim);
 71 printf("C computed on gpu\n");
 72 print_matrix(C_cpu_data, dim);
 73
 74 // Recompute C on the cpu for verification.
 75 free(C_cpu_data);
 76 C_cpu_data = (float*) malloc(mem_size);
 77 matrixMul_cpu(C_cpu_data, A_cpu_data, B_cpu_data, dim);
 78 printf("C computed on cpu\n");
 79 print_matrix(C_cpu_data, dim);
 80
 81 // Cleanup.
 82 free(A_cpu_data);
 83 free(B_cpu_data);
 84 free(C_cpu_data);
 85 cudaFree(A_gpu_data);
 86 cudaFree(B_gpu_data);
 87 cudaFree(C_gpu_data);
 88 }
 89
 90 // Computes C = A * B on the GPU.
 91 __global__ void matrixMul_gpu(float* C, float* A, float* B, const int dim) {
 92 float sum = 0.0;
 93 for (int i = 0; i < dim; ++i) {
 94 float a = A[dim * blockDim.y * blockIdx.y + dim * threadIdx.y + i];
 95 float b = B[blockDim.x * blockIdx.x + dim * i + threadIdx.x];
 96 sum += a * b;
 97 }
 98 C[dim * blockDim.y * blockIdx.y +
 99 blockDim.x * blockIdx.x +
100 dim * threadIdx.y + threadIdx.x] = sum;
101 }
102
103 void random_fill(float* data, const int size) {
104 for (int i = 0; i < size; ++i) {
105 data[i] = rand() / (float)RAND_MAX;
106 }
107 }
108
109 void print_matrix(float* data, const int dim) {

77

110 for (int i = 0; i < dim; ++i) {
111 for (int j = 0; j < dim; ++j)
112 printf("%g ", data[i * dim + j]);
113 printf("\n");
114 }
115 }
116
117 // Computes C = A * B on the CP U.
118 void matrixMul_cpu(float* C, float* A, float* B, const int dim) {
119 for (int i = 0; i < dim; ++i)
120 for (int j = 0; j < dim; ++j) {
121 float sum = 0;
122 for (int k = 0; k < dim; ++k) {
123 sum += A[i * dim + k] * B[k * dim + j];
124 }
125 C[i * dim + j] = sum;
126 }
127 }

78

REFERENCES

Advanced Micro Devices, Inc. 2006. ATI CTM Guide: Technical reference manual, vol.
1.01. Advanced Micro Devices, Inc. Available at:
http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf
(accessed May 2008).

Aiger, Dror, and Klara Kedem. 2008. Applying graphics hardware to achieve extremely
fast geometric pattern matching in two and three dimensional transformation
space. Information Processing Letters, vol. 105, no.6 (March): 224-230.

Akenine-Möller, Tomas, and Eric Haines. 2002. Real-time Rendering. 2nd edition.
Natick, Massachusetts: A K Peters, Ltd.

Alexandrescu, Andrei. 2001. Modern C++ Design. Boston, Massachusetts: Addison-
Wesley Professional.

Anderson, John D. 1995. Computational Fluid Dynamics. 1st ed. McGraw-Hill
Science/Engineering/Math.

Banterle, Francesco, and Roberto Giacobazzi. 2007. A Fast Implementation of the
Octagon Abstract Domain on Graphics Hardware. Paper presented at the 14th
International Static Analysis Symposium (SAS), Kongens Lyngby, Denmark,
August 22-24, 2007.

Baraff, David, and Andrew Witkin. 1997. An Introduction to Physically Based Modeling:
Rigid Body Simulation II – Nonpenetration Constraints. Lecture Notes, Robotics
Institute, Carnegie Mellon University, Siggraph Course. Available at:
http://www.cs.cmu.edu/~baraff/sigcourse/notesd2.pdf (accessed May 2008).

Boubekeur, Tamy, and Christophe Schlick. 2005. Generic Mesh Refinement on GPU.
Lecture Notes, ACM SIGGRAPH/Eurographics Graphics Hardware. Available at:
http://iparla.labri.fr/publications/2005/BS05/GenericMeshRefinementOnGPU.pdf
(accessed May 2008).

