-
/

:
?
1

3

SRR

. -
: 7
3 I

1

i

<

FOR AERONAUTICS

¥ 'REPRODUCED BY
- NATIONAL TECHNICAL

ho



English
. Abbrevia-

Unit tion
foot (ormile) _______._ ft (or mi)
second (or hour)__...__| see (or hr)
weight of 1 pound_____| 1b
horsepower. .__.______ hp
miles per hour________ mph
feet per second______._ fps

.’ GENERAL SYMBOLS

Kinematic viscosity

Density (mass per unit volume)

Standard density of dry air, 0.12497 kg-m~ ?at 15° C
and 760 mm; or 0.002378 lb-ft~* sec?®

Specxﬁc w ewht, of “standard” air, 1.2255 kg/m® or

0.07651 Ibjcu ft

Angle of setting of wings (relative to thrust line)

Al:igle) of stabilizer setting (relative to thrust
me

Resultant moment -
Resultant angular velocity

Reynolds number, pKl wherelisa hnear dimen-

sion (e.g.,foran a1rf011 of 1.0 ft chord, 100 mph,
standard pressure at 15° C, the corresponding
Reynolds number is 935,400; or for an airfoil
of 1.0 m chord, 100 mps, the corresponding
Reynolds number is 6,865 000)

Angle of attack

Angle of downwash -

Angle of attack; infinite aspect ratxo

Angle of atta.ck induced”

Angle of attackf absolute (mea.sured from zero-
Iift position) - e

thht-path angle - _';' ’
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REPORT No. 788

ON THE PLANE POTENTIAL FLOW PAST A LATTICE OF ARBITRARY AIRFOILS

By 1. E. Garrick

SUMMARY

The two-dimensional, incompressible potential flow past @
lattice of airfoils of arbitrary shape is investigated theoretically.
The problem is treated by usual methods of conformal mapping
in several stages, one stage corresponding to the mapping of
the framework of the arbitrary line lattice and another signifi-
cant stage corresponding to the Theodorsen method for the
mapping of the arbitrary single wing profile into a circle. A
particular feature in the theoretical treatment is the special
kandling of the regions at an infinite distance in front of and
behind the lattice. [lrpressions arve given for evaluation of the
velocity and pressure distribution at the airfoil boundary. An
dlustrative numerical example is inecluded.

INTRODUCTION

This paper treats the problem of determining the flow pat-
tern, or the velocity and pressure fields, associated with the
uniform flow past an infinite row of symmetrically placed
airfoils of the same shape. This airfoil-lattice problem
occurs in the design of turbine blades, wind-tunnel vanes or
erids, and elsewhere.  There is a purely mathematical interest
in the problem that concerns the ficld of conformal mapping
of infinitely conneeted regions.  Analogous two-dimensional
“lattice” problems occur in the steady flow of heat and
clectricity.

Considerable ingenuity has been devoted to the airfoil-
lattice problem, especially in the turbomachine studies in
the German literature and more recently in the British
studies; nevertheless, a survey of the available literature
indicates that nearly all the treatments employed and the
results obtained are of a special or indireet nature which
involves, for example, lattices of thin lines or approximate
eraphical procedures.  Recently, however, A, R. Howell in
a British paper of limited circulation has written briefly on
the theory of arbitrary airfoils in cascade. Howell applies a
special transformation to an airfoil lattice to convert the
lattice region to a somewhat random, simply connected
region and, with the aid of several stages of conformal
mapping, obtains a region about a circle.

The problem of determining the incompressible potential
flow past an arbitrary single wing section was studied by
Theodorsen (reference 1), who gave a practical procedure
for its solution. The case of two wing scctions, or the
arbitrary biplane, was later treated in reference 2. The
determination of the flow past an infinite lattice of airfoils
of the same shape is a problem intermediate in difficulty in
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comparison with the aforementioned ones. The treatment
for resolving this problem given in the present report is
similar to that for the arbitrary single wing section but the
caleulations are more involved.

