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I start with a brief introduction to the graphics processing unit (GPU) as well as 

general-purpose computation on modern graphics hardware (GPGPU).  Next, I explore 

the motivations for GPGPU programming, and the capabilities of modern GPUs 

(including advantages and disadvantages).  Also, I give the background required for 

further exploring GPU programming, including the terminology used and the resources 

available.  Finally, I include a comprehensive survey of previous and current GPGPU 

work, and end with a look at the future of GPU programming. 
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CHAPTER 1 

MOTIVATION 

Early graphics processing units of the 1980s and 1990s were built as 2D 

accelerators. Common operations included bit blitting, which is a combination of two bit 

maps using a raster op (for example: AND, OR). Today, GPUs are a cheap commodity 

solution to having a data-parallel co-processor alongside the CPU. In their evolution as 

processors, they became fully programmable in three stages of the graphics pipeline (§ 

2.2). In addition, they specialize in massively parallel scalar processing; modern GPUs 

have up to 128 independent processors (NVIDIA 2006), whereas CPUs have, at the 

desktop level, only reached 8 cores. 

GPUs are also outpacing CPUs in terms of raw processing horsepower. At the 

time of this writing, Nvidia's G80 is capable of a theoretical peak performance of 340 

Gflops, compared to the almost 40 Gflops of Intel's Core 2 Duo processor (NVIDIA 

2008, NVIDIA CUDA). GPU pixel processing is increasing at a rate of 1.7 times per 

year, and vertex processing is increasing at a rate of 2.3 times per year, contrasted with 

a 1.4 multiplier for CPU performance (Owens et al. 2005). 

Recently, there has been an increasing interest in general purpose computation 

on graphics hardware. The ability to work independently alongside the CPU as a co-

processor is interesting but not motivating enough to learn how to apply problems to the 

graphics domain. However, with full programmability and the computational power of 

GPUs outpacing CPUs (in terms of a price/performance ratio), the GPU has moved to a 

place of being the primary processing unit for certain applications, with the CPU 

managing data and direction of the GPU. This is motivation enough to learn how to 



2 

apply certain problems to the domain of computer graphics, thus we achieve general 

purpose computation on graphics hardware. 

 

1.1 What Kinds of Computation Suit the GPU? 

GPUs were built primari ly as graphics processing units, and so we know that 

they excel at computer graphics. To see what kinds of problems can be mapped well to 

GPUs, we simply abstract computer graphics computation. Two key ideas in graphics 

processing are data parallelism and independence. That is, GPUs efficiently operate on 

streams of data where different elements of the stream are processed simultaneously 

(parallelism). Also, each piece of data in the stream typically has little or no dependence 

upon other data elements in the stream. Any problem that benefits from parallelization 

and has mostly independent data would map well to GPU hardware. 

We also know that GPUs operate almost exclusively on vectors of floating point 

numbers. Any arithmetically intense problems would do well to take advantage of the 

fact that the cost of GPU computation is decreasing more rapidly than the cost of 

communication (memory bandwidth, caches) (Harris 2005). A good example of this is 

finding the solution of a system of linear equations (Krüger and Westermann 2005). 

Solving systems of linear equations maps well to GPU hardware because the ratio of 

arithmetic operations to words transferred (where a word is the word-size of the 

architecture; i.e. typically 32 bits) is very high. 

 

 

 



3 

1.2 GPU Limitations 

Not all computation maps well to GPU programming, however. Unti l very recently, 

GPUs lacked integer operations such as bit-shifts and bitwise logical operations (AND, 

XOR). As a result they are not well-suited to fixed-point computation (though this is 

typically not a downside as floating-point computation is available) and other integer-

heavy arithmetic. GPUs also lack efficient branching operations; only recently are they 

capable of branching in the fragment processor and previously the vertex processor. 

Typically, GPUs evaluate both sides of the branch and discard one (Owens et al 2005), 

whereas CPUs historically excel at branch prediction. 

Caches are typically small on GPUs, and memory-intensive computation is not 

well-suited for mapping onto graphics hardware. While memory bandwidth may be high, 

GPU vertex processors can only cache approximately 24 , in constrast with the 

1-2 megabyte caches of newer CPUs. This is not to say GPUs don't access large 

pieces of data in memory, but they typically don't read/write to memory in frequent 

iterations (in fact, typical GPU programs read several times and write only once at the 

end). The Nvidia Geforce 8800 GTX has 768 MB of on-card RAM and a peak memory 

bandwidth of 86.4 GBps (NVIDIA 2006), clearly demonstrating apt memory computation 

ability, but due to the structure of GPU programming, it is not suited for fast, successive 

read/writes. 

GPUs are further limited in floating point precision, with only the most recent 

GPUs having full 32-bit IEEE 754 single-precision floats, whereas historically they have 

done computation in 16 or 24-bit precision. Double-precision 64-bit floats are rumored 

for an upcoming revision of Nvidia's Tesla line of GPUs, which will be built specifically to 
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address GPGPU (NVIDIA 2007). There is no indication of double-precision floats 

reaching commodity graphics hardware any time soon. The current lack of double -

precision floats limits the adoption of GPU programming for many areas of scientific 

computing and numerical computation. 

Lastly, GPU programming is limited in that the problem of interest must be 

mapped to the graphics programming model, with only a few abstractions available to 

programmers familiar with the CPU model. Achieving good performance in GPU 

programming requires in-depth knowledge of not only graphics programming, but also 

modern hardware trends. This further limits the adoption of general purpose GPU 

programming as new problem domains usually require an expert in the domain as well 

as an expert in graphics programming. 

 

1.3 What This Document Contains 

This thesis introduces and covers all introductory aspects of general-purpose 

computation on modern graphics hardware and provide instructions on how to further 

obtain information on any specific or general sub-domain thereof. Chapter 1 provides 

the motivation and impetus for GPGPU, followed by Chapter 2, which covers the 

description and methodology for general-purpose computation on GPUs. Chapter 3 is a 

comprehensive look at all current and previous general-purpose work done on GPUs, 

with an emphasis on current work descriptions. Chapter 4 analyzes the future of the 

industry. 
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CHAPTER 2 

BACKGROUND MATERIAL 

As an introduction to general-purpose computation on graphics hardware, this 

section provides the necessary prerequisites. Section 2.1 is a quick history lesson, 

followed by Section 2.2, which details the traditional graphics pipeline. Section 2.3 

introduces the GPU programming model. Section 2.4 is a current look at all the tools 

available for GPGPU programming. Finally, section 2.5 details an example GPGPU 

program. 

 

2.1 A Brief History of GPU Programmability 

The Nvidia Geforce 256 was the first card to offload vertex transform and lighting 

(T&L) from the CPU and onto the . This generation of card also introduced a 

programmable method of combining textures and colors by way of such OpenGL 

extensions as EXT_texture_env_combine and NV_register_combiners. While this 

introduced greater flexibility than previous generations, it was not considered truly 

programmable, because the number of combinations remained limited.  

The first true programmability arrived with the DirectX 8 generation of graphics 

cards. Cards in this generation include the Geforce 3, ATI Radeon 8500, and the 

Geforce 4. On the OpenGL side of things, the programmability was first exposed via 

vendor-specific extensions such as NV_vertex_program, but it was later available via 

the multi-vendor ARB_vertex_program. This extension allowed full control over the 

vertex transform stage of the graphics pipeline (§ 2.2). Around this time, the term shader 

became prevalent as a way of denoting a program that runs on the graphics card. A 
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pixel shader (or fragment program, in OpenGL) is a program that runs on each 

individual fragment processed, and a vertex shader (or vertex program) runs on each 

vertex processed. 

From this generation on, the programmability of GPUs was denoted with what 

shader model they were capable of. The shader model is closely tied with what DirectX 

version the GPU is capable of rendering in full hardware mode (without CPU 

assistance), as shown in Table 2.1. Typically, with each generation of GPUs the two 

main independent hardware vendors (IHV), ATI and Nvidia, would release OpenGL 

extensions exposing the same functionality as DirectX. 

With each shader model release, the programmability was typically increased by 

several factors. For example, the maximum number of instruction slots changed. In pixel 

shader 1.1 the maximum number of texture fetch instructions was 4, and the maximum 

number of arithmetic instructions was 8. In pixel shader 2.0 this was increased to 32 

texture fetches and 64 arithmetic operations. Pixel shader 3.0 increased the instruction 

slots to a minimum of 512, and with loops and branching taken into account, the number 

of executed instructions can be as high as 2^16. Pixel shader 4.0 increased the 

available instruction slots to 2^16, with the executed instructions effectively unlimited. 

Each generation was a huge improvement over the previous generation. Also, new 

available registers and new instructions became available with every shader model 

release. For instance, vertex shader 3.0 introduced the ability to do texture fetches in 

the vertex shader, which enabled a whole range of new possibilities in GPGPU as 

memory fetches so early in the pipeline were previously impossible.  
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With the introduction of the Geforce 8 and shader model 4.0, the programmability 

of GPUs reached a whole new level with what is known as the unified shader model. 

Under shader model 4.0, all three shader types, pixel, vertex, geometry, (§ 2.2) enjoy 

the same instruction set. This is possible with the new scalar architecture of shader 

model 4.0 hardware, where there is no longer specialized processors for shading pixels 

and other processors for transforming vertices. Instead, there are general purpose 

processors that can be scheduled to run any type of shading program. In the past, when 

rendering a geometry-heavy scene, the pixel processors were mostly idle; likewise 

when rendering a heavily post-processed scene, the vertex processors were 

underutilized. Under the unified architecture, all resources can be used regardless of 

the type of scene. This is discussed extensively in (NVIDIA 2006). Shader model 4.0 

also introduced geometry shaders, a previously nonprogrammable stage of the graphics 

pipeline, as well as true integer computation support on GPUs (including bitwise 

operations). 

 

DirectX 
Version 
 

Vertex 
Shader 
Version 

Pixel Shader 
Version 
 

Geometry 
Shader 
Version 

8.0 , 1.1 1.0, 1.1 n/a 

8.1 1.2, 1.3, 1.4 1.0, 1.1 n/a 

9.0 2.0 2.0 n/a 

9.0a 2a, 2b 2.x n/a 

9.0c 3.0 3.0 n/a 

10.0 4.0 4.0 4.0 

10.1 4.1 4.1 4.1 

 
Table 2.1: How Shader Models Relate to DirectX Versions  
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2.2 The Graphics Pipeline 

There are many resources available that explain the graphics rendering pipeline 

in more detail, such as (Akenine-Möller and Haines 2002) and (Shreiner et all 2007), but 

a brief explanation is included here for completeness. The following describes the 

graphics pipeline as implemented in the OpenGL API. Illustration 2.1 should be used as 

a guide when reading this section. 

First, vertices are specified by the application, either with conventional attributes 

such as position, color, and texture coordinates or by generic numbered attributes. Next, 

they are transformed by either the fixed-function pipeline or by a vertex shader. Modern 

graphics drivers usually implement the fixed-function pipeline via a generated vertex 

shader. The fixed-function vertex transformation includes multiplying the vertex position 

by the modelview, and projection matrices, as well as texture coordinate generation and 

lighting calculations. A custom vertex shader has the option to do all or none of these 

calculations. 

The next step is primitive assembly, where vertices are assembled into primitives 

specified by the application, such as triangles, points, or quads. If a geometry shader is 

specified, it is executed once on each input primitive. The geometry shader is specified 

with an output primitive type, which may or may not be different than the input 

primitives. The geometry shader can emit new vertices, which are then assembled into 

the output primitive type. 

Optionally, the vertex colors are clamped to the range [0, 1], and flat shading can 

be applied. Flat shading applies just one color to the entire primitive, as opposed to 

smooth shading which interpolates the colors between each vertex. 
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Vertices are then clipped to the view volume in clip coordinates, and then 

perspective division converts them to normalized device coordinates. The viewport 

transformation step then converts vertices to window coordinates. Final color 

processing refers to converting color values to fixed-point values. See the OpenGL 

specification § 2.14.9 for further details (Segal and Akeley 2006). The primitive is 

determined to be either front or back facing, which determines whether the front or back 

color of a vertex is chosen. 

Rasterization converts the primitive into a two-dimensional image, the output of 

which is a fragment and an associated depth value. The fragment can be thought of as 

a 'potential pixel,' as technically a pixel value is what gets written to the framebuffer, and 

a fragment may be killed before it reaches the framebuffer. A pixel shader, or fragment 

shader, is executed for each fragment generated. The shader may change any value 

associated with that fragment, such as color or depth, except the final position in the 

framebuffer is already determined at this point in the pipeline (final fragment position 

may be manipulated earlier in the pipeline indirectly such as via a vertex shader). Some 

final fragment operations such as the depth test, alpha test, stencil test, and blending 

are done before the fragment is finally written to the framebuffer. Also, it is worth noting 

that the "framebuffer" may or may not be the actual backbuffer (or frontbuffer, i.e. the 

visible window) of the application, and indeed, many GPGPU programs are run without 

rendering an image to the backbuffer. With modern hardware, it is possible to render 

directly to texture memory, the results of which may be used in subsequent rendering 

passes. This concept is critical to GPGPU programming. 
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Illustration 2.1: The OpenGL Graphics Rendering Pipeline 
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2.3 The Programming Model 

The GPU programming model is a subset of a broader field called stream 

processing. In stream processing, a set of input data (called a stream) is applied to a 

series of operations (called a kernel), once for each element in the stream. The central 

idea is that each element in the stream is independent from every other element, 

allowing each element to be processed in parallel. When only one kernel at a time is 

applied to the entire stream, it is called uniform streaming, which is a form of single-

instruction-multiple-data (SIMD), as opposed to multiple-instruction-multiple-data 

(MIMD), or single-instruction-single-data (SISD), the latter of which is the execution 

model of a typical single-core CPU. Modern CPUs have vector processors that utilize 

the streaming SIMD extensions (SSE) instruction set, and are capable of, for example, 

multiplying four floating point numbers against another four floating point numbers in a 

single instruction. While this is SIMD, stream processing is the same concept at a much 

larger level, with typical streams being millions of elements large, and kernels consisting 

not just of a single multiply, but possibly hundreds of operations. For this reason, GPU 

programming is sometimes called single-program-multiple-data, or SPMD. 