Brandvik, Tobias, and Graham Pullan. 2008. Acceleration of a 3D Euler Solver Using
Commodity Graphics Hardware. Paper presented at the 46th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, Nevada, January 07-10, 2008.

Bridson, Robert, and Matthias Müller-Fischer. 2007. Fluid Simulation: SIGGRAPH 2007
course notes. Paper presented at the International Conference on Computer
Graphics and Interactive Techniques, San Diego, California, August 2007.

Carr, Nathan A., Jared Hoberock, Keenan Crane, and John C. Hart. 2006. Fast GPU
Ray Tracing of Dynamic Meshes using Geometry Images. ACM International
Conference Proceeding Series, vol. 137, Proceedings of Graphics Interface 2006
(June): 203-209.

79

Cebenoyan, Cem. 2005. Nvidia Technical Brief: Floating point specials on the GPU.
Nvidia Corporation. Available at:
ftp://download.nvidia.com/developer/Papers/2005/FP_Specials/FP_Specials.pdf
(accessed May 2008).

Charalambous, Maria, Pedro Trancoso, and Alexandros Stamatakis. 2005. Initial
Experiences Porting a Bioinformatics Application to a Graphics Processor. Paper
presented at the 10th Panhellenic Conference in Informatics (PCI), Greece,
November 11-13, 2005.

Christen, Martin. 2005. Ray Tracing on GPU. Diploma Thesis, University of Applied
Sciences Basel, Switzerland. Available at:
http://gpurt.sourceforge.net/DA07_0405_Ray_Tracing_on_GPU-1.0.5.pdf
(accessed May 2008).

Cook, Debra L., John Ioannidis, Angelos D. Keromytis, and Jake Luck. 2005.
CryptoGraphics: Secret Key Cryptography Using Graphics Cards. Paper
Presented at the RSA Conference, Cryptographer's Track. Available at:
http://www1.cs.columbia.edu/~angelos/Papers/2004/gc_ctrsa.pdf (accessed May
2008).

Coombe, Greg, Mark J. Harris, and Anselmo Lastra. 2004. Radiosity on Graphics
Hardware. Paper presented at Graphics Interface 2004, Ontario, Canada, May
17-19, 2004. Available at:
http://www.cs.unc.edu/~coombe/research/radiosity/coombe04radiosity.pdf
(accessed May 2008).

Crane, Keenan, Ignacio Llamas, and Sarah Tariq. 2007. Chapter 30: Real-Time
Simulation and Rendering of 3D Fluids. In GPU Gems 3, ed. Hubert Nguyen,
633-675. Upper Saddle River, New Jersey: Addison-Wesley Professional.

Da Graça, Guillaume, and David Defour. 2006. Implementation of float-float operators
on graphics hardware. Paper presented in the 7th Conference on Real Numbers
and Computers (RNC’7), Nancy, France, July 10-12, 2006.

Darden, T., D. York, and L. Pedersen. 1993. Particle mesh Ewald: An N-log(N) method
for Ewald sums in large systems. Journal of Chemical Physics, vol. 98, no. 12,
(June): 10089-10092.

Dekker, T. J. 1971. A floating point technique for extending the available precision.
Numerische Mathematik, vol. 18, no. 3 (June): 224-242.

Deschizeaux, Bernard, and Jean-Yves Blanc. 2007. Chapter 38: Imaging Earth's
Subsurface Using CUDA. In GPU Gems 3, ed. Hubert Nguyen, 831-850. Upper
Saddle River, New Jersey: Addison-Wesley Professional.

80

Diard, Franck. 2007. Chapter 41: Using the Geometry Shader for Compact and
Variable-Length GPU Feedback. In GPU Gems 3, ed. Hubert Nguyen. Upper
Saddle River, New Jersey: Addison-Wesley Professional.

D'Souza, Roshan M., Mikola Lysenko, and Keyvan Rahmani. 2007. SugarScape on
Steroids: simulating over a million agents at interactive rates. Paper presented at
the Agent2007 Conference, Chicago, Illinois, November 15-17, 2007.