The problem will herein be studied by the usual method
of conformal mapping. It is convenient to accomplish the
result in three or four stages: The airfoil lattice is first re-
placed by its skeleton, or framework of line segments.  The
initial mapping function employed transforms the lattice
skeleton into a cirele.  In the plane of this cirele there are
two singular points, known as branch points. These points
have dual significance: They correspond to infinite regions
in front of and behind the lattice of lines, and they enter in
the problem of reducing the lattice region (multiply con-
nected region) to the region of a single body (simply con-
nected region),  If now an arbitrary airfoil shape is gen-
erated or given around the framework of lines, then in the
plane of the cirele a circular-like contour is generated around
the original cirele.  This contour may be transformed into
an exact cirele by the well-known procedure given in ref-
erence 1 or 3. The original two significant points are then
traced by a transformation due to H. A. Schwarz. A final
clementary transformation will bring the cirele into a stand-
ard cirele for which the two characteristic branch points are
symmetrically placed.  The region of this circle is considered
the standard region for determining the flow pattern.

For illustrative purposes an outline of a procedure for
caleulating pressure distributions is included.  The method
may be followed without reference to the theory by readers
interested mainly in numerieal results. For convenience, a
list of symbols is given in appendix A,

ANALYSIS

Initial transformation for lattice of straight lines.—Con-
sider the transformation (reference 4)

2
’
’ < +
g b+:z tb
ft*zﬂ_ log b—z’+l()g . @ (1)
7
where ¢, b, and @ are real numbers and >a.  Introduce
coordinates ¥ and 8 by means of the relation
2 =qett? ()
and let
b
- =gy 3
’ (3)

- 1
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Fi1GURE 1.—The propertics of initial transformation.
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Equation (1) may then be expressed as

(4)

=T

o= log [ oo vk cosh (00
L

2 cosh yo—cosh (¢ +16)

If y=0, according to equation (2), 2’ lies on a circle of
radius ¢ (fig. 1(n)). According to equation (4), ¢=x;+1iy,
is the logarithm of a real positive function and, consequently,
represents a real funetion (its principal value) and the infinite

sequence of values differing from this function by 2% 2kxi,

where & is any integer. The transformation illustrated in
figure 1(b) is that of an infinite lattice of unstaggered lines
of gap g in the &-plane into the circle of radius @ in the
z'-plane. The points z’=b and z'=—b correspond to
infinity in front of and behind the lattice, respectively.  The
. . a? at - .
mverse points z’z‘b- and z'z—b- are inside the cirele of
radius a.

In order to introduce stagger, it is convenient to consider
the transformation

, @
1 b+ be B
2=y — log , e

4—b4

where & is real.  This transformation can be written with the
use of equations (2) and (3) as

. h sinh v, +-sinh (Y +-78)
2="t3 log l:smll vo—sinl (Y0} (5)

If ¢==0, the expression within the brackets is a complex
number of unit magnitude; hence, the logarithm s a pure
imaginary number plus an infinite sequence of numbers
differing by 271, Then f=ur,-{y, represents a sequence of
real numbers differing by A and the lattice 1s one of hori-
zontal lines displaced from cach other by A (fig. 1(c)).

The transformation for the general staggered-line lattice
is a combination of equations (4) and (3)

f=0+60 (Gﬂ)
or
11/2
- ZI+ .
§:2i e '8 log zi;,—{—e“ log /7,_:‘{ (6b)
< b
where

gap g=d cos B
stagger h=d sin 8

stagger ratio %=tan B8

the parameter d may be called the slant gap (fig. 1(d)),
and B the stagger angle.