Stream processing is a data-parallel methodology, as opposed to a task-parallel 

methodology. An example of task parallelism is the CPU threading model: each task is 

broken up into a thread of execution which may have completely different instructions 

than any other thread, as well as possibly different data. In stream processing, the 

instructions for each element of the stream are fixed (branching and looping aside); only 

the data is different. Unlike task parallelism, which has the overhead of synchronization 

issues to deal with (race conditions, locks, etc.), it is easy to demonstrate that the 
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effectiveness of a data-parallel device like the GPU can be increased simply by adding 

more stream processing elements. 

There are two important tenets in stream processing. First, compute intensity is 

the number of arithmetic operations per memory access. Second, data parallelism 

means that each stream element can be processed independent of any other. A high 

level of data parallelism and compute intensity both indicate a good match for GPU 

programming, because,  as mentioned earlier, the cost of computation is decreasing 

more rapidly than the cost of communication. 

On GPUs, input streams typically mean a set of vertices sent by the application. 

Output streams are usually 2D textures, or the framebuffer itself, which can be thought 

of as a 2D texture. Kernels can mean either the vertex shader, geometry shader, or 

pixel shader, depending on the desired number of output stream elements. The typical 

GPGPU setup involves drawing a fullscreen quad such that the number of pixels in the 

quad equals the number of desired times to execute the kernel body, which in this case 

is implemented via a pixel shader. Optionally rendering the result into a texture to save 

the results for future computations, it is possible to manipulate the viewport to ensure a 

one-to-one mapping of output pixels to texels. Alternatively, the quad could be rendered 

to the framebuffer and then copied to a texture, for architectures that do not support 

render-to-texture (RTT). Regardless of the destination, texture or framebuffer, it is 

essential to realize that, due to the structure of the graphics pipeline, the output memory 

is write-only, and all other texture memory is read-only. This has led to a technique 

called ping-ponging, where the result of one computation is used as the input for the 
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next computational pass, with the source and destination textures swapping at each 

iteration. 

 

2.3.1 Stream Processing Technology 

There are a few common techniques in stream processing, the simplest of which 

is called a map operation. A map simply applies the kernel function to each element in 

the stream. As before, using a pixel shader as the kernel, a pixel is generated for each 

element in the stream, producing the output stream. 

A reduce operation produces a smaller output stream from a larger set. Typically, 

the larger set is input for the reduction kernel, where multiple elements are read, but 

only one element is written. This is usually implemented via a pixel shader that reads 

from multiple textures before writing a single value. A reduce operation can be repeated 

to condense a stream down to a desired si ze, potentially down to a single stream 

element. 

The two methods of stream communication are scatter and gather. While the 

cost of communication is high compared to the cost of computation, not all algorithms 

are possible with pure computation, and sometimes communication is necessary. 

Gather is basically a random-access read, which in our case is typically sampling a 

texture. Gather was previously only possible in the fragment processor, but in the most 

recent GPU architectures it is available in all programmable stages of the graphics 

pipeline (§ 2.2). Scatter is a random-access write into memory. The fragment processor 

is incapable of scatter, as the location in memory of the output pixel is fixed at the time 
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of the shader's execution. To implement scatter on the GPU, a vertex or geometry 

shader is written to manipulate the vertex's position, or generate new vertices on-the-fly. 

 

2.4 Languages 

The most important advancement towards GPGPU thus far has been the advent 

of high-level shading languages. Previously, shaders had to be written in assembly that, 

while standardized, still changed with each shading model iteration. High-level 

languages enabled more complex algorithms to be expressed in easier-to-understand 

syntax, just as in traditional CPU programming languages. The three primary high-level 

shading languages are the OpenGL Shading Language (GLSL), Nvidia's C for Graphics 

(Cg), and Microsoft's High Level Shading Language (HLSL). GLSL is OpenGL specific, 

and HLSL is Direct3D specific, but Nvidia's Cg can be used with either API. All three 

have slight syntactic differences, but with an understanding of one language, it is 

relatively easy to transition to another shading language, assuming an existing 

understanding of the API it is used in (either D3D or OGL). Indeed, Cg and HLSL were 

developed by close collaboration between Nvidia and Microsoft, and the languages 

remain nearly identical. 

Emerging from the high-level shading languages, several efforts have been 

made to program GPUs without the need to learn a graphics API, but instead using 

traditional C or C++. While still in its infancy, these efforts, usually in the form of a library 

rather than a new language (to take advantage of existing tools and technologies), have 

come a long way towards making GPGPU programming more available and 

approachable. First, the IHV specific solutions are Nvidia's Compute Unified Device 
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Architecture (CUDA) (NVIDIA 2008, NVIDIA CUDA), and ATI/AMD's Close-to-Metal 

(CTM) (Advanced Micro Devices 2006).  ATI is also releasing an evolution of CTM 

called Compute Abstraction Layer (CAL), which promises to be higher-level than CTM, 

which is a very low-level interface to the GPU. On the open-source side of things, there 

is BrookGPU (Standford University Graphics Lab 2008), or simply Brook, which is a 

combination of the Brook stream programming language, and the Brook runtime library. 

Programs written in the Brook language (which is very similar to ANSI C) can be 

compiled down to run on a number of backends, including Direct3D, OpenGL, and 

CTM. The Brook compiler takes Brook language files (*.br) and compiles them into C++, 

which (after compiled) then calls into the Brook runtime. Another open-source project is 

LibSh (McCool and DuToit 2004), simply Sh, which embeds itself inside C++. Instead of 

compiling a stream programming language into C++, the GPU programs in Sh are 

simply C++ programs. These programs make calls into the Sh runtime, which then 

dynamically takes the Sh operations and compiles them down first into an intermediate 

language, then finally into GPU code that the Sh runtime handles transparently in the 

backend. Both Brook and Sh are exposed as C or C++ libraries that provide an 

abstraction to the GPU-specific languages. Brook has, until most recently, been an 

inactive project for several years, and LibSh was abandoned as of August 2006. Most 

development in GPGPU/stream programming languages (as opposed to GPU 

languages, such as Cg/GLSL) has been in vendor-specific solutions, such as CUDA 

and CTM, that are nevertheless available for free to encourage development. 

Commercial stream programming languages remain few, with PeakStream (a spinoff of 

Brook) acquired by Google in June 2007, and Rapidmind (RapidMind 2008, RapidMind 
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Homepage), a commercialization of LibSh. Rapidmind takes the idea of Sh even further, 

with the backend runtime capable of executing on not only GPUs but multi -core CPUs 

as well as STI's (an alliance of Sony, Toshiba, and IBM) Cell architecture. Lastly, it is 

worth noting other stream programming languages such as MIT's StreamIt and projects 

such as Intel's Ct that are built mainly for multi-core CPUs and do not seem to take 

advantage of the extreme parallelism available in GPUs. 

 

2.5 Debuggers, Profilers, and Authoring Tools 

While stream programming languages are still developing, high-level shading 

languages have been available and production-ready for years. What limits their 

adoption, however, is not only the need to utilize a graphics API alongside the shading 

language, to take advantage of the GPU, but also the availability of tools such as 

debuggers and profilers. 

Microsoft provides PIX, which allows profiling, optimizing, and debugging 

Direct3D code. Unfortunately, when debugging vertex and pixel shaders, the code is 

executed on the Direct3D reference rasterizer, which executes on the CPU. This is not 

only slower but not the exact environment the shader code will eventually run under, 

and relies instead on the quality of the reference rasterizer. 

On the OpenGL side of things, there are many projects designed to trace and log 

OpenGL calls, and generally intercept rendering commands and capture OpenGL state. 

Examples include BunGLe, Graphic Remedy's gDEBugger, GLIntercept, spyGLass, and 

Nvidia's GLExpert. While some of these, such as gDEBugger, allow setting b reakpoints 

and debugging, none of them allow debugging shaders, which is of primary interest to 
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GPGPU programming. Two projects, Shadesmith and glslDevil (Strengert, Klein, and 

Ertl 2007), allow debugging of shaders, and both execute on the target hardware 

instead of software emulation. Shadesmith, however, only debugs fragment programs. 

GlslDevil retrieves information directly from the hardware pipeline, and does so 

transparently to the application (in other words, it does not require recompilation or 

relinking of the executable being debugged). In addition, it supports geometry shaders 

as well as vertex and fragment shaders. 

Profiling information is readily available from IHV's, with Nvidia's 

PerfHUD/NVPerfGraph, and ATI's GPU PerfStudio. NV's PerfHUD only supports 

Direct3D, while ATI's PerfStudio supports both OpenGL and Direct3D. There is also 

Nvidia's ShaderPerf and ATI's GPU ShaderAnalyzer for profiling shaders specifically, 

with the former also only supporting D3D and the latter supporting both API's. OpenGL 

profiling information can be acquired through some of the previously mentioned 

OpenGL debuggers, such as gDEBugger. 

Tools written specifically to help author shaders include Apple's OpenGL Shader 

Builder, TyphoonLab's OpenGL Shader Designer, Nvidia's FX Composer, and ATI's 

Rendermonkey. These tools provide a closed environment where shaders can be 

applied to various geometries without the need to worry about the external API calls 

(such as OpenGL or Direct3D), allowing quick turn-around between editing a shader 

and seeing it's effects on the output. However, in the context of GPGPU programming, 

these tools are not ideal, as many GPGPU programs aren't necessarily interested in 

rendering output, and many require complicated setup aside from just rendering 

geometry with textures. 
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While the number of debuggers and profilers may seem numerous, many have 

shortcomings that show the immaturity of GPU and GPGPU programming tools. For 

instance, many profilers aren't available for both graphics API's, and many debuggers 

are not capable of debugging shaders, or are not capable of debugging on the actual 

hardware. In addition, the relative infancy of GPGPU and stream programming 

languages means that existing debuggers and profilers can not yet be taken advantage 

of. It is expected this will change rapidly with time, with the eventual sophistication of 

GPU programming tools reaching that of CPU programming tools.  

 

2.6 Matrix Multiplication Example 

As an example of GPGPU programming, we explain how to do matrix 

multiplication on the GPU using two sample implementations: one using the OpenGL 

shading language, GLSL, and another using Nvidia's CUDA. We define the product of 

two matrices A and B, where A is an m by n matrix, and B is a n by p matrix, to be C = 

A * B, where C is an m by p matrix. The entry ci ,j denotes the value of C at position (i, j), 

where 

 

for each pair i, j where 0 ≤ i ≤ m and 0 ≤ j ≤ p. To simplify things, we assume square 

matrices of size [dim, dim], and therefore m = n = p = dim. Consider the following C++ 

code for computing C on the CPU: 
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Here we store A, B, and C in one-dimensional arrays where the element cy,x is 

accessed via C[y * dim + x]. Now we demonstrate how to perform this same 

computation using the GPU. 

 

2.6.1 GLSL Implementation 

The prerequisite before any OpenGL commands can be passed to the GPU is, 

first, a valid OpenGL context must be acquired. This is window-system specific, but 

many libraries exist to program this in a cross-platform way; for our purposes we used 

the GLFW library (GLFW Project 2008). The full source code for our GLSL sample, 

including initialization code and any functions not explicitly defined here, can be found in 

Appendix A. Our GLSL implementation will compute C on the GPU by storing A, B, and 

C as textures, and then render to C with a GLSL fragment shader that computes each 

element ci ,j. We first define our matrix dimensions and then allocate space on the GPU 

for A, B, and C as textures: 

 

 
   const int dim = 7; 
   GLuint A_gpu_data = createTexture(dim); 
   GLuint B_gpu_data = createTexture(dim);  
   GLuint C_gpu_data = createTexture(dim);  

 

   void matrixMul_cpu(float* C, float* A, float* B, const int dim) {    void matrixMul_cpu(float* C, float* A, float* B, const int dim) { 
        for (int i = 0; i < dim; ++i) { 
             for (int j = 0; j < dim; ++j) { 
                  float sum = 0; 
                  for (int k = 0; k < dim; ++k) { 
                       sum += A[i * dim + k] * B[k * dim + j]; 
                  } 
                  C[i * dim + j] = sum; 
             } 
        } 
   } 
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The function createTexture() returns a single- , floating-point texture of size 

[dim, dim] that is suitable for storing our matrices. We use the variable C_gpu_data to 

refer to C in texture memory, and the variable C_cpu_data to refer to C in main 

memory. Next, we allocate space on the CPU for our matrices and randomly assign 

values to A and B: 

 

We next transfer the data of A and B from main memory to texture memory: 

 

The zeros in the function glTexSubImage2D() refer to mipmap levels and x-, y-offsets 

within the array, which we would set if we did not want to transfer the entire array. For 

more details about this and any other OpenGL function refer to the OpenGL man pages 

(Khronos Group 2007). Note that A_cpu_data and B_cpu_data are no longer needed, 

and can be released using free() should we choose to. In order to render to the texture 

C_gpu_data we need to create a framebuffer object, which can be thought of as an off-

screen window, and attach our texture as its main color buffer: 

 
   glBindTexture(GL_TEXTURE_RECTANGLE_ARB, A_gpu_data); 
   glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 0, 0, dim, dim, GL_LUMINANCE,  
        GL_FLOAT, A_cpu_data); 
   glBindTexture(GL_TEXTURE_RECTANGLE_ARB, B_gpu_data);  
   glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 0, 0, dim, dim, GL_LUMINANCE, 
        GL_FLOAT, B_cpu_data);  

 
   float* A_cpu_data = (float*) malloc(dim * dim * sizeof(float));  
   float* B_cpu_data = (float*) malloc(dim * dim * sizeof(float));  
   float* C_cpu_data = (float*) malloc(dim * dim * sizeof(float)); 
   random_fill(A_cpu_data, dim * dim);  
   random_fill(B_cpu_data, dim * dim);  
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In the OpenGL shading language, shaders are created and attached to program 

objects, which can be thought of as containers for shader programs (for example, 

holding one of each of a vertex shader, and a fragment shader). In our case, we need 

only a single fragment shader, and opt to use the fixed-function vertex processing. 

Shaders are passed to OpenGL as text strings, which can be read from disk, or included 

in the source directly. We store our fragment shader source in the string 

fShaderSource, which we will discuss later. 