Elsen, Erich, Mike Houston, V. Vishal, Eric Darve, Pat Hanrahan, Vijay Pande. 2006. N-
Body Simulation on GPUs. Paper presented at the 2006 ACM/IEEE Conference
on Supercomputing, Tampa, Florida, November 11-17, 2006.

Fan, Zhe, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. GPU Cluster for High
Performance Computing. Paper presented at the 2004 ACM/IEEE Conference on
Supercomputing, Pittsburgh, Pennsylvania, November 06-12, 2004.

Fischer, Jan T. 2006. Rendering Methods for Augmented Reality. PhD. diss., University
of Tübingen. Available at: http://www.janfischer.com/pub_pages/pub-fischer06-
diss.html (accessed May 2008).

Fluck, Oliver, Shmuel Aharon, Daniel Cremers, Mikael Rousson. 2006. GPU Histogram
Computation. Poster presented at the International Conference on Computer
Graphics and Interactive Techniques, ACM SIGGRAPH 2006 Research Poster,
Boston, Massachusetts. July 30-August 03, 2006.

Foster, Nick, and Ronald Fedkiw. 2001. Practical Animation of Liquids. Paper presented
at the 28th annual conference on Computer graphics and interactive techniques
2001. Available at: http://physbam.stanford.edu/~fedkiw/papers/stanford2001-
02.pdf (accessed May 2008).

Gallo, Emmanuel, and Nicolas Tsingos. 2004. Efficient 3D Audio Processing with the
GPU. Poster presented at GP2, ACM Workshop on General Purpose Computing
on Graphics Processors, Los Angeles, August 2004.

Gamma Research Group. Collision Detection. University of North Carolina, Department
of Computer Science. http://www.cs.unc.edu/~geom/collide/ (accessed May
2008).

Gamma Research Group. GPUSort: High Performance Sorting using Graphics
Processors. University of North Carolina, Department of Computer Science,
2003. http://gamma.cs.unc.edu/GPUSORT/ (accessed May 2008).

Geomerics: Technology. Geomerics, Ltd., 2007.
http://www.geomerics.com/technology.htm (accessed May 2008).

GLFW Project. SourceForge.net. http://glfw.sourceforge.net/ (accessed May 2008).

81

Göddeke, Dominik, Robert Strzodka, and Stefan Turek. 2007. Performance and
Accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in
FEM simulations. International Journal of Parallel, Emergent and Distributed
Systems, vol. 22, no. 4 (January): 221-256.

Göddeke, Dominik, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick McCormick,
Hilmar Wobker, Christian Becker, and Stefan Turek. 2008. Using GPUs to
Improve Multigrid Solver Performance on a Cluster. Accepted for publication in
the International Journal of Computational Science and Engineering. Available at:
http://www.mpi-inf.mpg.de/~strzodka/papers/public/GoStMo_08GPUcluster.pdf
(accessed May 2008).

Goral, Cindy M., Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile.
1984. Modeling the Interaction of Light Between Diffuse Surfaces. ACM

SIGGRAPH Computer Graphics, vol. 18, no. 3 (July): 213-222.

Govindaraju, Naga K., Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh Manocha.
2004. Fast Computation of Database Operations Using Graphics Processors.
Paper presented at the 2004 ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004.

Govindaraju, Naga K., Nikunj Raghuvanshi, and Dinesh Manocha. 2005. Fast and
Approximate Stream Mining of Quantiles and Frequencies using Graphics
Processors. Paper presented in the 2005 ACM SIGMOD International
Conference on Management of Data, Baltimore, Maryland, June 14-16, 2005.

Govindaraju, Naga K., Jim Gray, Ritesh Kumar, and Dinesh Manocha. 2006.
GPUTeraSort: High Performance Graphics Co-processor Sorting for Large
Database Management. Paper presented in the 2006 ACM SIGMOD
International Conference on Management of Data, Chicago, Illinois, June 27-29,
2006.