The geometry of the lattice may be expressed in terms of
the parameters v, and g8 by noting that the chord length
may be obtained from the (singular or eritical) values of 6
which correspond to the end points of the chord and are

solutions of the equation gi.,:O. This cquation gives the

result
tan §=tanh v, tan 8 (7a)
, for later reference,

cosh v, cos
cos f=--"— ‘8—@

(7b)

sinh v, sin 8

Q

Q= (cosh? y,—sin? g)*

sin =

where

Relations (7) may be employed in two ways: (1) When the
parameters v, and 8 are given, the relation (lvtonmnvs the
two critical values of 8, 8, and 8,, where the subseripts [ and
¢t refer to leading edge and trailing edge, respectively, and
0,=—6,+x. (2) When 8, or tan 8, and the stagger angle 8
are given, the relation determines the parameter v,

48 *1

1.0 b/a -
500 |

/.6

0

Sraqger ungle, i, Juy

. . b_
F1GURE 2.--Gap-chord ratio against stagger angle for various values of b =e'

The chord ¢ may be obtained by putting =46, and =80,
in equation (6a) and taking the difference in abscissas x; and
r;. From equations (4) to (7),

C=x,—J,;

2d Q+cos 8

qm B8
os 8 log
cos B log sinh v,

(8)

+sin 8 tan™!

By means of equation (8), the parameter ¥, can be pre-
sented direetly in terms of given values of the gap-chord
ratio for any stagger ratio. A representative chart relating
gap-chord ratio, stagger angle, and v, is shown in figure 2;
some values are given in table 1.
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TABLE L—GAP-CHORD RATIO, PARAMETER 7o, AND CORRESPONDING VALUES OF 6, FOR VARIOUS STAGGER ANGLES

l
— C .
B=0% 81=0° B=30° g=c0° v
bla Y sinh 7, cosh 70 i
dfe dfe & (deg) dfc 8y (deg) die
1. 005 0. 004988 0. 04988 L 00012 ). 26207 0. 20481 0.13 0. 44157 1.00319
1.01 . (09950 . 008950 1. 000050 L 20619 . 33208 L33 48904 1. 00637
1.02 019803 L 019804 1. 000196 . 34036 L3797 . B L H4774 101277
104 L (M8790 L U48809 1001161 . 42209 . 46845 1. 61 . 63010 103204
1.10 L 95310 . 095455 1. 004545 . 51594 . 5titkg1 3. 14 L TH547 1. 06450
1. 15 L 139762 . 140217 1. 004783 . HRY9s . 64331 4. 58 57 1. 09732
1.20 L 182322 L 183333 1. 016667 L B5507 L 71028 5.04 - 89906 1. 13051
1.25 . 223144 . 225000 1. 025000 L 71490 LT7124 7.22 L95724 1. 16400
1.30 . 262364 . 265385 1. 034615 L7718 L H2824 8. 42 101064 1. 19781
1.35 . 300105 . 304630 1. 045370 . 82489 L 88241 9. 55 1. 06073 1. 23141
1.40 336472 . 342857 1.057143 . BT66R L 93433 10.61 1. 10841 1. 26627
1.45 . 371564 L 380172 L. G692 . 92644 . 98456 11. 59 1. 15433 1. 30086
L& . 405465 . 416667 1. 083333 L YTH4Y 1. 03340 12,52 1. 19890 1. 33570
1. 60 470004 1. 112500 107124 112792 14. 20 1. 28505 1. 40601
1. 70 . 830628 [ 144118 1. 16362 1. 21927 15. 67 1. 36849 1. 47708
1. 80 L BRTTRT 1. 177778 1. 25387 1. 30830 16. 96 1. 45020 1.55123
1. 90 641854 . 1. 213158 1. 34250 1. 39561 1%, 10 1. 53067 1.62114
2.0 L 6U3147 L 75000 1. 250000 1. 42080 1. 48157 19. 11 1. 61036 1. 69307
2.5 . 916291 1. 050000 1. 450000 1. 85391 1. XYRG4 22.64 2.002492 2.06407
3.0 1. 098613 1. 333333 1. fi66667 2, 26619 2. 30553 24,7 2. 39240 2.44105
4.0 1. 386204 1. 875000 2. 125000 3. 07484 3. 1058% 27.00 317118 3. 20605
5.0 1. 600438 2, 400000 PRI 3. 87402 3. BUNO4 2N, 06 3. 95163 3. 97N
10,0 2. 302785 4. 950000 5, 050000 T. 82840 7.84191 29,51 7. NG040 7. K022

Inversion of equations (4) to (6).—The initial transforma-
tions may be thought of as mapping a framework of chords
of an arbitrary lattice into a circle. If a shape is generated
around the chords in the z’-plane, a contour is generated
around the circle of radius a. This contour, which must

For consisteney, the functional symbol ¥(g) is here used to
denote the quantity ¢ expressed as a function of ¢— that
is, ¥[8(¢)]. In reference 3 the notations ¥(¢) and y[6(e)]
are used.