 

A key idea in GPGPU computing when rendering to textures is to spawn the fragment 

shader once for each destination element; in our case, once for each texel of C. Thus, 

since a fragment shader is executed once for each input pixel, we must generate one 

pixel per texel of C. The following code creates this 1:1 mapping: 

 

 
   glMatrixMode(GL_PROJECTION);  
   glLoadIdentity();  
   gluOrtho2D(0.0, dim, 0.0, dim); 
   glMatrixMode(GL_MODELVIEW);  
   glLoadIdentity();  
   glViewport (0, 0, dim, dim);  
 

 
   const char* fShaderSource = //discussed later 
   GLuint fShader = glCreateShader(GL_FRAGMENT_SHADER);  
   glShaderSource(fShader, 1, &fShaderSource, NULL);  
   glCompileShader(fShader);  
   GLuint program = glCreateProgram();  
   glAttachShader(program, fShader);  
   glLinkProgram(program); 

 
   GLuint fbo = 0; 
   glGenFramebuffersEXT(1, &fbo);  
   glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);  
   glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,  
        GL_TEXTURE_RECTANGLE_ARB, C_gpu_data, 0);  
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Next, we must tell OpenGL where we are rendering to (the framebuffer object we 

attached C to), what textures we would like access to while rendering, and what 

program object (that contains our fragment shader) we would like to be active . We also 

pass some information to our fragment shader; namely, dim and the locations of A and 

B, by specifying them as uniform parameters. In GLSL, uniform parameters are 

variables which do not change per primitive; in our case, they never change.  

 

Finally, to invoke our fragment shader once for every texel in C we draw a screen-sized 

quad: 

 

Our quad is of size [dim, dim] and is screen-sized due to the viewport specified above 

(which defines the size of our OpenGL screen). Note the texture coordinates of the quad 

are unnormalized and are of the range [0, dim]. Normalized texture coordinates are of 

the range [0, 1]. Now we examine our fragment shader, which we stored in 

fShaderSource, which performs the matrix multiplication: 

 
   glBegin(GL_QUADS);  
        glTexCoord2f(0, 0);     glVertex2f(0, 0);  
        glTexCoord2f(dim, 0);   glVertex2f(dim, 0);  
        glTexCoord2f(dim, dim); glVertex2f(dim, dim); 
        glTexCoord2f(0, dim);   glVertex2f(0, dim);  
   glEnd();  

 
   glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo); 
   glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);  
   glClear(GL_COLOR_BUFFER_BIT);  
   glActiveTexture(GL_TEXTURE0);  
   glBindTexture(GL_TEXTURE_RECTANGLE_ARB, A_gpu_data);  
   glActiveTexture(GL_TEXTURE1);  
   glBindTexture(GL_TEXTURE_RECTANGLE_ARB, B_gpu_data);  
   glUseProgram(program);  
   glUniform1i(glGetUniformLocation(program, "A"), 0); 
   glUniform1i(glGetUniformLocation(program, "B"), 1); 
   glUniform1i(glGetUniformLocation(program, "dim"), dim);  
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We used the OpenGL extension ARB_texture_rectangle to allow our matrices to be any 

dimension in size; usually, OpenGL texture sizes are  to be a power of two. 

Another benefit of using texture rectangles is it allows us to sample textures using 

unnormalized texture coordinates. A and B are of type uniform sampler2DRect, which 

means they are two-dimensional texture rectangles whose values do not change. They 

are sampled (i.e. read from texture memory) via the function texture2DRect(), which 

takes as parameters the texture name, and, for two-dimensional textures, a floating-

point pair (s, t). The function returns four floating-point numbers in the form of a vec4 (a 

GLSL data type), from which we are only interested in the first element (  with 

the .r). The texture2DRect() function always returns four floats; it is up to the user to 

access the valid members that are returned. In our case, since A and B are single-

channel textures, only the first element is valid; the rest are undefined. The texture 

coordinates that we generated for our quad are accessed natively in the shader via the 

variable gl_TexCoord[0]. These coordinates are automatically interpolated across the 

face of the quad, with gl_TexCoord[0].s varying in the x direction of the texture, and 

gl_TexCoord[0].t varying in the y direction. Our fragment shader calculates a single 

 
   #extension GL_ARB_texture_rectangle : enable 
   uniform sampler2DRect A; 
   uniform sampler2DRect B; 
   uniform int dim; 
   void main() { 
        float sum = 0.0; 
        for (int i = 0; i < dim; ++i) { 
             float a = texture2DRect(A, vec2(i, gl_TexCoord[0].t)).r;  
             float b = texture2DRect(B, vec2(gl_TexCoord[0].s, i)).r;  
             sum += a * b; 
        } 
        gl_FragColor.r = sum; 
   } 
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value of C; namely, ci ,j   where (i, j) is (s, t). Our loop runs from 0 to dim and sums the 

products of the elements of A and B, with A being sampled along the current row, and B 

being sampled along the current column. Note that the shader is executed once per 

pixel, with the current pixel in column s and row t. Therefore, the variable 

gl_TexCoord[0].st is a constant unique to each pixel during the shader's execution. 

Our resultant texture, C, is also a single-channel texture; therefore we store the result in 

the first channel of the output color (indicated by gl_FragColor.r). 

We usually wish to access the results of our computations back on the CPU in 

main memory. In order to transfer C back to the CPU we do the following: 

 

The result of the matrix multiplication can be indexed at (y, x) via the array 

C_cpu_data[y * dim + x]. 

Our implementation has a few limitations; namely, it is limited in that dim * dim 

must be a valid texture size. On current hardware, this limits us to matrices of size 8192 

by 8192. Also, our implementation rendered to a single-channel floating-point texture 

(specifically, a GL_LUMINANCE texture, see Appendix A for details), which must be a 

valid render target under both the video card and the driver in order to work. This is not 

widely supported (our test system used an Nvidia 8800 GT under Linux). Fortunately, 

rendering to a four-channel floating-point texture is more widely supported, and our 

matrix multiplication example can be optimized by packing two by two submatrices of A 

and B into the four color channels red, green, blue, alpha (RGBA) of their respective 

textures. This approach and more optimizations can be found in the work of Hall et al. 

 
   glReadBuffer(GL_COLOR_ATTACHMENT0_EXT);  
   glReadPixels(0, 0, dim, dim, GL_LUMINANCE, GL_FLOAT, C_cpu_data); 
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(Hall, Carr, and Hart 2003). Our implementation is intended for didactic purposes only.  

The full listing can be found in Appendix A. 

 

2.6.2 CUDA Implementation 

Our CUDA implementation performs the same computation as our GLSL 

implementation: C = A * B, for matrices of size [dim, dim]. CUDA introduces some new 

terminology: the host is referring to the CPU, and host memory refers to main memory, 

or RAM. The device refers to the GPU, and device memory refers to texture memory, or 

sometimes called global memory when using . Instead of a fragment shader 

performing the multiplication, our kernel is written in a dialect of C++. Each kernel 

invocation is executed over a grid, which can be thought of as our computational 

domain and range. This maps well to our example, which has both a domain and range 

of size dim. The grid is broken up into blocks, sometimes called thread blocks, because 

each block is further broken up into threads. Each thread can be thought of as a pixel, 

on each of which our fragment shader executed on. In this case, each thread calculates 

an element ci ,j of C. We refer to the size of each block as BLOCK_SIZE, which is 

optimally chosen to be a multiple of the number of symmetric multiprocessors (SM) on 

the . By breaking up our computational domain into a multiple of the number of 

multiprocessors, we ensure that each SM is uti lized; splitting it up less, for instance, 

would not utilize the full capability of the GPU. 

We start by defining our matrix dimensions, the size in memory of a matrix, and 

allocating space on the GPU for each matrix: 
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Note that C_gpu_data is not a texture in this example, but simply a one-dimensional 

array of floats, exactly like its CPU counterpart. Next, we allocate space on the CPU for 

our matrices and randomly assign values to A and B: 

 

We upload A and B to the GPU: 

 

Before we execute our kernel, we need to specify the number of threads per block, and 

the number of blocks to split our grid into. This is done using a CUDA-specific datatype 

called dim3. One approach might be to just execute one block with dim by dim threads: 

 

Note that the third component of a dim3 is not used in our case. This does not take 

advantage of all the multiprocessors we have available, however, as each block is 

executed on one SM. Luckily, CUDA limits the number of threads per block to 512, 

 
   dim3 threadsPerBlock( dim, dim ); 
   dim3 blocksPerGrid( 1, 1 );  

 
   cudaMemcpy(A_gpu_data, A_cpu_data, mem_size, cudaMemcpyHostToDevice);  
   cudaMemcpy(B_gpu_data, B_cpu_data, mem_size, cudaMemcpyHostToDevice);  

 
   float* A_cpu_data = (float*) malloc(mem_size);  
   float* B_cpu_data = (float*) malloc(mem_size); 
   float* C_cpu_data = (float*) malloc(mem_size);  
   random_fill(A_cpu_data, dim * dim);  
   random_fill(B_cpu_data, dim * dim);  

 
   const int BLOCK_SIZE = 14; 
   const int dim = BLOCK_SIZE;  
   const int mem_size = dim * dim * sizeof(float);  
   float *A_gpu_data, *B_gpu_data, *C_gpu_data;  
   cudaMalloc((void**) &A_gpu_data, mem_size);  
   cudaMalloc((void**) &B_gpu_data, mem_size);  
   cudaMalloc((void**) &C_gpu_data, mem_size); 
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which would limit us to matrices of size 512 by 512, which we would rather avoid. 

Alternatively, we could execute dim by dim blocks each with one thread: 

 

This relieves the 512 by 512 limitation, and allows us to implement matrix multiplication 

on the GPU using the exact same syntax as the CPU implementation: 

 

The keyword __global__ refers to a function which is called from the host, but executed 

on the device. This function is called using the following syntax: 

 

Unfortunately, by only using one thread per block, we are not utilizing all 8 stream 

processors available to each symmetric multiprocessor. In order to take full advantage 

of the hardware we need to break up the problem into appropriate chunks for each SM 

as well as each of the stream processors available per SM. We choose the number of 

threads to be a multiple of the number of SM, which we indicated earlier as 

 
   matrixMul_gpu<<< blocksPerGrid, threadsPerBlock >>>( 
        C_gpu_data, A_gpu_data, B_gpu_data, dim  
   ); 

 
   __global__ void matrixMul_gpu(float* C, float* A, float* B, const int dim) { 
        for (int i = 0; i < dim; ++i) { 
             for (int j = 0; j < dim; ++j) { 
                  float sum = 0; 
                  for (int k = 0; k < dim; ++k) { 
                       sum += A[i * dim + k] * B[k * dim + j]; 
                  } 
                  C[i * dim + j] = sum; 
             } 
        } 
   } 

 
   dim3 threadsPerBlock( 1, 1 );  
   dim3 blocksPerGrid( dim, dim );  
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BLOCK_SIZE, and we choose the number of blocks by dividing our computational 

domain by the size of each block: 

 

We execute our kernel with the same syntax as above (we have only changed 

threadsPerBlock and blocksPerGrid) with the following function call: 

 

Using the same syntax as the CPU implementation for our GPU implementation no 

longer works. Instead, we define it as follows: 

 

The keyword __global__ indicates this function is executed on the device, which means 

the one-dimensional arrays C, A, and B are actually in GPU memory. The variable 

blockDim refers to the dimensions of the block, and is a special variable accessible 

inside CUDA kernels (much like the aforementioned gl_TexCoord[0] accessed inside 

our fragment shader). In our case, blockDim.x and blockDim.y are both of size 

BLOCK_SIZE. The variable blockIdx refers to the index of the current block being 

 
   __global__ void matrixMul_gpu(float* C, float* A, float* B, const int dim) { 
        float sum = 0.0; 
        for (int i = 0; i < dim; ++i) { 
             float a = A[dim * blockDim.y * blockIdx.y + dim * threadIdx.y + i]; 
             float b = B[      blockDim.x * blockIdx.x + dim * i + threadIdx.x]; 
             sum += a * b; 
        } 
        C[dim * blockDim.y  * blockIdx.y + 
                blockDim.x  * blockIdx.x +  
          dim * threadIdx.y + threadIdx.x] = sum; 
   } 

 
   matrixMul_gpu<<< blocksPerGrid, threadsPerBlock >>>( 
        C_gpu_data, A_gpu_data, B_gpu_data, dim 
   ); 

 
   dim3 threadsPerBlock( BLOCK_SIZE, BLOCK_SIZE );  
   dim3 blocksPerGrid( dim/BLOCK_SIZE, dim/BLOCK_SIZE );  
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executed; similarly, the variable threadIdx refers to the current thread being executed. 

Our loop sums the products of a and b by indexing A along the current row and B along 

the current column. Unlike our GLSL sample which indexed into A and B using texture 

coordinates we passed to the shader, we have full access to these two-dimensional 

matrices stored in one-dimensional arrays. We also have full write access to global 

memory; although we don't uti lize it, it is possible to write to A and B just as we write to 

C. Note the only difference between C and the other two matrices is the assignment of 

random values before launching the kernel; no special setup was required to write to C. 

In our GLSL sample, both A and B were read-only. Illustration 2.2 shows the 

computation for a single thread block and a single thread. 

 

 

Illustration 2.2 Computation C = A * B 
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Our CUDA implementation also faces several limitations. Matrix dimensions are 

required to be a multiple of BLOCK_SIZE in order for our algorithm to work. 

Necessarily, it also requires the latest Nvidia hardware (G80+), as CUDA was just 

released within the last year. Our implementation does not take advantage of the 16kb 

shared memory available to each block (which is faster than accessing global memory); 

however, an example in the CUDA SDK does so, and it also extends to non-square 

matrices. This shared memory is only exposed via CUDA; it is not available to the 

graphics APIs. Just as with our GLSL implementation, this example is for illustration 

purposes only. For high-performance matrix multiplication, Nvidia provides CUBLAS: an 

implementation of the Basic Linear Algebra Subprograms (BLAS) on top of CUDA. More 

information on CUBLAS, the CUDA SDK, and the CUDA toolkit can be found on Nvidia's 

website (NVIDIA 2008, Nvidia Cuda Zone), and the CUDA programming guide (NVIDIA 

2008, NVIDIA CUDA). The full listing for our CUDA example can be found in Appendix 

B. 
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CHAPTER 3 

SURVEY 

In this section we provide a comprehensive overview of all current work in 

general-purpose computation on graphics hardware. In section 3.1 we take a look at the 

classic GPGPU problem: real-time rendering and visualization. In section 3.2 we look at 

image processing algorithms which naturally map to the GPU. In section 3.3 we find 

some unusual uses of the GPU with audio processing, and in section 3.4 we look at 

computational geometry. Section 3.5 is a combination of both low-level mathematical 

methods used in general-purpose GPU programming as well as high-level data 

structures, the combination of which provides a solid algorithmic background for many 

of the other applications in this survey. Section 3.6 explores many simulations currently 

being done on graphics cards, some but not all of which also have a visual component. 