Green, Simon. 2003. Nvidia cloth sample. Nvidia Corporation.

_____. 2003. Stupid OpenGL Shader Tricks. Nvidia Corporation, Inc.
http://developer.nvidia.com/docs/IO/8230/GDC2003_OpenGLShaderTricks.pdf
(accessed May 2008).

_____. 2005. Image Processing Tricks in OpenGL. Paper presented at the Game
Developer’s Conference (GDC) 2005, San Francisco, California, March 07-11,
2005.

Gress, Alexander, and Gabriel Zachmann. 2006. GPU-ABiSort: Optimal Parallel Sorting
on Stream Architectures. Paper presented at the 20th IEEE International Parallel
and Distributed Processing Symposium (IPDPS). Available at: http://cg.in.tu-
clausthal.de/papers/gpu-abisort-ipdps-2006/gpu-abisort-ipdps-2006.pdf
(accessed May 2008).

82

Habbecke, Martin, and Leif Kobbelt. 2007. A Surface-Growing Approach to Multi-View
Stereo Reconstruction. Paper presented at the 2007 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis,
Minnesota, June 18-23, 2007.

Hall, Jesse D., Nathan A. Carr, and John. C. Hart. 2003. Cache and Bandwidth Aware
Matrix Multiplication on the GPU. University of Illinois. Available at:
http://graphics.cs.uiuc.edu/~jch/papers/UIUCDCS-R-2003-2328.pdf (accessed
May 2008).

Harada, Takahiro. 2007. Chapter 29: Real-time Rigid Body Simulation on GPUs. In GPU
Gems 3, ed. Hubert Nguyen. Upper Saddle River, New Jersey: Addison-Wesley
Professional.

Harris, Mark J. 2004. Chapter 38: Fast Fluid Dynamics Simulation on the GPU. In GPU

Gems, ed. Randima Fernando. Boston, Massachusetts: Addison-Wesley
Professional.

_____. 2005. Chapter 31: Mapping Computational Concepts to GPUs. In GPU Gems 2,
ed. Matt Pharr and Randima Fernando. Upper Saddle River, New Jersey:
Addison-Wesley Professional.

Harris, Mark J., Shubhabrata Sengupta, and John D. Owens. 2007. Chapter 39: Parallel
Prefix Sum (Scan) with CUDA. In GPU Gems 3, ed. Hubert Nguyen. Upper
Saddle River, New Jersey: Addison-Wesley Professional.

Hornung, Alexander, and Leif Kobbelt. 2006. Robust and Efficient Photo-Consistency
Estimation for Volumetric 3D Reconstruction. European Conference on Computer

Vision (ECCV), LNCS, pub. Springer Berlin, vol. 3952, p. 179-190.

Howes, Lee, and David Thomas. 2007. Chapter 37: Efficient Random Number
Generation and Application using CUDA. In GPU Gems 3, ed. Hubert Nguyen.
Upper Saddle River, New Jersey: Addison-Wesley Professional.

Jedrzejewski, Marcin, and Krzysztof Marasek. 2004. Computation of Room Acoustics
Using Programmable Video Hardware. Paper presented at the 2004 International
Conference on Computer Vision and Graphics (ICCVG), Warsaw, Poland,
September 2004.

Karlsson, Filip, and Carl Jonan Ljungstedt. 2004. Ray Tracing Fully Implemented on
Programmable Graphics Hardware. Master's thesis, Chalmers University of
Technology. Available at:
http://www.ce.chalmers.se/edu/proj/raygpu/downloads/raygpu_thesis.pdf
(accessed May 2008).

Kharlamov, Alexander, and Victor Podlozhnyuk. 2007. Image Denoising. Nvidia
Corporation. Available at:

83

developer.download.nvidia.com/compute/cuda/sdk/website/projects/imageDenois
ing/doc/imageDenoising.pdf (accessed May 2008).

Khronos Group. OpenGL 2.1 Reference Pages. OpenGL Software Development Kit,
Khronos Group, 2007. http://www.opengl.org/sdk/docs/man/ (accessed May
2008).