It is necessary also to trace the correspondence of the

exclude the points 2/=—5% and z’=b& and must enclose the points z’=b and 2’=-—5b. Let z=4, correspond to z'=b

oints z’ @ and z’ @ may be considered to be com and let z=—8, correspond to z’=—5b. The values 8 and
—_ — ad z2' = ) LV e ¢ R e , L - . . -

p b 7 . B: may be determined by a relation (due to Schwarz) that

pletely defined by the function ¥(8). If a lattice of airfoils
is preassigned, the function ¢ (8) must be found from the given integral of the real part of the funection along a cirele. A
coordinates of the airfoil shape. In order not to interrupt simple derivation of the desired relation is shown in appendix
the sequence of main ideas, the details of this problem are | . The expression is
relegated to appendix B, with certain remarks on the practical
achievement of a nearly circular contour.

Transformation of contour in z’-plane to circle in z-

expresses the value of a complex funection in terms of an

log &' =f(z)

plane.—It is assumed now that the circular-like contour 1 (2 de
in the z’-plane which corresponds to the airfoil contour of :*}J; V(g)— z e (12)
the lattice is either given or determined; that is, the function I_R(g

¢(6) is known in the boundary expression z/=ae¥t¥%. By

the procedure of reference 1 or 3, the transformation The values of 8 and 8; may be determined from equation

i (12) by an iteration process that converges extremely

b 2’ =ze/ @ (9a) | rapidly. The process may be described as follows: In
where o o equation (12), Iet the zeroth approximation to 8, be z=z,=b
f2)=> r=log o (9b) and let the corresponding value of 2’ be written 2’ =z’ = be/®,

1 <

where f(b) is the evaluation of equation (12) for z=b. It is

and ¢, are complex coefficients determined by the boundary, actually desired, however, to have z’=b but, because
is then employed to transform the z’-contour into a circle
z=ae¥t® in the z-plane. The transformation (9a) keeps
he regions alike at infinity in the 2z’- and z-planes; that is o . .
the regio a, € ity in the 2  z-planes; that is, the initial value of 2" differs from the desired value by

dz o . .
z2=2" and ngl at infinity. The correspondence of the z’—b. Furthermore, 2=z, differs from z=g, by approxi-
mately the same amount; hence, reducing z, by the quantity
2’ —b gives

2=z =b+z'—b

boundaries is determined by the functional equation

d—0=e(o)
2x '
——l ¥(¢") cot (ﬁT{’ de’

27 [i] (10)

for which a convenient numerical solution has been outlined
in reference 3. The radius of the circle R=ae*0 is determined
by the relation

"x

\00:27;‘,0 ¥(p)up (11)

21=20+b—20l
—b[2—e/®]

which may be considered a first approximation to 8,. 1If it
is desired to check this result or to obtain a second approxi-
mation, the process may be repeated; thus, from equation

(12), find f(z,) and

g/ =z’
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Then,
m=z+b—2z/

which is a second approximation to 8, and, in general, the
nth approximation is

Za=2p 1 Fb— 2y

1t is clear that, should z, correspond to z,_;, z,-." must cor-
respond to b and the process automatically stops.  The nu-
merical process is given in appendix C; relatively elemen-
tary steps are involved. In order to determine —B, the
process is applied with b replaced by —b.