In section 3.7 we finish the survey with directions to more information that this paper 

might not have covered, as well as previous surveys conducted. 

 

3.1 GPGPU Rendering 

It seems odd to generalize computation on graphics hardware and then turn 

around and use it for real-time rendering, but that's exactly what some of the earliest 

GPGPU applications did. As rendering became more sophisticated the necessity to 

model reality more exactly became computationally costly. Utilizing the GPU's stream 

processing power to do expensive lighting and shadowing calculations became an 

obvious evolutionary step. The closeness of the simulation and the rendering, in that 

they are both on the GPU, became an advantage as well. As GPGPU languages evolve 
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and they become capable of accessing the hardware in more efficient ways than the 

traditional graphics pipeline (at least when it comes to general computation), it is 

expected that graphics APIs will be relegated to rendering the result of more expensive 

computations done by more suitable, more general languages. 

 

3.1.1 Global Illumination 

Global illumination refers to a group of methods used to simulate realistic lighting 

effects. It usually refers to a combination of direct illumination and indirect illumination, 

where the former is the contribution of light coming directly from a light source, and the 

latter taking into account light which has been reflected from other objects in the scene. 

There are many algorithms that can be used to approximate global illumination; of 

notable interest are those approximations which can be computed in real-time on the 

GPU. 

 

3.1.1.1 Radiosity 

In traditional radiosity as described in computer graphics, the scene is broken up 

into patches, each with coefficients (called form factors) describing how well each patch 

can see each other patch. These coefficients are used in a series of linear equations 

which, when solved, describe the diffuse energy leaving each patch. Radiosity is view-

independent and does not describe effects such as specular lighting and reflections, 

which depend on the viewer's position. Once the energy (or resultant color, if visualized) 

is calculated, the scene may be viewed from any position without the need to 

recalculate the radiosity. An introduction to radiosity can be found in (Goral et al. 1984). 
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Coombe et al. (Coombe, Harris, and Lastra 2004) were the first to implement the 

entire radiosity algorithm on the GPU. Utilizing a progressive radiosity solution, which 

computes the coefficients on the fly to avoid O(n2) storage space of the equations, 

Coombe et al. modify the traditional radiosity algorithm in a few subtle ways to make it 

suitable for the SIMD nature of GPU computing. The scene is not subdivided into 

patches, but instead textures are used to store the radiosity component for each piece 

of geometry. Normally, in a subdivided scene the patches would be tested for visibility 

and radiosity (effectively the diffuse energy of the surface) would be assigned to each 

visible polygon. Instead, the texels of each polygon are tested for visibility, thus mapping 

well to a fragment program on the GPU. 

In addition, a company called Geomerics claims to have an implementation of a 

real-time radiosity simulation on the GPU that includes not just a model of diffuse 

energy off of surfaces but also bounced specular highlights (Geometrics 2007). 

 

3.1.1.2 Ray-tracing 

While radiosity is a view-independent algorithm that models diffuse energy, ray-

tracing is very much view-dependent. Classical Whitted ray-tracing is an extension of 

ray-casting, where rays are cast from the eye-point into the scene, one per pixel, and, 

once intersected with an object, the shading of that pixel is determined by the 

interaction between the surface material and the lights in the scene. Whitted ray-tracing 

extends the algorithm by casting three additional types of rays once they hit an object in 

the scene: refraction, reflection, and shadow rays. Since the primary rays originate from 

the viewer's position, ray-tracing is not a view-independent algorithm, and the shading 
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of each pixel must be recalculated if the view changes. This is made up for by the fact 

that shadows, reflections, and refractions are much easier to calculate than with other 

rendering methods. 

Ray-tracing on the GPU has been a difficult topic to implement, as typically it is 

very branch-heavy computation, and also the classic algorithm is presented using 

recursion, which is not possible on modern GPUs. Purcell was the first to implement a 

ray-tracer entirely on the GPU, with no part of the algorithm done by the host processor 

(Purcell 2004). Purcell accelerated the ray intersection computations by utilizing a 

uniform 3D grid. Each ray was tested for intersection only against geometry in its 

current grid cell, before being extended to the next, nearby cell. This model was later 

followed by Christen (Christen 2005), and Karlsson & Ljungstedt (Karlsson and 

Ljungstedt 2004). Both Christen and Karlsson & Ljungstedt found their GPU 

implementations to be comparable but not yet faster than professional CPU 

implementations, such as Mental Images' "Mental Ray," now owned by Nvidia. Christen 

notes, at the time of his writing, the limited total memory available on graphics cards 

might have been a limiting factor. 

In an attempt to improve the GPU ray-tracing algorithm, Thrane and Simonsen 

(Thrane and Simonsen 2005) investigated alternatives to the uniform 3D grid 

partitioning scheme. They tested the uniform grid, kd-tree, and BVH (bounding-volume 

hierarchy) implementations. They found that the traditional uniform grid was the slowest, 

with the kd-tree showing some improvement, but the BVH proving the fastest when all 

three are traversed on the GPU. The reason for this is because the BVH traversal is 

simpler than the others, as it contains only one branch (and GPUs were not very 
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efficient at branches at the time), and that this promotes low divergence in the execution 

paths of the various kernels (fragment programs), and therefore has good cache 

utilization. 

Building upon Thrane and Simonsen's BVH work, Carr et al. (Carr et al. 2006) 

rebuild the threaded hierarchy for each frame entirely on the GPU, thus allowing for 

dynamic geometry and dynamic level-of-detail (LOD). The term threaded hierarchy 

refers to a technique in which two pointers are added to each node: a hit pointer 

referring to the first child, and a miss pointer referring to the next sibling. This avoids the 

traditional traversal reliance on branches and a stack, allowing it to be efficiently 

streamed to the GPU. Carr et al. conclude that their BVH stored in a geometry image 

accelerates GPU-based ray-tracing to where it is competitive with other high-

performance ray-tracers. 

Recent work by Robert et al. (Robert, Schoepke, and Bieri 2007) shows a 

performance increase of almost a factor of two compared to a CPU-based kd-tree 

accelerated ray-tracer by utilizing a hybrid technique combining the GPU and CPU. 

They introduce the object intersection buffer (OIB) which circumvents the need for an 

acceleration structure (such as the aforementioned BVH or uniform grid) for reducing 

the number of intersection tests for primary rays. Secondary rays such as reflection and 

refraction rays are computed on the CPU which exploits the parallelism between the 

GPU acting as a co-processor and the CPU. Shadow rays are avoided altogether and 

shadow mapping, commonly used in non-ray-traced rendering, is used as an 

alternative. 
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Szirmay-Kalos et al. (Szirmay-Kalos et al. 2005) approximate reflection and 

refraction rays by utilizing the distance stored in the texels of an environment map, and 

thus are able to simulate ray-tracing without actually tracing rays. The results produce 

multiple reflections and refractions comparable to ray-traced scenes, and the 

implementation is suitable for real-time simulations such as games. Additional 

information can be found in (Szirmay-Kalos, Aszodi, and Lazányi 2006). 

 

3.2 Image Processing 

Image processing in our context refers to digital image processing, and can 

involve simple operations such as image resizing and scaling, or more complicated 

algorithms such as principle components analysis (PCA). Digital image processing 

techniques are used for a variety of things such as image classification, pattern 

recognition, and feature extraction. Recent work involves utilizing the GPU for real-time 

video image processing, but the speedup provided by hardware -acceleration is also 

helpful in offline computations, particularly for large data sets. 

An example of such real-time video processing is the work by Fischer (Fischer 

2006), whose dissertation contributes to the area of augmented reality in three specific 

ways. Augmented reali ty systems display computer-generated information on top of 

images from the real world, likely captured by a camera or webcam. The ARGUS 

framework is an augmented reality system used in the medical field for surgical 

navigation. Fischer extends this framework with a hybrid tracking system, a user 

interaction library, and a method for calculating the occlusion of rendered objects by a 

patients' anatomy. Using this extension, it is possible to render a virtual chair partially 
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occluded by a real-world table in front of it. The second contribution involves something 

coined stylized augmented reality, in which, after the real-world scene is rendered, 

optionally with virtual objects next to real objects (hence augmented), the scene is post-

processed on the GPU to create effects such as cartoon rendering, or the impression 

that the scene was painted with a paint brush. Edge detection filters are also possible 

as a post-process. The third contribution involves a new rendering method for the 

display of hidden structures in iso-surfaces and polygonal models. 

Static image processing remains an important topic, with one of the oldest 

possibly being image denoising. In (Kharlamov and Podlozhnyuk 2007), Kharlamov & 

Podlozhnyuk uti lize Nvidia's GPGPU language CUDA to implement two popular 

denoising algorithms: K Nearest Neighbors (KNN) and Non Local Means (NLM). They 

found that while KNN maps well to GPU hardware, NLM is memory-bound where 

memory accesses are typically implemented as texture fetches on GPUs. They propose 

a solution that uti lizes CUDA's shared memory model that assumes weights within 

blocks of pixels are constant, for small pixel blocks (such as 8x8). This reduces the 

number of texture fetches so that (modified) NLM approaches the speed of KNN, and 

can actually be combined with KNN to achieve even better visual results. Even despite 

the decreased performance of the original NLM, all three algorithms are capable of 

running as a real-time filter (used on video, for example) on modern graphics hardware, 

specifically Nvidia's Geforce 8. 

Mathematically, a convolution is an operator that takes two functions and returns 

the amount of overlap. In image processing, convolutions are useful for certain 

algorithms such as edge detection, image smoothing, or image blurring. Podlozhnyuk 
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(Podlozhnyuk 2007, Image Convolution with CUDA) implements a separable 

convolution filter, also using CUDA. The results show that by uti lizing CUDA's shared 

memory, they achieve twice the performance versus an implementation using standard 

texture fetches. This is a good example of GPGPU languages advancing past general-

purpose GPU processing done using traditional GPU languages. For 2D convolution 

kernels, a separable approach tends to be less than optimal. Instead, FFTs are used to 

calculate the discrete fourier transformation more efficiently in (Podlozhnyuk 2007, FFT-

based 2D Convolution). An additional implementation of FFTs on GPUs can be found in 

(Marichal-Hernandez, Rodriguez-Ramos, and Rosa 2007), where Marichal-Hernandez 

et al. use FFTs for wave-front reconstruction in adaptive optics systems. 

Another possible filtering kernel is the Gaussian, which is computed on the GPU 

in (Turkowski 2007). Turkowski's implementation is analogous to polynomial forward 

differencing as he computes the polynomial coefficients on the fly and incrementally. 

With each state update the coefficients are recalculated with just one vector instruction. 

 

3.2.1 Volume Reconstruction 

Volumetric reconstruction involves the creation of 3D models from 2D source 

material, such as images or pictures. Hornung & Kobbelt introduce a GPU-based 

reconstruction method (Hornung and Kobbelt 2006) that solves many of the restrictions 

of previous methods, such as the matching of surface patches, and biased consistency 

estimation. The improvement over a CPU-based software approach is massive, with an 

example 126 image set with 16 million voxels reconstructed in 856 minutes on the CPU 

compared to just 82 minutes on the GPU. The results showed that the data transfer to 
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and from the GPU was the main bottleneck, and predicted an estimated four times 

performance increase for texture sizes of 40962, with the maximum available at the time 

being only 20482. Since then, the current maximum texture size has increased to 81922. 

For comparison, a recent CPU-based approach is explained in (Habbecke and Kobbelt 

2007). 

 

3.3 Audio 

Sound cards have transformed from external plug-in cards to being integrated 

into most modern motherboards, and have not followed the exponential growth curve 

that graphics cards have enjoyed. Yet, processing the acoustics of a complex virtual 3D 

scene remains computationally expensive. A few novel approaches using the GPU for 

audio processing and acoustic simulations have emerged. 

Audio processing is a specialized form of digital signal processing (DSP), and 

using the GPU as a digital signal processor to process audio was seen in Gallo & 

Tsingos (Gallo and Tsingos 2004) and Whalen (Whalen 2005). Whalen notes that many 

audio processing algorithms, such as bandpass, multi-tap delay, and reverb are iterative 

methods that require output from previous computation, and are therefore unsuitable for 

parallelization, or at the very least must be implemented using multiple passes.  

Ray-tracing techniques have been adopted for computing room acoustics and 

sound wave propagation, as seen in Jedrzejewski (Jedrzejewski and Marasek 2004) 

and Röber et al. (Röber, Kaminski, and Masuch 2007). Jedrzejewski traced 214 rays 

uniformly distributed on the source sphere with all rays propagating until reaching 10 

reflections. The CPU implementation took 0.5 seconds to compute, whereas the GPU 
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implementation took only 32 milliseconds, with half of the time spent uploading 

transferring textures to the GPU. Röber et al. subdivided the scene into a uniform 3D 

grid to reduce the number of sound ray-object intersections. They note future 

improvements could possibly include different acceleration structures to reduce the 

number of intersections even further. Techniques involving different acceleration 

structures for GPU-based ray-tracing can be found in § 3.1.1.2. 

 

3.4 Computational Geometry 

Computational geometry is the study of problems stated in terms of geometry 

(i.e. points, lines, etc) and can be divided into two main categories: combinatorial 

computational geometry, sometimes called algorithmic geometry, and numerical 

computational geometry, sometimes called geometric modeling. Problems in 

combinatorial computational geometry are many; some examples include convex hull 

calculation, Delaunay triangulation, line segment intersection, and point-in-polygon 

tests. Geometric modeling is also called computer-aided geometric design (CAGD), and 

involves curve and surface modeling. Since many applications of computational 

geometry involve visualizing the result of computation, it is only natural to attempt to 

move that computation over to the GPU where it is closer to being rendered, and to 

benefit from the extreme parallelism available. 