Kipfer, Peter, and Rüdiger Westermann. 2005. Chapter 46: Improved GPU Sorting. In
GPU Gems 2, ed. Matt Pharr and Randima Fernando. Upper Saddle River, New
Jersey: Addison-Wesley Professional.

Kipfer, Peter. 2007. Chapter 33: LCP Algorithms for Collision Detection Using CUDA. In
GPU Gems 3, ed. Hubert Nguyen. Upper Saddle River, New Jersey: Addison-
Wesley Professional.

Kolb, Craig, and Matt Pharr. 2005. Chapter 45: Option Pricing on the GPU. In GPU

Gems 2, ed. Matt Pharr and Randima Fernando. Upper Saddle River, New
Jersey: Addison-Wesley Professional.

Krüger, Jens, and Rüdiger Westermann. 2005. Chapter 44: A GPU Framework for
Solving Systems of Linear Equations. In GPU Gems 2, ed. Matt Pharr and
Randima Fernando. Upper Saddle River, New Jersey: Addison-Wesley
Professional.

Laeuchli, Jesse. 2008. Chapter 9.4: N-Body Simulations on the GPU. In Shader :

Advanced Rendering Techniques, ed. Wolfgang Engel. Charles River Media.

Lefohn, Aaron E., Joe Kniss, and John Owens. 2005. Chapter 33: Implementing efficient
parallel data structures on GPUs. In GPU Gems 2, ed. Matt Pharr and Randima
Fernando. Upper Saddle River, New Jersey: Addison-Wesley Professional.

Lefohn, Aaron E. 2006. Glift: Generic Data Structures for Graphics Hardware. PhD.
diss., University of California Davis. Available at:
http://graphics.cs.ucdavis.edu/~lefohn/work/dissertation/ (accessed May 2008).

Le Grand, Scott. 2007. Chapter 32: Broad-phase Collision Detection with CUDA. In
GPU Gems 3, ed. Hubert Nguyen. Upper Saddle River, New Jersey: Addison-
Wesley Professional.

Lessig, Christian. 2007. Eigenvalue Computation with CUDA. Nvidia Corporation.
Available at:
developer.download.nvidia.com/compute/cuda/1_1/Website/projects/eigenvalues
/doc/eigenvalues.pdf (accessed May 2008).

Liu, Youquan, Xuehui Liu, and Enhua Wu. 2004. Real-Time 3D Fluid Simulation on GPU
with Complex Obstacles. Paper presented at the Computer Graphics and
Applications, 12th Pacific Conference, October 06-08, 2004.

84

Maes, Marcelo M., Tadahiro Fujimoto, and Norishige Chiba. 2006. Efficient Animation of
Water Flow on Irregular Terrains. Paper presented at the 4th international
conference on Computer graphics and interactive techniques in Australasia and
Southeast Asia, Kuala Lumpur, Malaysia, November 29-December 02, 2006.

Manavski, Svetlin A., and Giorgio Valle. 2008. CUDA compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence alignment. BMC
Bioinformatics, vol. 9, suppl. 2 (March). Available at:
http://www.manavski.com/downloads/SWcuda01-11-pics.pdf. (accessed May
2008).

Marichal-Hernandez, José Gil, José Manuel Rodriguez-Ramos, and Fernando Rosa.
2007. Modal Fourier wavefront reconstruction using Graphics Processing Units.
Journal of Electronic Imaging, vol. 16, no. 2 (April-June): 9 pages.

Marinov, Martin, Mario Botsch, and Lief Kobbelt. 2007. GPU-Based Multiresolution
Deformation Using Approximate Normal Field Reconstruction. ACM Journal of

Graphics Tools, vol. 12, no. 1, p. 27-46.

Matsumoto, Makoto, and Takuji Nishimura. 2008. Dynamic Creation of Pseudorandom
Number Generators. Paper presented at the 1998 Monte Carlo and Quasi-Monte
Carlo Methods (MCQMC), Claremont. Available at:
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dgene.pdf (accessed May
2008).

McCool, Michael, and Stefanus DuToit. 2004. Metaprogramming GPUs with Sh. A K
Peters, Ltd.