Transformation to standard circle in w-plane.—In order
to obtain the flow pattern, it is desirable to introduce another
function which transforms the circle in the z-plane into

another circle in the w-plane in such a way that the char--

acteristic points z= 8, and z=— g, map into w=>b and w=—b,
respectively.  The region of the eirele in the w-plane may
be considered the standard region. The desired trans-
formation may be written as (see appendix D)

b—w Bi—z .
o=k (550) (13)
where
2 Q2 D ¥
K:b S* 8.8+ (14)

b4 S Bip— It

and R=ae¥ is the radius of the original cirele in the z-plane,
By is the complex conjugate to 8, and S'is the radius of the
new cirele in the w-plane.  The radius S is determined by

S=be™ (15)

where v, is obtained from
112 8.8 .
cosh Nn=p" 5;%‘%-{3 E (16)

Complex velocity potential in w-plane.—Consider the flow
function Q(w) =& -+, which is defined as

w-+ ok 2k

dl Ty ) ar b

Q(w) = —% e'e log Z+1L7+P'1“ log -~ Ab,z —i log [ER
b

(17)
The flow pattern may be regarded as due to a combination
of singularities, sinks, sources, and vortices, placed at the

¥<

. S . C .
points w= =4 b and w= 4 fb‘ as indicated in figure 3. It may

Strength

Vd cos a

- Vd sin o
ryz

FicURE 3.—Flow singularitics in standard w-plane,

be readily verified that the circle of radius S- that is,
w=Se'"—is part of a streamline and it may further be
observed from figure 3 that the ecirculation around any
2
contour which encloses the points w:j:i— and for which
the points w= +b are exterior points is T (positive if coun-
terclockwise).  The parameter a will be interpreted later
as an angle of attack.

The value of the circulation T may be determined by
means of the Kutta-Joukowski condition for smooth flow
at the trailing edge of the lattice.  Let oo be the value of ¢
on the boundary circle Sei that corresponds to the trailing
edge of the lattice. The Kutta-Joukowski condition then
requires that the flow separate at =g, or that a stagnation
point exist there.

dQ . . .
With din =0 and w==8e, the following relation for T is

found:

rQ 2
'=-— 4 S;ﬂ l:b sin (op+ ) —I—% sin (00—-04)] (18)
pr— ",
h?

If 8/b is replaced by ¢™™ (equation (15)), equation (18) may
be expressed as

., { COs @,
r=-—2va(
cosh v,

sin a4+ T s ) (1Y)

sinh v,

Expressions for velocity in lattice field.- -In order to obtain
the flow pattern in the lattice field (¢-plane), the component
factors of the following expression are required:

dQ  dQdwdz d2 (20)
d¢ dwdz dz’ d¢

These terms may be obtained from cquations (17), (13),
(9), and (6).

It is of particular interest to evaluate equation (20)
explicitly for the regions at infinity in front of and behind
the lattice and also on the lattice boundary itself. It is
recalled that {==ow (~m'ro:~'])0n(]\' to 2’ =b, z=8;, w=>0 and that
¢(=—o corresponds to z'=—b, z=—8,, w=—"b. By com-
bining terms according to vquatmn (20), the (reflected)
inlet-velocity veetor is obtained as

dQ

?lﬁ' m:V‘I_iVul

:—Vﬂaﬂﬂ_% e 2n

and the corresponding expression for the outlet-veloeity
vector s
aQ .
- =V,—iV,
di - : :
ZI‘ iq

. ‘ (,l(u*d _+_‘)1
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By addition of cquations (21) and (22), it becomes clear
that the velocity veetor of magnitude 1V and angle of attack
a+B with respect to the z-axis is one-half the vector sum
of the inlet and outlet velocities (fig. 4).

(4 L

‘/Negof/ve 3 | Pusifhive ﬂ\/
(_\
e /@

=

FiGURE 4.—Inlet, outlet, and mean velocity vectors and angles of attack.