Early GPU work in computational geometry involved mesh tessellation. 

Boubekeur & Schlick (Boubekeur and Schlick 2005) implement an on-the-fly tesselator 

by linearly interpolating between three vertices. Their implementation of the curved 

point-normal (PN) triangle involves a constant amount of data to be transferred to the 
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GPU, regardless of the target refinement. The main impetus for their algorithm is the 

lack of dynamically generated vertices on the GPU. Since then, with the introduction of 

the geometry shader, that is no longer the case. However, the geometry shader is not 

primarily a tessellation unit, with the maximum number of floating-point dynamic outputs 

at the time of this writing being only 1024 (with 8 bytes per vertex this only allows 128 

vertices generated) per geometry shader invocation. In the future, it is expected that 

dedicated tessellation hardware will allow much more dynamic output generated entirely 

on the GPU. 

Rong & Tan (Rong and Tan 2006) compute an approximation to the Voronoi 

diagram of a set of two-dimensional seeds and claim the difference is hardly visible to 

the naked eye. They implement an algorithm called jump flooding on the GPU which 

they use to compute the Voronoi diagram approximation, as well as an approximation to 

the distance transform of a set of 2D seeds, in constant time. They give a CPU 

implementation of their jump flooding algorithm for higher dimensions, with the reason 

given that the GPU cannot render into 3D textures. Since then, with the advent of 

shader model 4 and Direct3D 10, this has also changed. This makes a jump flooding in 

three dimensions implementation on the GPU likely with future work.  

Real-time surface deformation and manipulation remains a difficult problem that 

has recently seen progress thanks to modern GPU technology. Marinov et al (Marinov, 

Botsch, Kobbelt 2007) perform multiresolution deformations of large meshes almost 

completely independent of CPU performance, thus taking advantage of the faster 

advancement of GPUs in relation to CPUs. The method involves approximating the 

normal field of the deformed mesh using a small number of attributes passed per vertex. 
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It is stated that simple recomputation of vertex normals by local averaging is impossible 

due to lack of neighboring vertex information, but with the advent of the geometry 

shader this approach is possible. In Zhou et al. (Zhou et al. 2007) a solution is proposed 

for interactive manipulation of subdivision surfaces, including surfaces with geometric 

textures and displaced subdivision surfaces. The heart of their algorithm involves a shell 

deformation solver, which replaces the common iterative solver for handling the highly 

nonlinear data of deformed subdivision surfaces. The algorithm is stable and uses only 

local operations, making it suitable for GPU implementation. The accompanying video 

demonstrates the instability of previous solvers, and shows the GPU algorithm being fed 

motion-capture data that dynamically deforms the models in real-time. 

Aiger & Kedem (Aiger and Kedem 2008) set out to solve a geometric pattern 

matching problem called the largest common pointset (LCP) problem. The LCP problem 

reduces to searching for the depth in a polytopes arrangement, which they compute 

using depth peeling on the GPU. They demonstrate an application of the algorithm with 

real-time object recognition in which a given geometry model can be detected in a gray-

scale image regardless of translation and scaling of the model. 

 

3.5 GPU Algorithms and Data Structures 

Many GPGPU techniques are attempts at mapping traditional algorithms and 

data structures to GPUs so that the computational horsepower and extreme parallelism 

can be taken advantage of. In section 3.5.1 we take a look at general mathematical 

problems as well as specific subdomains like cryptography and financial calculations. In 

section 3.5.2 we touch upon higher-level data structures being mapped to the GPU, as 
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opposed to low level data structures such as arrays (textures). Section 3.5.3 looks at 

sorting structures on GPUs. 

 

3.5.1 Mathematics 

General mathematics on the GPU covers a wide range, from abstract 

computation to more practical computation. Banterle & Giacobazzi (Banterle and 

Giacobazzi 2007) implement the octagon abstract domain efficiently on the GPU, which 

they then used to create an abstract program analyzer. The octagon abstract domain 

provides a way to represent a system of inequalities of the form , where x 

and y are program variables and c is a constant (which can be real, rational, or integer) 

automatically inferred. Their implementation involves difference bound matrices (DBM) 

which map one-to-one with 2D textures. The static analyzer performs many operators 

on the GPU, including union, intersection, assignment, widening, test guard operator, 

and emptiness test. Many tests see a speedup compared to the CPU implementation, 

but they state their main bottleneck is the reduction check when performing a widening 

or emptiness test operation. They state this bottleneck could be alleviated with random 

writes, which (scatter) can be done with the vertex processor or with a GPGPU 

language such as CUDA or CAL. Another optimization desired is to increase the size of 

octagons by using hierarchal techniques such as page textures, which can be 

implemented using a dependent texture lookup. 

In (Harris, Sengupta, and Owens 2007), Harris et al. present a parallel 

implementation of the all-prefix-sums operation, commonly known as scan. The all-

prefix-sums operation takes a binary associative operator  with identity I, and an array 
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of n elements  and returns the array 

. For example, with  being multiplication, a 

scan on the array [2, 5, 3, 1, 8] would return [0, 2, 10, 30, 30]. It is said that there are 

many applications for scan, including sorting, polynomial evaluation, lexical analysis, 

and building histograms. In particular, Harris et al. demonstrate scan in use for 

summed-area tables, stream compaction, and radix sort. Their parallel algorithm is 

work-efficient in that it does asymptotically no more work than a sequential scan. They 

benchmark several implementations of the parallel scan, and aside from the GPU 

speedup over the CPU implementation, the CUDA version outperforms the OpenGL 

version by up to a factor of seven. This is because CUDA exposes on-chip shared 

memory, thread synchronization, and scatter writes into memory which are not available 

in fragment programs (though scatter is at least possible in a vertex program). 

Another application of scan is seen in (Lessig 2007), where Lessig computes 

eigenvalues of a tridiagonal symmetric matrix using a bisection algorithm. Lessig pays 

particularly close attention to which areas of memory certain operations take place in 

with two different implementations for different sized matrices: one for matrices of size 

5122 which can fit entirely into CUDA's shared memory cache of 16 KB (for the G80 

series), and one for arbitrarily large matrices. 

 

3.5.1.1 Random Number Generation 

There are many types of pseudo-random number generators (PRNG) and 

distributions on which to generate the numbers, the classical combination being the 

linear congruential generator (LCG) on a uniform distribution. Many PRNGs require 
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high-precision integer arithmetic which, up until recently, GPUs have lacked (usually 

only obtaining 24 bits of integer precision in a 32 bit floating point number, because 

integers were not natively supported). Thus, Pang et al. (Pang, Wong, and Heng 2006) 

proposed a cellular automata (CA) based PRNG that does not require high-precision 

integer arithmetic or bitwise operations. Testing their CA based PRNG on the GPU 

against an LCG PRNG on the CPU they achieved on average a ten times speedup, with 

better results when more numbers are generated (due to GPU-CPU bandwidth, a single 

random number generated is less efficient than a CPU approach). 

With the advent of natively supported integer computation on GPUs, Howes & 

Thomas (Howes and Thomas 2007) make heavy use of bitwise operations with their 

hybrid LCG + Tausworthe generator. The period of a generator is how long until the 

generator must loop and start repeating itself; with their hybrid approach they achieve a 

period of 2121, compared to a period of 232 for a typical LCG. Howes & Thomas also 

demonstrate how to map uniformly distributed random numbers to other distributions, 

such as a Gaussian distribution. They use a Box-Muller transform for this task, which, 

while typically not used in CPU implementations, maps well to the GPU due to no 

branches, looping, or memory fetches, but instead is very math-heavy. A Wallace 

Gaussian generator is also demonstrated for generating Gaussian distributed random 

numbers directly without first generating them on a uniform distribution and then 

transforming them. Finally, these PRNGs are applied to two different pricing option 

models: Asian and Lookback (more GPU financial calculations in § 3.5.1.5). For raw 

random number generation, they found the GPU implementation on average achieved a 
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26x speedup, with up to a 59x speedup for the Asian pricing option, and a 23x speedup 

for the Lookback option. 

Another popular generator option is the Mersenne twister, which was not used in 

(Howes and Thomas 2007) due to having a large state that must be updated 

sequentially. However, Podlozhnyuk (Podlozhnyuk 2007, Parallel Mersenne Twister) 

parallelizes the Mersenne twister by launching several instances with different initial 

states, computed using (Matsumoto and Nishimura 1998), and sharing the common 

state between all threads. They also transform the uniformly distributed random 

numbers using a Box-Muller transformation, but into a normal distribution instead of a 

Gaussian one. 

 

3.5.1.2 Cryptography 

Cryptography on the graphics card was introduced by Cook et al. (Cook et al. 

2005), which concluded that symmetric key encryption was unsuitable for 

implementation on GPUs. The experiment implemented the block cipher AES algorithm 

using OpenGL. Since then, GPUs have evolved and a number of architectural 

improvements have surfaced. 

Moss et al. (Moss, Page, and Smart 2007) chose to implement the public-key 

(a.k.a. asymmetric key) RSA algorithm using a residue number system (RNS). Despite 

most researchers ignoring expensive public-key algorithms and instead opting for 

(usually) more speedy symmetric key algorithms, Moss et al. managed to get a 3x 

speedup over the CPU implementation. They note that the various overheads 

associated with GPU computation (such as transferring data to the GPU) requires a 
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large number of parallel exponentiations in order to break-even or surpass the speed of 

a CPU implementation. This is a common realization in GPGPU programming.  

With the introduction of shader model 4.0 and Nvidia's G80 we saw a number of 

improvements that fix the problems concluded by Cook et al, notably the introduction of 

natively supported integer stream processing. Yamanouchi (Yamanouchi 2007) 

implemented the AES symmetric key algorithm using a number of Nvidia-specific 

OpenGL extensions that are nevertheless expected to eventually become multi-vendor 

extensions. The key extension used in their algorithm is the transform feedback 

extension (Woolley and Carter 2008), which allows the output of the geometry shader to 

be redirected into buffer objects as vertex attributes, and optionally not computing the 

rest of the pipeline (§ 2.2). 

 

3.5.1.3 Floating-point 

Current GPUs do not conform exactly to the IEEE 754 floating-point standard, 

but come extremely close; the most modern of which differ only in their use of specials 

(NaNs, Inf) (Cebenoyan 2005). Even still, GPUs have only recently achieved full single-

precision floating-point arithmetic, and double precision is still only on the horizon. A 

number of attempts at emulating higher precision floats using the GPU have arrived as 

a result: Göddeke et al. (Göddeke, Strzodka, and Turek 2007), Thall (Thall 2006), Graça 

& Defour (Da Graça and Defour 2006). Emulating extended precision floats goes back 

as far as Dekker (Dekker 1971). Of particular note, Göddeke et al. conclude that using 

mixed-precision calculations on the GPU for finite element discretizations can achieve 

the same accuracy as doing the entire calculation in double precision, but with a 
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speedup of 4-5x. The same calculations done using just single precision proved 

instable. 

 

3.5.1.4 Histograms 

A histogram is a table of frequencies; in image processing a histogram usually 

represents the number of times a pixel value fits within a certain range, defined by that 

bin, for n bins. Histograms are often used in image post-processing (§ 3.2), such as 

tone mapping operators for high-dynamic range images. To calculate a histogram 

sequentially on the CPU for a 1D image of m pixels for n bins, consider the following 

pseudocode: 

 

As we know, the GPU does data-parallel processing, so this algorithm does not 

efficiently map directly to the GPU. There are a number of approaches to re -mapping it 

to the GPU. Early work in Green (Green*05) involves using occlusion queries to count 

the number of pixels in a bin, and as such requires n passes for n bins. The resultant 

histogram is stored in system memory since the final summation is done on the CPU. In 

addition, it introduces a trade-off in which you choose between either synchronization 

between the CPU and the GPU in order to read-back the query, or a lag of several 

frames before the query result is available, neither o f which is ideal. Fluck et al. (Fluck 

et al. 2006) divide the input image into n tiles for n bins, where each pixel of a given tile 

must read values from every other pixel in the same tile. A reduction operation (§ 2.3.1) 

 

   for (int i = 0; i < n; ++i) 
        histogram[i] = 0; 
 
   for (int i = 0; i < m; ++i) 
        histogram[image[i]]++; 
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is then performed to sum up local histogram tiles, which takes O(log m) passes for an 

input image of size m. 

The previous methods used a gather approach, where the input image is read in 

several places before summed in each bin. Scheuermann & Hensley (Scheuermann 

and Hensley 2007) introduce a scatter approach to GPU histogram collection. First they 

read the input image using either vertex texture fetch (VTF) or render-to-vertex-buffer 

(R2VB) depending on the IHV (at the time, Nvidia hardware supported VTF while ATI 

hardware supported R2VB, but neither supported the alternative). Then, using the 

scatter capability of modern vertex processors, the vertex position is altered depending 

on where to bin the input pixel, and then they use additive blending to accumulate the 

resulting histogram in the output render target. This approach builds the histogram 

using an arbitrary number of bins in a single rendering pass. Run time was constant 

with regards to histogram size; instead, the performance was bounded by input image 

size. It also has an advantage in that the histogram is computed and collected entirely 

on the GPU, and can perform post-processing effects without first transferring any 

information back to the CPU. 

Another similar scatter approach by Diard (Diard 2007) uses the geometry 

shader to emit vertices which result in fragments being rendered at the correct location 

to bin a certain input texel, also using blending to accumulate the result in a single pass. 

The approach is flexible in that a single geometry shader invocation can process the 

input image, but to further take advantage of the parallelism available the input image is 

divided into tiles, with each tile being processed by a geometry shader. The size of each 

tile can be optimized depending on the desired number of geometry shader invocations, 
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with careful attention paid to the number of maximum scalar outputs available in a GS 

(1024 at the time of this writing). 

An approach using CUDA, similar to Fluck et al., is explored in (Podlozhnyuk 

2007, Histogram Calculation in CUDA). Since additive blending is not available care 

was taken to use atomic writes for the final histogram collection. When atomic writes 

were not available, a final accumulation of sub-histograms pass was necessary. 