Meggs, Andrew. 2005. Parachute Pants and Denim Dresses: Taking Real-Time Cloth
Beyond Curtains. Paper presented at the Game Developers Conference (GDC)
2005, San Francisco, California, March 07-11, 2005.

Millán, Erik, Benjamín Hernández, and Isaac Rudomin. 2006. Chapter 9.1: Large
crowds of autonomous animated characters using fragment shaders and level of
detail. In Shader : Advanced Rendering Techniques, ed. Wolfgang Engel.
Charles River Media.

Mishra, B. K. 2003. A Review of Computer Simulation of Tumbling Mills by the Discrete
Element Method: Part 1 – Contact Mechanics. International Journal of Mineral
Processing, vol. 71, no. 1-4, p. 73-93.

Moss, Andrew, Dan Page, and Nigel Smart. 2007. Toward Acceleration of RSA Using
3D Graphics Hardware. Cryptography and Coding, (December): 369-388.

Nguyen, Duc Quang, Ronald Fedkiw, and Henrik Wann Jensen. 2002. Physically Based
Modeling and Animation of Fire. Paper presented at the 29th annual conference
on Computer graphics and interactive techniques, San Antonio, Texas, July 23 -
26, 2002.

85

NVIDIA. 2006. Technical Brief: Nvidia Geforce 8800 GPU Architecture Overview. Nvidia
Corporation. Available at: www.nvidia.com/object/IO_37100.html (accessed May
2008).

_____. 2007. NVIDIA Tesla: GPU Computing Technical Brief. Vol. 1.0. Nvidia
Corporation. Available at:
http://www.nvidia.com/docs/IO/43395/Compute_Tech_Brief_v1-0-
0_final__Dec07.pdf (accessed May 2008).

_____. 2008. NVIDIA CUDA: Compute Unified Device Architecture: Programming
Guide. Nvidia Corporation. Available at:
http://developer.download.nvidia.com/compute/cuda/2.0-
Beta2/docs/Programming_Guide_2.0beta2.pdf (accessed May 2008).

_____. 2008. Nvidia Cuda Zone. NVIDIA Corporation. http://www.nvidia.com/cuda
(accessed May 2008).

Nyland, Lars, Jan Prins, and Mark Harris. 2004. The Rapid Evaluation of Potential
Fields Using Programmable Graphics Hardware. Paper presented at the 2004
ACM Workshop on General-Purpose Computing on Graphics Processors, Los
Angeles, California, August 07-08, 2004.

_____. 2007. Chapter 31: Fast N-Body Simulation with CUDA. In GPU Gems 3, ed.
Hubert Nguyen. Upper Saddle River, New Jersey: Addison-Wesley Professional.

Owens, John D., David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron. E.
Lefohn, and Timothy J. Purcell. 2005. A Survey of General-Purpose Computation
on Graphics Hardware. Eurographics 2005, State of the Art Reports (STAR),
(August): 21-51.

_____. 2007. A Survey of General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum, vol. 26, no. 1, (March): 80-113.

Pande, Vijay. Folding@home Distributed Computing. Vijay Pande and Stanford
University, 2000-2008. http://folding.stanford.edu/ (accessed May 2008).

Pang, Wai-Man, Tien-Tsin Wong, and Pheng-Ann Heng. 2006. Chapter 9.8:
Implementing High-Quality PRNG on GPU. In Shader : Advanced Rendering

Techniques, ed. Wolfgang Engel. Charles River Media.

Podlozhnyuk, Victor. 2007. Binomial Option Pricing Model. Nvidia Corporation. Available
at:
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/binomi
alOptions/doc/binomialOptions.pdf (accessed May 2008).

_____. 2007. Black-Scholes Option Pricing. Nvidia Corporation. Available at:
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/BlackS
choles/doc/BlackScholes.pdf (accessed May 2008).

86

_____. 2007. FFT-based 2D Convolution. Nvidia Corporation. Available at:
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/convol
utionFFT2D/doc/convolutionFFT2D.pdf (accessed May 2008).