If the angle of attack of the mean velocity vector with
respect to the z-axis (chord direction) is denoted by
a;=a-+ B, the velocity components in equations (21)
and (22) are

Voy=—V cos az—{-% sin 8
. r
V,=—Vsin a”+@ cos 8

and

V=~V cos a’_‘_;I;i sin 3

Al

;. 1
V,=V sin &=y, €08 8

The conventional angle of attack a is measured with
respect to the normal to the slant line of the lattice. The
components normal to and along the slant line of the lattice,
sometimes referred to as “axial’” and “whirl” components,
respectively, are found by rotating all vectors in the ry-plane

by angle 8 (fig. 4). These components are, for the inlet

velocity,
Vii=—V cos a

. r
VL1= V sin a+2‘g
and, for the outlet velocity,

Vay=—V cos a=Vy,

1

. 1
Vi,=V sin a5

The squares of the magnitudes of the inlet and outlet

velocities are

i T I\
Vi=V7? 1—|—25Vd sin a+<¢V(Z>

. ”. r . I\
I’jz: V2 [] —2é‘vd sin (‘(—F(g‘*ﬂ) ]

where I'/2Vd may be obtained from equation (19). Observe
that the inlet and outlet speeds are equal, V,=1,, when
a=0° for any value of I The inlet and outlet angles of
attack with respect to the normal to the lattice line ave

. r
a,=tan"! sin a+§W

COS

. r
w=tan~t " *To7g

cos a
and the angle through which the stream is turned is

I‘
l’)
2ava cos a

al—aﬂztan—l = ¢ -
1‘(2’1:'21)

The component factors in equation (20) are now to be
evaluated at the lattice boundary and, as the boundary
itself is part of a streamline, only the magnitudes of the
factors are of interest.

From equations (17) and (19) and with w=Se',

ol _2vd 1
dw| ™ =S cosh 2vy,—cos

(23)

% [sinh v; sin a(cos e—cos o)

+ cosh v, cos afsin ¢—sin oy)] (24)

where the parameter v, is defined in equation (15).
In order to obtain dw/dz, it is convenient first to express
equation (13) explicitly in w as

w:b(l +K)2‘”I)<K31_ B2)
(1—=K)z+ KB, 8.

25a)

A standard form for the transformation of a circular region
=R into jwl= Sis

~

w=RSe™ Ri:%z (25b)
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Comparison of equations (25a) and (25h) makes it clear that
the complex parameter 8 and the real parameter M may be
obtained from the following relations:

’

KB, —8; L
= —1‘3_;; KB* {26a)
or, as a check relation,
- RHK—1) -
= - - 26)
= Kpi+ 6 @)
and
S i (1+K)b
R 1\61‘1 B:
or, by equating angles on hoth sides,
N=arg(1+ K) —are (K8, 8 (27)

From equation (25b), the explicit correspondence of a point
on the circle w=8et to a point on the cirele ==Ref® can be
obtained as follows:

],._,, ¢
PL :,‘(?I((p“)\? ,,]{ —

1___

(28)
Re

Let the complex number ¢ be expressed as 8¢ and let

l—i(’ eI =me" (29)
where
m(¢p)=1-2 E(0\ (¢—r)-4}-‘6:
TR Jisd
and
16'
7{ sin (¢—7)

w(p)=tan™! o
1— i cos (¢p—1)
R

Observe that the denominator in equation (28) is the con-
jugate of equation (29) and is therefore equal to me ™,
There results for the correspondence of ¢ and ¢

o=¢+A1+2u 30)

In particular, if the (trailing-edge) value of ¢ that corre-
sponds to 8, as determined by equations (7) 1s written as
. do=0,}€, where e, 1s the value of e(¢) at =96, from cquation
(10), then

00:¢0+ )“I'QP'O
By differentiation of equation (25b),

dw RSR*—gs5)e™ .
Az (B30 B31)

On the boundary, put z=Re; then, the magnitude of

equation (31) is

ldw -
dz” 1(’ ( m? (32)

THINTY AN
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A LATTICE OF ARBITRARY AIRFOILS 7
!( -
The expression for (/':_1

i

on the boundary is obtained from

equation (9) in terms of the functions e(é) and V() ol
equation (10) as follows (see reference 3):

dz df .
dz <1 Tz dz (330)
and, beeause f(z) on the boundary 1s
f(2)=V(¢)— ot i(6—¢)
where
—d=ce(s)
then
K :'f (]e 4 s
o [(] d¢> r%)] (33b)