 

3.5.1.5 Economics and Finance 

Computational finance is an area of programming for financial risk management; 

it uses numerical methods to aid in the prediction of option prices as well as other 

financial and economic decisions. Option pricing on the GPU was introduced by Kolb & 

Pharr (Kolb and Pharr 2005). Nvidia's CUDA SDK has several examples of using the 

GPU for specific option pricing methods. Among these are Black-Scholes (Podlozhmyuk 

2007, Black-Scholes Option Pricing), the binomial option pricing model (Podlozhnyuk 

2007, Binomial Option Pricing Model), and Monte Carlo option pricing (Podlozhnyuk and 

Harris 2007), the latter of which uses a parallel version of the Mersenne Twister (§ 

3.5.1.1). The implementations noted careful memory usage on the G80 was necessary 

for optimal performance, such as fitting as much as possible into shared memory versus 

global memory. 

 

3.5.2 Data Structures 

While we have discussed mapping simple data structures to the GPU, such as 

mapping arrays to textures, we have not yet discussed higher-level data structures. The 
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most comprehensive work in this area is Lefohn's dissertation (Lefohn 2006), and prior 

work (Lefohn, Kniss, and Owens 2005). Lefohn introduces Glift, a generic, abstract C++ 

template library for creating, accessing, and traversing parallel random-access data 

structures on the GPU. It is modeled after the standard template library (STL), a part of 

the C++ Standard Library, in that it provides a separation between algorithms and data 

structures, allowing interchangeable and reusable code. Glift abstracts GPU data 

structures into four areas: physical memory, programmable address translation (i.e. 

abstracting a 2D texture and indexing into it as if it was a 4D array), virtual memory, and 

iterators. Using policy-based C++ template design (Alexandrescu 2001) Glift allows 

useful abstractions that perform almost as efficiently as hand-coded alternatives in 

OpenGL and Cg, but allows much more succinct code than the hand-written alternative. 

Lefohn describes GPU versions of a stack, octree, and quadtree in terms of generic Glift 

components. They then demonstrate four specific applications that use complex data 

structures: octree 3D paint, adaptive shadow maps, resolution-matched shadow maps, 

and a novel depth-of-field algorithm. Constructing these applications is made easier 

using the Glift abstraction, and Glift itself is one step closer to an efficient, high-level 

C++ standard library for GPUs. 

 

3.5.3 Sorting 

Sorting algorithms are usually a first step to structures that are then used for 

searching or other database operations. Previous work involved in GPU-based sorting 

can be found in (Govindaraju et al. 2004), (Govindaraju, Raghuvanshi, and Manocha 

2005), (Gamma Research Group, GPUSort), and (Kipfer and Westermann 2005). 
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Recent work by Gress & Zachmann (Gress and Zachmann 2006) presents GPU-

ABiSort: an adaptive bitonic merge sorting algorithm that achieves an optimal time 

complexity of O((n log n)/p) for sorting n values with p stream processing units. The 

algorithm uses efficient linear stream memory accesses and is scalable up to n / log n 

stream processing units. Comparing their implementation versus both a CPU reference 

implementation as well as the GPUSort system mentioned above Gress & Zachmann 

manage a speedup of over 2.5 times the CPU implementation. For an n of 1048576 

GPUSort manages 173 ms compared to a time of 165 ms for GPU-ABiSort. They used 

the ping-ponging technique (§ 2.3) and describe an efficient mapping of 1D sorting 

structures to 2D textures to circumvent the size limitation provided by 1D textures at the 

time. 

Govindaraju et al. (Govindaraju et al. 2006) break the PennySort price-

performance benchmark with their recent update of GPUSort dubbed GPUTeraSort. 

The PennySort benchmark is a competition for how many 100-byte records you can sort 

for a penny, with GPUTeraSort managing a record 60GB. The competition is further 

broken down into the Daytona and Indy categories, for which GPUTeraSort qualifies for 

both, and achieves a 4 times performance improvement, and 1.4 times performance 

improvement, respectively. Govindaraju et al. improve upon their previous bitonic sorting 

algorithm with a hybrid radix-bitonic sorting algorithm that outperforms previous GPU-

based sorting algorithms by 3 to 6 times. For comparison with GPU-ABiSort, 

GPUTeraSort has a computational complexity of O((n log2 n) / 2). Some of the 

limitations of GPUTeraSort are that it prefers fixed-sized keys, as opposed to variable-
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sized keys, since it is based on radix sort, and that it does not perform as well as 

adaptive algorithms (such as GPU-ABiSort) on almost sorted data. 

 

3.6 Simulation 

Simulation is a natural choice for GPGPU applications. In many cases, it is 

desirable to only visualize the result of complex physical simulations. In these cases, 

moving the computation over to the GPU where it is closer to being rendered eliminates 

the typical bottleneck of data transfer and can also readily take advantage of the 

parallelism available. In the following sections we examine GPU-powered simulations of 

cloth, crowds and automatons, fluid dynamics, and physical simulations. We also take a 

look at some large, multi-GPU applications in section 3.6.5, and finish up with a look at 

the specific domain of bioinformatics. 

 

3.6.1 Cloth 

Early work for cloth simulations on the GPU can be found in (Wloka 2001), 

(Green 2003, Nvidia cloth sample), (Green 2003, Stupid OpenGL Shader Tricks), and 

(Meggs 2005). With the introduction of shader model 3.0, Zeller (Zeller 2005) and 

(Zeller 2006) modeled cloth as a network of particles subject to external forces (gravity, 

wind, drag) held together by a series of constraints including spring and collision 

constraints. Particle positions and normals were stored in floating-point textures which 

were updated by a series of pixel shader passes and rendered dynamically using a VTF 

in the vertex shader. The particle motion was updated using Verlet integration and the 

constraints were resolved by a relaxation step at each iteration. The system was flexible 
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enough to describe fixed and free-motion particles and thus allowed the cloth to be "cut" 

dynamically. Zeller updated their work in (Zeller 2007) when shader model 4.0 became 

available. The primary differences in the new model are particle positions are now 

stored in vertex buffers instead of textures, and are updated using vertex and geometry 

shaders instead of pixel shaders. This is possible due to the stream-out functionality of 

Direct3D 10, which works similarly to the transform feedback (Khronos Group 2007) 

OpenGL extension mentioned previously in § 3.5.1.2 Cryptography. 

 

3.6.2 Crowd 

Recently there has been an interest in crowd simulation and agent-based 

modeling on the GPU in order to take advantage of the increased flops compared to 

CPUs. Zioma (Zioma 2006) manages to compute path-finding information on the GPU, 

but does not compute any artificial intelligence; it is strictly for navigation. Millán et al. 

(Millán, Hernandez, and Rudomin 2006) compute character behavior on the GPU by 

using finite-state machines (FSM). They store three different types of texture maps: 

agent-space maps, which contain agent information (position, state), world-space maps, 

which contain information on the environment so that charac ters may interact with it, 

and FSM maps, which contain information on each state and transitions between states. 

These texture maps are sampled in a fragment shader and then updated each iteration. 

To render the agents a combination of level-of-detail (LOD), imposters (basically 

rendering an image of the agent instead of the agent itself), and OpenGL pseudo-

instancing was used. They achieved up to 256 thousand agents simulated and 

animated interactively at a rate between 6 and 15 frames per second. They claim the 
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main disadvantage with the approach is editing the FSM texture map must be done by 

hand in order to program agent behavior, and that a tool built to automate this 

procedure would help immensely. 

D'Souza et al. (D’Souza, Lysenko, and Rahmani 2007) simulate and visualize 

agents at a rate of over 50 updates per second for a population of just over 2 million 

agents. Instead of encoding agent behavior in a FSM texture map, it is programmed 

directly using fragment shaders. Texture maps for agent and environment information 

are still used. Agent interaction with the environment uses a scatter approach, which 

they accomplish with a VTF in the vertex shader. In all, agent movement, growback, 

replacement, mating, and pollution formation/diffusion are modeled using shaders. They 

claim their prototype system outperforms high-performance computing (HPC) clusters 

as the 2 million agent simulation was done using a single graphics workstation with an 

Nvidia Geforce 8800. 

 

3.6.3 Fluid 

Computational fluid dynamics (CFD) is a vast and difficult subject involving 

solving the Navier-Stokes equations (NSE), a set of nonlinear partial differential 

equations which describe single-phase fluid flow. An introduction to CFD can be found 

in (Anderson 1995). Solving these equations is computationally expensive and 

approximations formed by simplifying the equations (by removing terms) are common. 

An unconditionally stable solver for the NSE was introduced in (Stam 1999), with 

previous methods requiring very small time steps to remain stable. This permitted larger 

time steps which pushed CFD into the realm of real-time simulations. Fluid simulations 
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on the GPU are numerous, some early work of which can be found in (Foster and 

Fedkiw 2001), (Y. Liu, X. Liu, and Wu 2004), and (Harris 2004) and many others. A few 

of the most recent are described here. 

Sander et al. (Sander, Tatarchuk, and Mitchell 2006) utilize early-z culling to 

efficiently reduce the amount of work necessary to solve simplified (no viscosity term) 

NSE in two dimensions. Early-z culling involves taking advantage of the z-buffer to skip 

costly pixel shaders. An extension of the algorithm to three dimensions is described. 

Rapidmind (RapidMind 2008, Real-time Fluid Simulation) has a demonstration of a 

water volume based on (Maes, Fujimoto, and Chiba 2006), in which Maes et al. 

describe an optimization to heightfield-based water simulations. In these simulations the 

water is animated in three dimensions but the fluid flow is not calculated in all three 

dimensions. 

The Navier-Stokes equations are modeled under an assumption that the fluid is 

incompressible, and viscous. Removing the viscosity term yields the Euler equations, 

which are compressible and inviscid. In computer graphics, fluids are often still held to 

be incompressible (volume does not change) even when solving the Euler equations. 

Brandvik & Pullan (Brandvik and Pullan 2008) recently implemented two and three 

dimensional Euler solvers on the GPU using Brook and CUDA (respectively). For a grid 

size of 300,000 nodes they achieved a speedup of 29 times the CPU implementation for 

the 2D equations, and a 16 times speedup for 3D. 

A comprehensive introduction to the NS equations in terms of computer graphics 

and game programming can be found in (Bridson and Müller-Fischer 2007). Bridson & 

Müller-Fischer describe the equations, provide an overview of numerical simulation and 
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advection algorithms, and provide methods for making the fluid incompressible. They 

describe different kinds of fluid effects that can be achieved such as smoke and water, 

and introduce the different real-time water simulations used in computer graphics, such 

as procedural water, heightfield-based water, and smoothed particle hydrodynamics. 

Finally, Crane et al. (Crane, Llamas, and Tariq 2007) simulate and render 3D 

fluids in real-time, including animation and simulation specifics for water, fire, and 

smoke. Their GPU implementation discretizes space using a Eulerian discretization, and 

they map grid cells in the computational domain directly to voxels in a 3D texture. Slices 

of three-dimensional textures can be rendered into and updated using a pixel shader 

since shader model 4.0. Fluid interaction with solid objects (such as the boundary 

encapsulating the fluid) are dealt with by denoting solid voxel cells, and modifying the 

boundary conditions of the fluid equations so that fluid is allowed to flow along the 

surface of a solid but not through it. Boundary information is stored in 3D textures that 

can be updated for dynamic obstacles (solids). Voxelization of solid obstacles is 

updated by rendering the input mesh into slices of a 3D texture using an orthogonal 

projection and near plane values equal to the depth of the current slice. This allows 

dynamic solid obstacle updates each frame. Additional terms are kept depending on 

whether the fluid modeled is smoke, fire, or water. For smoke, density and temperature 

values are kept and computed using the same advection equation used for velocity. Fire 

requires a quantity called a reaction coordinate which is described by an equation from 

(Nguyen, Fedkiw, and Jensen 2002). With water, the interaction between the air and the 

water surface is modeled using the level set method described in (Sethian 1999), which 

only requires an additional scalar value at each grid cell, mapping well to the GPU. 



58 

Storage requirements for the simulation are 41 bytes per cell and rendering requires an 

additional 20 bytes per pixel, much of which can be shared amongst multiple 

simultaneous fluid simulations. Rendering of the fluid is done by ray-marching through 

the 3D texture representing the fluid and accumulating densities before compositing 

with the final scene. 

 

3.6.4 Physics 

More sophisticated physical simulations are starting to see increased demand 

lately as the market demands more than just visual realism but interaction as well. While 

the subject of physical simulation is as large and difficult as fluid dynamics, in this 

section we focus primarily on Newtonian dynamics. 

Traditionally the domain of CPUs, adoption of physics on the GPU has been slow 

for a number of reasons. First, the game industry drives a large part of the research 

done in graphics technology and graphics chipsets, and while graphics in games can 

scale depending on the end user's hardware, the gameplay is largely the same on every 

platform because it is difficult to scale. Thus, many physical effects in games have 

largely been relegated to eye-candy and visual results that don't affect gameplay (which 

might negatively affect sales), as seen with the release of Havok FX. However, Havok 

FX was quietly canceled as Havok was acquired by Intel. Second, and more 

importantly, the computational power required for intensive real-time rigid body 

simulations was simply not available until recently. Combined with the market demand 

of increased interaction as well as visual realism, we fully expect physics on the GPU to 

increase in momentum in the coming . 
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There are a number of recent n-body simulations on the GPU (Nyland, Prins, and 

Harris 2007), (Stock and Gharakhani 2008), (Laeuchli 2008). An n-body simulation is a 

system in which each body interacts with all other bodies. For example, in astrophysics, 

an n-body simulation might be a series of particles, each representing a star cluster, 

planet, or galaxy, and affect each other via gravitational forces. Nyland et al. solve the 

all-pairs n-body problem using a Geforce 8 and CUDA. The all-pairs problem refers to 

calculating all O(n2) interactions between the bodies, as opposed to approaches which 

approximate the contribution of large numbers of particles that are far away, which can 

reduce the complexity to O(n log(n)) (Darden and Pedersen 1993). The GPU is more 

memory constrained than arithmetically limited, so to evaluate the matrix of all n2 force 

interactions they parallelize one axis of the matrix (n rows) and compute sequentially 

the other axis (n columns). To further reduce memory usage computation is done on 

tiles, which are square regions of the n2 matrix of size p2 (for p << n), in which only 

space for 2p particle descriptions is needed to describe p2 interactions by reusing p 

descriptions in later computations. Each tile is computed by a thread block which is 

further broken down into a thread per row. In effect, Nyland et al. manage to keep 

memory usage down (to keep from being bandwidth constrained) and by  constantly 

feeding the arithmetic units data they achieve nearly the peak theoretical performance 

of the Geforce 8800 GTX.  At 128 processors of 1.35 GHz each with one flop per cycle 

per processor the GTX is capable of 172.8 gigaflops, but for multiply-add instructions 

(MAD) the theoretical peak doubles as two flops per clock cycle is possible. In their all-

pairs n-body simulation, Nyland et al. manage over 200 gigaflops for n of size 214, 

claiming a performance improvement of over 50 times an optimized CPU 
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implementation, and 250 times faster than their own reference CPU implementation. 