_____. 2007. Histogram Calculation in CUDA. Nvidia Corporation. Available at:
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogr
am256/doc/histogram.pdf (accessed May 2008).

_____. 2007. Image Convolution with CUDA. Nvidia Corporation. Available at:
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/convol
utionSeparable/doc/convolutionSeparable.pdf (accessed May 2008).

_____. 2007. Parallel Mersenne Twister. Nvidia Corporation. Available at:
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/Mersen
neTwister/doc/MersenneTwister.pdf (accessed May 2008).

Podlozhnyuk, Victor, and Mark Harris. 2007. Monte Carlo Option Pricing. Nvidia
Corporation. Available at:
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/Monte
Carlo/doc/MonteCarlo.pdf (accessed May 2008).

Purcell, Timothy J. 2004. Ray Tracing on a Stream Processor. PhD. diss., Stanford
University. Available at: http://graphics.stanford.edu/papers/tpurcell_thesis/
(accessed May 2008).

RapidMind. RapidMind Homepage. RapidMind Inc., 2008. http://www.rapidmind.com/
(accessed May 2008).

_____. Real-time Fluid Simulation. RapidMind Inc., 2008.
http://www.rapidmind.com/case-fluids.php (accessed May 2008).

Röber, Niklas, Ulrich Kaminski, and Maic Masuch. 2007. Ray Acoustics Using Computer
Graphics Technology. Paper presented at the 10th International Conference on
Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007.

Robert, Philippe C. D., Severin Schoepke, and Hanspeter Bieri. 2007. Hybrid Ray
Tracing: Ray Tracing Using GPU-Accelerated Image-Space Methods. Paper
presented at the 2nd International Conference on Computer Graphics Theory
and Applications (GRAPP 2007), Barcelona, Spain, March 08-11, 2007.

Rong, Guodong, and Tiow-Seng Tan. 2006. Jump Flooding in GPU with Applications to
Voronoi Diagram and Distance Transform. Paper presented at the ACM
Symposium on Interactive 3D Graphics and Games (I3D ‘06), Redwood City,
California, March 14-17, 2006.

Sander, Pedro V., Natalya Tatarchuk, and Jason L. Mitchell. 2006. Chapter 9.6: Explicit
Early-Z Culling for Efficient Fluid Flow Simulation. In Shader : Advanced

Rendering Techniques, ed. Wolfgang Engel. Charles River Media.

87

Sathe, Rahul. 2006. Chapter 9.4: Collision Detection Shader Using Cube -Maps. In
Shader : Advanced Rendering Techniques, ed. Wolfgang Engel. Charles River
Media.

Scheuermann, Thorsten, and Justin Hensley. 2007. Efficient Histogram Generation
Using Scattering on GPUs. Paper presented at the 2007 Symposium on
Interactive 3D Graphics and Games (I3D ‘07), Seattle, Washington, April 30-May
02, 2007.

Seamans, Elizabeth, and Thomas Alexander. 2007. Chapter 35: Fast Virus Signature
Matching on the GPU. In GPU Gems 3, ed. Hubert Nguyen. Upper Saddle River,
New Jersey: Addison-Wesley Professional.

Segal, Mark, and Kurt Akeley. 2006. The OpenGL Graphics System: A Specification.
Version 2.1. Ed. Chris Frazier, Jon Leech, Pat Brown. Pub. Silicon Graphics, Inc.
Available at: http://www.opengl.org/documentation/specs/version2.1/glspec21.pdf
(accessed May 2008).

Sethian, J. A. 1999. Level Set Methods and Fast Marching Methods: Evolving Interfaces

in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science. Cambridge, U.K.; New York: Cambridge University Press.

Shreiner, Dave, Mason Woo, Jackie Neider, and Tom Davis. 2007. OpenGL
Programming Guide: The Official Guide to Learning OpenGL. Version 2.1, 6th
edition, Addison-Wesley Professional.

Stam, Jos. 1999. Stable Fluids. Paper presented at the 26th annual conference on
Computer graphics and interactive techniques. Available at:
http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/ns.pdf (accessed
May 2008).