The last factor of equation (20} is expressed from equation

(6) on the boundary :'=wet* as
de 20 11 )
A" 7 D (34)

where
= |:('0.\“~’6 cosh*y,(cosh?y—cos0)

--sin*B sinh?vy, (cosh®¢—sin®) ——}I sin 23 sinh 2y, sin 20“]
D= cosh 2v,—cosh 2(y-}-10) |

= [(cosh 2y¢—cosh 2y cos 26)* 4 (sinh 2y sin 26)7]'

Finally, combining in cquation (21) the factors given in
cquations (24), (32), (33b), and (34) yiclds

de
dt]

=¢

—ABCD §, v 35)
where

1

A= . - sinh ~, si1 $ 0 COS
cosh 2y, —cos 2¢ [ 71 8N a(cos o —cos o)

“-cosh v cos a(sin g—3in ay}]

B( e

III”
v (]g W
- [(‘ T de (1¢> ]

D=[(cosh 2y,~cosh 2¢ cox 26)*- (sinh 2¢ sin 26)*]'z

= |:cns"'6 cosh?y, (cosh?y— cox’f)

) U B . . 2
—+sin?g sinh?y, (cosh?y—sin®g) — 4 Sin 23 sinh 2+, sin 26

An application of equation (35) for the purpose of illus-
trating the various steps involved in a caleulation of the
surface velocity and pressure of the airfoil lattice s given i
appendix E and illustrated in figures 5 and 6. For the sake
of comparison, the single-airfoil case is given in figure 7.
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for a lattice of

~t

~ H

Some special results from equation (35)
lines.—In the case of a’lattice of straight lines, the
and w-planes merge; hence §=¢=¢ and R=S-w«.
From cquations (19) and (7) and with a+ 8= a,, which is
the angle of attack with respeet to the chord,

o)

I SHER -
2Vd (cosh? y,—sin® g (36)

The lift per unit span on a single member of the lattice 18
given by

L=pVT

The lift vector is perpendicular
This result is general
The lift coefli-

where p is the air density.
to the mean velocity vector (fig. 4).
and not limited to a straight-line lattice.
clent is

vroooon
« p 1

ey Y

where 21 is given in equation (36)
by equation (8).
The loeal veloeity ont

1 T o
I od (37)

and ¢/d can be found
he swrface (equation (3511 becomes

p= \'(‘ cos o+ ‘fs‘\l st (,1[) (38

where
1

M»-:(‘OS B sin 0

sinh vy

{cosh? y—=n” Byt

0 cOs

sin 3 cos 0
cosh g

B cos

cosh vy

In the special cases in which B=0° and g
(36) to (38) arce simpler.
For stagger angle 8=0° and with d=g,

I sin o
2V cosh g
l From equation (8),
e
cosh y,==coth 2
and
— 9,V tanl e .
L=2pV?y tanh , SN a;
|
e
tanh ;-
D .
—=zmpcV\® - sin a,
e
2q

<in 3 sin @
sinh vy

00°, the relations

] The lift coeflicient, according to equation (371, 15

! ( v[l =

T
tanh 5
21

rES
24

Sin
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For 8=0°, therefore, the slopv of the Jift curve is always less
than 27, Note tlmt for large gap, cfg—0 and the lift

coceffictent is
Cr=27x sin a,

When the gap g is small compared with the chord ¢,

q .
C—4 'C/sm o,

The local velocity at the surface, by equation (38), is
. 0 .
v=1 (cos a;+-tanh v, cot 5 sin a,)

This result may be compared with that for the single-line
arrfoil (v,= »)

. [/
=1 ((‘OS a,-t-cot 5 sin a,)
For stagger angle 8=90° and with d— k,

T sin ay
2VE ™ sinh Yo

From equation (8),
sinh 'y()&cot‘),
and

-, bl .
L=2p1"% tan 57, SN @,

tan 5+
—=apcl? -—""gin o
P s T

h

The lift coefficient, according to equation (37) is

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

For g=

greater llum 2.