They contrast with their previous n-body simulation attempt (Nyland, Prins, and Harris 

2004) that used Cg and OpenGL, in which all data was either read-only or write-only 

(see ping-ponging, § 2.3), and required O(n2) memory. 

Harada (Harada 2007) bui lt a rigid-body simulation capable of rendering 16,384 

chess pieces at a rate of 44 frames per second. Initially, the method involves generating 

particles from rigid-bodies by discretizing space around the rigid body and then 

extracting the solid voxels by way of depth-peeling. These particles are then inserted 

into a uniform 3D grid in order to compute particle collisions. By using a grid voxel size 

capable of holding at most one particle, the number of checks a single particle must do 

to calculate collisions is optimum at 33. The number of particles per rigid body is 

adjustable, thus allowing for a tradeoff between speed (low number of particles) and 

accuracy depending on the application. Collision reaction between particles is computed 

using the discrete element method (DEM), which is a repulsive force modeled by a 

linear spring, and a damping force modeled by a dashpot (Mishra 2003). After the 

reactions are computed, linear momentum of the rigid body is computed by summing 

the forces acting on the particles of that rigid body. Angular momentum is the same, but 

requires the positions of the particles relative to the center of mass of the body. Position 

and rotation (using a quaternion) of the rigid body are then calculated by integrating 

from momentum. Finally, new particle positions are calculated relative to the new rigid 

body position and quaternion, and the simulation repeats. The uniform grid, rigid body 

positions and quaternions, as well as particle data are all stored using 2D textures. 

Using a particle method approach to rigid-body dynamics has a number of advantages, 
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notably that collisions are easy and fast, and map well to the GPU. The disadvantage is 

that the uniform grid structure takes up GPU memory whether particles occupy the 

space or not (with the trade-off obviously being speed of collision calculations). Harada 

briefly mentions how the rigid body particle simulation could be combined with a 

smoothed particle hydrodynamics simulation in which rigid bodies and fluid particles can 

interact with each other in the same unified system. 

 

3.6.4.1 Collision Detection 

An important, and costly, part of any physical simulation is the collision detection. 

In the previous section we saw a particle-based collision scheme, but it is expensive to 

compute accurately in that the more complex an object gets the more particles it 

requires to accurately represent it. Sometimes we would wish to compute collisions for 

arbitrary convex objects. Previous work in collision detection on the GPU includes many 

works by UNC's Gamma group (Gamma Research Group, Collision Detection), in which 

many are image-based algorithms that rely on screen-space overlap tests between 

objects. Sathe (Sathe 2006) uses another approach using cube maps to compute 

collision detection, but only returns a binary (true/false) result as to whether a collision 

occurred or not. Ideally, we would like to compute not only collision detectio n, but also 

point of contact (or penetration depth) and collision response, that may later be used by 

a physical simulation. 

Collision detection is commonly broken up into two phases: the broad phase, and 

the narrow phase. The goal of the broad phase is to  quickly cull non-colliding pairs 

using cheap intersection tests, whether by use of spatial subdivision, or cheaper, more 
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coarse collision-only meshes (with the fine mesh reserved for rendering purposes), so 

that the potentially colliding set is minimized. During the narrow phase collision tests 

find the exact time and point of contact, which is much more computationally costly, with 

the idea being that the broad phase culled the majority of potential collisions, leaving the 

narrow phase the job of calculating only necessary collisions. 

Le Grand  implemented the broad phase step using CUDA in (Le Grand 2007). 

They describe the sort and sweep (Baraff and Witkin 1997) and spatial subdivision 

approaches to the broad phase, and further showed how to parallelize spatial 

subdivision. The collision cells are then sorted using a parallel version of radix sort. 

Traversing the sorted list and doing a bounding volume overlap test results in a list of 

potential collisions suitable for the narrow phase. The results tested the algorithm with 

Gauss-Seidel physics with 30,720 potentially colliding objects. The algorithm reduced 

450,000,000 potential collisions down to 203,000 on average. 

Kipfer (Kipfer 2007) chose to accelerate the narrow phase of collision detection 

by implementing a parallel version of Lemke's algorithm for solving the linear 

complementarity problem (LCP; not to be confused with largest common pointset, § 

3.4). First, an introduction to physics is given followed by an explanation of determining 

and resolving contact points. Then, linear programming, LCP, and quadratic 

programming are briefly covered. Convex distance calculation is touched upon before 

introducing Lemke's algorithm and its parallel implementation in CUDA. The results are 

compared against an optimized CPU LCP solver capable of 21,000 distance queries per 

second, with the GPU implementation capable of 69,000 queries per second on a 

Geforce 8800. 
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3.6.5 GPUs in High-performance Computing, Networks, and Clusters 

The idea of incorporating GPUs into cluster computing was demonstrated as 

early as (Fan et al. 2004), where Fan et al. incorporate 32 GPUs into a CPU cluster, 

increasing its theoretical peak performance by 512 gigaflops. By comparison, a mere 

four years later, a single Nvidia G80 is capable of a theoretical peak of 340 gigaflops by 

itself (Chapter 1). To this end, both major graphics card IHVs have introduced headless 

GPUs in an attempt to enter the HPC market. 

Seamans & Alexander (Seamans and Alexander 2007) built a prototype virus 

scanning system to see if the GPU could act as a cheap commodity version of a high-

end network processor. They drew many comparisons of a modern GPU to Intel's 

IXP2800 network processor, namely the highly data-parallel algorithms and high speed 

memory subsystems. The prototype lacked the features of many mature virus scanning 

products and libraries, such as regular-expression signatures and MD5 hash 

comparisons. They compared their prototype against the open source ClamAV library 

and omitted the features their prototype lacked before doing performance benchmarks. 

The results show a 27x speedup when no matches were found versus up to an 11x 

speedup in the worst case when all possible signatures were matches, stating that the 

reason for the performance difference was the time taken to transfer information back to 

the CPU in the case of a match. 

Deschizeaux & Blanc (Deschizeaux and Blanc 2007) also built a prototype but 

this time for seismic processing of the earth's subsurface. The oil and gas industry 

processes terabytes of image data from seismic surveys, and the prototype was built to 

estimate the feasibility of GPUs in clusters. The sound wave propagation is modeled 
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through a finite-difference algorithm applied in the frequency domain. They found a 

speedup ranging from 8x to 15x for their CUDA kernels compared to an optimized CPU 

version. They state that the main drawback is the transfer speed between the GPU and 

the CPU over the PCIe bus, and conclude that GPUs have the potential to disrupt the 

price/performance of typical CPU clusters. 

Göddeke et al. (Göddeke et al. 2008) analyzed the addition of GPU code to a 

parallel multigrid solver used for finite element simulations. They took the finite element 

package FEAST and found that by modifying less than 1% of the code they achieved a 

speedup of two to three times for large problems. Rather than replace the solver they 

simply added additional paths depending on if the node in the cluster has a capable 

GPU, allowing for heterogeneous high performance computing. They found that system 

bandwidth is the most important performance factor for linear system solvers. While the 

GPU they used had only single-precision floating point numbers avai lable they used a 

mixed precision emulation approach that allowed them to achieve the same accuracy as 

the CPU solvers using double-precision (§ 3.5.1.3). 

Finally, it is worth noting the increasing prevalence of GPUs in distributed 

computing projects, such as the Folding@Home project, which released its GPU client 

in October of 2006 (Pande 2006). Unfortunately, the GPU client is only available for 

Windows computers with ATI graphics cards at the time of this writing. They found that 

the average GPU donated provides 60 times the performance of the average CPU 

donated (Elsen et al. 2006) (also see Illustration 3.1 below). 
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Illustration 3.1: Folding@Home Average Computations per  

 

3.6.6 Bioinformatics 

While Folding@Home is technically under the umbrella of bioinformatics and 

computational biology, in this section we focus on single workstation projects. 

Charalambous et al. (Charalambous, Trancoso, and Stamatakis 2005) did some early 

work translating parts of RAxML, a program for phylogenetic tree inference, to the GPU. 

They profiled the OpenMP version of RAxML and found a single loop that accounted for 

over 50% of the execution time. After converting this loop over to the GPU they found a 

3x speedup for the loop itself and a 1.2x speedup for the overall application, which 

shows promising results for porting the rest of the computationally heavy loops over to 

the GPU. 

Recent work by Manavski & Valle (Manavski and Valle 2008) used CUDA to 

accelerate the Smith-Waterman sequence alignment algorithm. Unlike the heuristic 

approaches used in SSEARCH and BLAST they manage to implement the exact Smith-

Waterman algorithm with no approximations. In addition, after extensive benchmarking 
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they found that their CUDA implementation was 18x faster than an OpenGL 

implementation, 3x faster than an optimized SIMD version, 30x faster than SSEARCH 

and 2.4x faster than BLAST. 

 

3.7 Previous Work 

Aside from the information presented here one can find many resources on 

general-purpose computation on GPUs at GPGPU.org, as well as the websites of both 

Nvidia and ATI. Other surveys of GPGPU work include the seminal work  of Owens et al. 

(Owens et al. 2005), which was later updated in (Owens et al. 2007). 
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CHAPTER 4 

CONCLUSION 

We have introduced the concept of general-purpose computation on graphics 

hardware, and provided the tools and information for further investigation. In our 

example, we illustrated the difficulties involved in implementing a simple algorithm on 

the GPU using modern GPU and GPGPU programming methods. Until the tools and 

libraries available for GPU programming reach the sophistication of those in CPU 

programming, these difficulties of implementation will remain. In exchange for this 

difficulty, the computational horsepower and parallel capabilities of GPUs provide an 

order of magnitude more performance. In our survey, we detailed research which either 

outperforms its CPU counterpart or is impossible to implement using the CPU. Many of 

these benefit simply by using parallel algorithms which are inappropriate for traditional 

serial processors. However, CPUs are becoming more parallelized every year. Intel is 

rumored to have plans for a discrete GPU, code named Larrabee, which is predicted to 

compete with Nvidia and ATI's offerings. It will use a derivative of the x86 instruction set 

for its shader cores, as opposed to a custom-made instruction set that attempts to abide 

by the IEEE 754 standard for floating-point arithmetic (currently employed by Nvidia and 

ATI). Simultaneously, it is expected that GPUs will increase their programmability; 

possibly exposing more parts of the graphics pipeline to shader programs. As a third 

side, STI's Cell architecture combines several lightweight processing cores with a GPU 

and connects them with a high-bandwidth 20GB/s bus. 

Currently, GPUs have emerged as the dominant data-parallel coprocessor by 

achieving the highest performance (in terms of Gflops) as well as the best 
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price/performance ratio. However, with the increased generality of GPUs and the 

parallelization of CPUs it is uncertain which will surface as the dominant stream 

processor. We predict that stream processing languages will become more mature and 

will become the preferred programming platform for both desktop computing and 

supercomputing. Forward looking platforms, such as the Rapidmind framework, abstract 

all three architectures (GPU, CPU, Cell). Will GPGPU form the basis for future stream 

processing in light of the parallel programming revolution?  

 



NOTES 

1 The vertex cache size can be queried via the Direct3D API. 

2 The term GPU was first coined by Nvidia upon introducing of the Geforce 256.  

3 Pixel and vertex shader version 1.0 are reference models and were never actually 
implemented. Versions 1.1 were the first actual implementations. 

4 Single-channel refers to a texture with only one color channel; for example, red, 
instead of red, green, blue, and alpha (RGBA). However, here we are storing 
floating-point numbers instead of color information in this channel.  

5 It is possible to have non-power-of-two textures without using texture rectangles, but 
they are indexed via normalized texture coordinates; here, we would prefer 
coordinates in the range [0, dim], and thus we use texture rectangles. 

6 A vec4’s elements may be accessed via .r, .g, .b, or .a or any combination thereof, 
including .rgba or .rrgg, the latter of which accesses its elements multiple times (a 
technique called swizzling). 

7 CUDA also supports sampling textures, and therefore texture fi ltering, but by default 
reads from global memory are unfiltered and treated as floating-point values. 