Standford University Graphics Lab. BrookGPU. Merrimac: Standford Streaming
Supercomputer Project. http://graphics.stanford.edu/projects/brookgpu (accessed
May, 2008).

Stock, Mark J., and Adrin Gharakhani. 2008. Toward efficient GPU-accelerated N-body
simulations. Paper presented at the 46th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, January 07-10, 2008.

Strengert, Magnus, Thomas Klein, and Thomas Ertl. 2007. A Hardware -Aware
Debugger for the OpenGL Shading Language. Paper presented at the 22nd ACM
SIGGRAPH/Eurographics Workshop on Graphics Hardware, San Diego,
California, August 04-05, 2007.

Szirmay-Kalos, László, Barnabás Aszodi, István Lazányi, and Mátyás Premecz. 2005.
Approximate Ray-Tracing on the GPU with Distance Imposters. Department of
Control Engineering and Information Technology, Technical University of

88

Budapest, Hungary. Available at: http://www.fsz.bme.hu/~szirmay/ibl_link.htm
(accessed May 2008).

Szirmay-Kalos, László, Barnabás Aszodi, and István Lazányi. 2006. Chapter 6.2: Ray
Tracing Effects without Tracing Rays. In Shader : Advanced Rendering

Techniques, ed. Wolfgang Engel. Charles River Media.

Thall, Andrew. 2006. Extended-Precision Floating-Point Numbers for GPU Computation.
Poster presented at the International Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH research poster, Boston, Massachusetts,
July 30-August 03, 2006.

Thrane, Niels, and Lars Ole Simonsen. 2005. A Comparison of Acceleration Structures
for GPU Assisted Ray Tracing. Master's thesis, University of Aarhus. Available at:
http://larsole.com/files/GPU_BVHthesis.pdf (accessed May 2008).

Turkowski, Ken. 2007. Chapter 40: Incremental Computation of the Gaussian. In GPU

Gems 3, ed. Hubert Nguyen. Upper Saddle River, New Jersey: Addison-Wesley
Professional.

Whalen, Sean. 2005. Audio and the Graphics Processing Unit. Available at:
www.node99.org/projects/gpuaudio/gpuaudio.pdf (accessed May 2008).

Wloka, Matthias. 2001. Interactive Cloth Simulation. Nvidia Corporation. Available at:
http://developer.nvidia.com/docs/IO/1279/ATT/ClothSim.pdf (accessed May
2008).

Woolley, Cliff, and Nick Carter. 2008. NV_transform_feedback. Available at:
http://www.opengl.org/registry/specs/NV/transform_feedback.txt (accessed May
2008).

Yamanouchi, Takeshi. 2007. Chapter 36: AES Encryption and Decryption on the GPU.
In GPU Gems 3, ed. Hubert Nguyen. Upper Saddle River, New Jersey: Addison-
Wesley Professional.

Zeller, Cyril. 2005. Cloth Simulation on the GPU. Sketch presented at the 2005 ACM
SIGGRAPH International Conference on Computer Graphics and Interactive
Techniques, Los Angeles, California, July 31-August 04, 2005.

_____. 2006. Chapter 1.2: Practical Cloth Simulation on Modern GPUs. In Shader :

Advanced Rendering Techniques, ed. Wolfgang Engel. Charles River Media.

_____. 2007. White Paper: Cloth Simulation. Nvidia Corporation. Available at:
developer.download.nvidia.com/whitepapers/2007/SDK10/Cloth.pdf (accessed
May 2008).

89

Zhou, Kun, Xin Huang, Weiwei Xu, Baining Guo, and Heung-Yeung Shum. 2007. Direct
Manipulation of Subdivision Surfaces on GPUs. ACM Transactions on Graphics,
article 91, vol. 26, no. 3, (July).

Zioma, Renaldas. 2006. Chapter 6.4: GPU powered path-finding using precomputed
Navigation Mesh approach. In Shader : Advanced Rendering Techniques, ed.
Wolfgang Engel. Charles River Media.

90