8 In our case, the 8800 GT has 14 multiprocessors with 8 stream processors each, for 
a total of 112 stream processors. 

9 Pun intended. 

10 Obtained from http://en.wikipedia.org/wiki/Image:F%40H_FLOPS_per_client.svg. 
Licensed under the Creative Commons license which can be found at 
http://creativecommons.org/licenses/by-sa/2.5/legalcode. 
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APPENDIX A 

matrixMul_glsl.cpp 
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  1 // Compilation requirements: 
  2 // - GLFW 
  3 // - GLEW 
  4 // Graphics card requirements: 
  5 // - ARB_texture_rectangle 
  6 // - ARB_texture_float 
  7 // - GLSL capable 
  8 // - EXT_framebuffer_object 
  9 // - GL_LUMINANCE_32F_ARB must be a supported render target.  
 10 //   See the EXT_framebuffer_object specification for details.  
 11 // 
 12 // Compile with the command:  
 13 // g++ matrixMul_glsl.cpp -lglfw –lGLEW  
 14 #include <GL/glew.h>  
 15 #include <GL/glfw.h>  
 16 #include <stdlib.h> 
 17 #include <stdio.h> 
 18 #include <math.h> 
 19  
 20 GLuint createTexture(const int dim); 
 21 void random_fill(float* data, int size); 
 22 void print_matrix (float* data, const int dim);  
 23 void matrixMul_cpu(float* C, float* A, float* B, const int dim);  
 24  
 25 // Computes C = A * B using a GLSL fragment shader,  
 26 // where C, A, and B are square matrices of size [dim, dim].  
 27 int main(int argc, char* argv[]) { 
 28   srand(2008); 
 29  
 30   // Create an OpenGL context; see the GLFW documentation for details.  
 31   glfwInit();  
 32   glfwOpenWindow(2, 2, 8,8,8,8, 32, 0, GLFW_WINDOW); 
 33   glewInit(); 
 34  
 35   // Matrix dimensions are [dim, dim]. 
 36   const int dim = 7;  
 37  
 38   // Allocate space on the GPU for A, B, and C as textures. 
 39   GLuint A_gpu_data = createTexture(dim);  
 40   GLuint B_gpu_data = createTexture(dim);  
 41   GLuint C_gpu_data = createTexture(dim); 
 42  
 43   // Allocate space on the CPU.  
 44   float* A_cpu_data = (float*) malloc(dim * dim * sizeof(float));  
 45   float* B_cpu_data = (float*) malloc(dim * dim * sizeof(float)); 
 46   float* C_cpu_data = (float*) malloc(dim * dim * sizeof(float));  
 47 
 48   // Assign random floats to A and B. 
 49   random_fill(A_cpu_data, dim * dim);  
 50   random_fill(B_cpu_data, dim * dim);  
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 51    
 52   // Upload A and B to the GPU.  
 53   glBindTexture(GL_TEXTURE_RECTANGLE_ARB, A_gpu_data);  
 54   glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 0, 0, dim, dim, GL_LUMINANCE,  
 55     GL_FLOAT, A_cpu_data);  
 56   glBindTexture(GL_TEXTURE_RECTANGLE_ARB, B_gpu_data);  
 57   glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 0, 0, dim, dim, GL_LUMINANCE,  
 58     GL_FLOAT, B_cpu_data);  
 59  
 60   // Create a framebuffer object and attach C so that we can render to it.  
 61   GLuint fbo = 0;  
 62   glGenFramebuffersEXT(1, &fbo);  
 63   glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);  
 64   glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,  
 65     GL_TEXTURE_RECTANGLE_ARB, C_gpu_data, 0); 
 66  
 67   // Our fragment shader does the actual matrix multiplication.  
 68   const char* fShaderSource = " \ 
 69     #extension GL_ARB_texture_rectangle : enable\n \ 
 70     uniform sampler2DRect A; \ 
 71     uniform sampler2DRect B; \ 
 72     uniform int dim; \ 
 73     void main() { \  
 74       float sum = 0.0; \ 
 75       for (int i = 0; i < dim; ++i) { \ 
 76         float a = texture2DRect(A, vec2(i, gl_TexCoord[0].t)). r; \ 
 77         float b = texture2DRect(B, vec2(gl_TexCoord[0].s, i)).r; \ 
 78         sum += a * b; \ 
 79       } \ 
 80       gl_FragColor.r = sum;\ 
 81     }"; 
 82  
 83   // Create our GLSL program and fragment shader. 
 84   GLuint fShader = glCreateShader(GL_FRAGMENT_SHADER);  
 85   glShaderSource(fShader, 1, &fShaderSource, NULL);  
 86   glCompileShader(fShader); 
 87   GLuint program = glCreateProgram();  
 88   glAttachShader(program, fShader); 
 89   glLinkProgram(program);  
 90  
 91   // create a 1:1 mapping of pixels to texels 
 92   glMatrixMode(GL_PROJECTION);  
 93   glLoadIdentity(); 
 94   gluOrtho2D(0.0, dim, 0.0, dim);  
 95   glMatrixMode(GL_MODELVIEW);  
 96   glLoadIdentity(); 
 97   glViewport(0, 0, dim, dim); 
 98  
 99   // Render to C using A and B as textures  
100   glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);  
101   glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);  
102   glClear(GL_COLOR_BUFFER_BIT);  
103   glActiveTexture(GL_TEXTURE0); 
104   glBindTexture(GL_TEXTURE_RECTANGLE_ARB, A_gpu_data);  
105   glActiveTexture(GL_TEXTURE1); 
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106   glBindTexture(GL_TEXTURE_RECTANGLE_ARB, B_gpu_data);  
107   glUseProgram(program);  
108   glUniform1i(glGetUniformLocation(program, "A"), 0);  
109   glUniform1i(glGetUniformLocation(program, "B"), 1);  
110   glUniform1i(glGetUniformLocation(program, "dim"), dim); 
111  
112   // Render a screen-sized quad which generates a pixel for every texel in C,  
113   // and runs our fragment shader for each pixel.  Note the unnormalized 
114   // texture coordinates in the range [0, dim],  
115   // which are accessed in our shader.  
116   glBegin(GL_QUADS);  
117     glTexCoord2f(0, 0);     glVertex2f(0, 0);  
118     glTexCoord2f(dim, 0);   glVertex2f(dim, 0);  
119     glTexCoord2f(dim, dim); glVertex2f(dim, dim); 
120     glTexCoord2f(0, dim);   glVertex2f(0, dim);  
121   glEnd();  
122 
123   // Read back C from the GPU 
124   glReadBuffer(GL_COLOR_ATTACHMENT0_EXT);  
125   glReadPixels(0, 0, dim, dim, GL_LUMINANCE, GL_FLOAT, C_cpu_data);  
126 
127   // Print the results.  The result now resides in the array C_cpu_data.  
128   // C(y, x) is now accessible via C_cpu_data[y * dim + x] 
129   // for 0 <= y <= dim, and 0 <= x <= dim. 
130   printf("A on cpu\n");  
131   print_matrix (A_cpu_data, dim);  
132   printf("B on cpu\n");  
133   print_matrix (B_cpu_data, dim);  
134   printf("C computed on gpu\n");  
135   print_matrix (C_cpu_data, dim); 
136 
137   // Recompute C on the cpu for verification.  
138   free(C_cpu_data);  
139   C_cpu_data = (float*) malloc(dim * dim * sizeof(float));  
140   matrixMul_cpu(C_cpu_data, A_cpu_data, B_cpu_data, dim);  
141   printf("C computed on cpu\n");  
142   print_matrix (C_cpu_data, dim); 
143 
144   // Cleanup.  
145   free(A_cpu_data);  
146   free(B_cpu_data);  
147   free(C_cpu_data);  
148   glDeleteFramebuffersEXT(1, &fbo); 
149   glDeleteTextures(1, &A_gpu_data);  
150   glDeleteTextures(1, &B_gpu_data);  
151   glDeleteTextures(1, &C_gpu_data);  
152   glfwTerminate(); 
153 } 
154 
155 // Create a single-channel floating-point texture of size [dim, dim]. 
156 GLuint createTexture(const int dim) { 
157   GLuint tex = 0; 
158   GLenum texture_target = GL_TEXTURE_RECTANGLE_ARB;  
159   GLenum texture_format = GL_LUMINANCE;  
160   GLenum internal_format = GL_LUMINANCE32F_ARB;  
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161 
162   glGenTextures(1, &tex);  
163   glBindTexture(texture_target, tex); 
164   glTexParameteri(texture_target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); 
165   glTexParameteri(texture_target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);  
166   glTexParameteri(texture_target, GL_TEXTURE_WRAP_S, GL_CLAMP);  
167   glTexParameteri(texture_target, GL_TEXTURE_WRAP_T, GL_CLAMP);  
168   glTexImage2D(texture_target, 0, internal_format, dim, dim, 0, 
169     texture_format, GL_FLOAT, 0);  
170   return tex; 
171 } 
172 
173 void random_fill(float* data, const int size) { 
174   for (int i = 0; i < size; ++i) { 
175     data[i] = rand() / (float)RAND_MAX; 
176   } 
177 } 
178 
179 void print_matrix(float* data, const int dim) { 
180   for (int i = 0; i < dim; ++i) { 
181     for (int j = 0; j < dim; ++j) 
182       printf("%g ", data[i * dim + j]); 
183     printf("\n");  
184   } 
185 } 
186 
187 // Computes C = A * B on the CPU.  
188 void matrixMul_cpu(float* C, float* A, float* B, const int dim) { 
189   for (int i = 0; i < dim; ++i) 
190     for (int j = 0; j < dim; ++j) { 
191       float sum = 0; 
192       for (int k = 0; k < dim; ++k) { 
193         sum += A[i * dim + k] * B[k * dim + j]; 
194       } 
195       C[i * dim + j] = sum; 
196     } 
197 } 
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APPENDIX B 

matrixMul_cuda.cu 
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  1 // Compilation requirements: 
  2 // - CUDA toolkit 
  3 // - CUDA SDK is not required.  
  4 // Graphics card requirements: 
  5 // - Nvidia Geforce 8 or higher. 
  6 // 
  7 // Compile with the command: 
  8 // nvcc matrixMul_cuda.cu -run –lcudart 
  9 #include <stdio.h> 
 10 #include <stdlib.h> 
 11 #include <math.h> 
 12 #include <cuda.h> 
 13  
 14 const int BLOCK_SIZE = 14;  
 15  
 16 void random_fill(float* data, const int size);  
 17 void print_matrix (float* data, const int dim);  
 18 void matrixMul_cpu(float* C, float* A, float* B, const int dim);  
 19 __global__ void matrixMul_gpu(float* C, float* A, float* B, const int dim);  
 20  
 21 // Computes C = A * B using CUDA, 
 22 // where C, A, and B are square matrices of size [dim, dim].  
 23 int main(int argc, char* argv[]) { 
 24   srand(2008); 
 25   
 26   // Matrix dimensions are [dim, dim]. 
 27   // Must be a multiple of BLOCK_SIZE.  
 28   const int dim = BLOCK_SIZE;  
 29  
 30   // Size in memory of a matrix. 
 31   const int mem_size = dim * dim * sizeof(float);  
 32  
 33   // Allocate space on the CPU.  
 34   float* A_cpu_data = (float*) malloc(mem_size); 
 35   float* B_cpu_data = (float*) malloc(mem_size);  
 36   float* C_cpu_data = (float*) malloc(mem_size);  
 37  
 38   // Allocate space on the GPU.  
 39   float *A_gpu_data, *B_gpu_data, *C_gpu_data; 
 40   cudaMalloc((void**) &A_gpu_data, mem_size);  
 41   cudaMalloc((void**) &B_gpu_data, mem_size);  
 42   cudaMalloc((void**) &C_gpu_data, mem_size);  
 43  
 44   // Assign random floats to A and B. 
 45   random_fill(A_cpu_data, dim * dim);  
 46   random_fill(B_cpu_data, dim * dim);  
 47  
 48   // Upload A and B to the GPU.  
 49   cudaMemcpy(A_gpu_data, A_cpu_data, mem_size, cudaMemcpyHostToDevice);  
 50   cudaMemcpy(B_gpu_data, B_cpu_data, mem_size, cudaMemcpyHostToDevice);  
 51  
 52   dim3 threadsPerBlock( BLOCK_SIZE, BLOCK_SIZE ); 
 53   dim3 blocksPerGrid( dim/threadsPerBlock.x, dim/threadsPerBlock.y );  
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 54   
 55   // One grid of thread blocks is launched with the specified number of 
 56   // threads per block. 
 57   matrixMul_gpu<<< blocksPerGrid, threadsPerBlock >>>( 
 58     C_gpu_data, A_gpu_data, B_gpu_data, dim  
 59   ); 
 60  
 61   // Read back C from the GPU.  
 62   cudaMemcpy(C_cpu_data, C_gpu_data, mem_size, cudaMemcpyDeviceToHost);  
 63  
 64   // Print the results.  The result now resides in the array C_cpu_data. 
 65   // C(y, x) is now accessible via C_cpu_data[y * dim + x] 
 66   // for 0 <= y <= dim, and 0 <= x <= dim. 
 67   printf("A\n"); 
 68   print_matrix(A_cpu_data, dim);  
 69   printf("B\n"); 
 70   print_matrix(B_cpu_data, dim);  
 71   printf("C computed on gpu\n");  
 72   print_matrix(C_cpu_data, dim);  
 73  
 74   // Recompute C on the cpu for verification.  
 75   free(C_cpu_data);  
 76   C_cpu_data = (float*) malloc(mem_size);  
 77   matrixMul_cpu(C_cpu_data, A_cpu_data, B_cpu_data, dim);  
 78   printf("C computed on cpu\n");  
 79   print_matrix(C_cpu_data, dim);  
 80  
 81   // Cleanup.  
 82   free(A_cpu_data); 
 83   free(B_cpu_data); 
 84   free(C_cpu_data);  
 85   cudaFree(A_gpu_data);  
 86   cudaFree(B_gpu_data);  
 87   cudaFree(C_gpu_data); 
 88 } 
 89  
 90 // Computes C = A * B on the GPU.  
 91 __global__ void matrixMul_gpu(float* C, float* A, float* B, const int dim) { 
 92   float sum = 0.0; 
 93   for (int i = 0; i < dim; ++i) { 
 94     float a = A[dim * blockDim.y * blockIdx.y + dim * threadIdx.y + i]; 
 95     float b = B[      blockDim.x * blockIdx.x + dim * i + threadIdx.x]; 
 96     sum += a * b; 
 97   } 
 98   C[dim * blockDim.y  * blockIdx.y +  
 99           blockDim.x  * blockIdx.x +  
100     dim * threadIdx.y + threadIdx.x] = sum; 
101 } 
102  
103 void random_fill(float* data, const int size) { 
104   for (int i = 0; i < size; ++i) { 
105     data[i] = rand() / (float)RAND_MAX; 
106   } 
107 } 
108  
109 void print_matrix(float* data, const int dim) { 
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110   for (int i = 0; i < dim; ++i) { 
111     for (int j = 0; j < dim; ++j) 
112       printf("%g ", data[i * dim + j]); 
113     printf("\n");  
114   } 
115 } 
116  
117 // Computes C = A * B on the CP U. 
118 void matrixMul_cpu(float* C, float* A, float* B, const int dim) { 
119   for (int i = 0; i < dim; ++i) 
120     for (int j = 0; j < dim; ++j) { 
121       float sum = 0; 
122       for (int k = 0; k < dim; ++k) { 
123         sum += A[i * dim + k] * B[k * dim + j]; 
124       } 
125       C[i * dim + j] = sum; 
126     } 
127 } 
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