- 1 .
r=1 "ms a,+coth vy, cot 5 (0-:’;) SN a,]

. . . 1
1t may be noted in passing that, for c=§h,

90°, therefore; the slope of the lift curve is always
I‘hc local velocity at the surface is

(=8 sin a,
as compared with
(=27 sin o,
for the single airfoil,
For the limiting case in which b and d approach «, the
transformation (6) becomes

({ _ 2
=omb (E’E—IHL:’G‘?B)

d )
and, with limit | b—>1 and a new variable 27— =/g~is
2
a
¥/
§=2'+?

which is the familiar Joukowski transformation. 1f the
variables ¢ and 8 (equation (2)) are introduced, the cor-
responding result is expressed as

£=2a cosh [y +i(6—p)]
d

e — has been put
2w cosh v,

where the limit, as yy—w, of

equal to 1,

LANGLEY MEMORIAL AERONAUTICAL LABORATORY
NATIONAL ADVISORY COMMITTER FOR ALRONAUTIC
LaxcLey I 1ELD, Va., November 19, 1943



APPENDIX A
MAIN SYMBOLS

¢ complex plane of airfoil lattice (x+y) g lattice spacing, or gap for §=0°
¢, &2 complex planes of airfoil lattice for stagger angles | & lattice spacing, or stagger for §=90°

B=0° and B=90°, respectively (o 41y 2+2y2) v magnitude of mean of inlet- and outlet-velocity
2’ complex plane of circular-like contour (ae¥1®) vectors (fig. 4)
z cirele of radius R=ae¥e in z-plane (ae¥ ') o, angle of attack with respect to z-axis of mean
w circle of radius S=be " in w-planc (be ™ "itie) velocity vector
(=, 2'=b, 2=, w=b corresponding points @ angle of attack with respect to normal to slant line
(=—o, 2/ =—b, 2= —fy, w=—b corresponding points of lattice of mean velocity vector
a, b reference lengths @i, ap  inlet and outlet angles of attack with respect to
Yo gap-chord parameter  (b=ae™) normal to slant line of Iattice, respectively
8 stagger angle 1, V. magnitudes of inlet and outlet  velocities, re-
d lattice spacing, or “‘slant” gap for any value of 8 spectively

APPENDIX B

INVERSION OF EQUATIONS (4) TO (6) AND CHOICE OF COORDINATES

It is desired to find from a given airfoil lattice in the
¢-plane the contour defined by ¢(8) in the 2/-plane. This
problem corresponds to an inversion of equations (4) to (6)
and can be exactly treated for the cases in which =0° and
B=90° (equations (4) and (5), respectively) but an iteration
or suceessive-approximation method is required for equation
(6). Furthermore, although the parameters g and & are
fixed by the geometry of the lattice, a choice exists in the
definition of the chords and the origin of coordinates. This
choice is discussed following equation (B17).

Stagger angle 3=0°.—From equation (3), there is obtained

cosh (¢--i6) =cosh v, tanh 77; 3] B

Putting &=u+: and denoting the real and imaginary
parts of equation (B1) by & and =, respectively, leads to

.y 27
cosh v, sinh g T
cosh Y cos = =— —,-—— ",
’ " cosh 2 x -+ cos 2 Y
: - 1 = 1
q T

. 27
cosh vy sin ==
sinh ¢ sin =g =—"45— R
2 27
cosh = x,+cos - -
g 9"

The expressions containing r; and ¥ in equation (B2) are
considered given since these quantities are known from the
coordinates of the airfoil lattice. 1f ¢ and 6 are eliminated
successively,

B (Y
cos 8 sin @

& ’ m 2._
cosh 1[/) +<Si[111 ¥ =1

From cquation (B3), there result the following expressions,
which serve to define the function ¢(6) in terms of the airfoil
coordinates:

(B3)

and

07 B4)
Si11112 \l/:_—z)_J[_Vfl)Z_i_nlz

where

1 ,
r=s ( —&2—nd)

Mmoo
sin ¢

1t is uscful for computational purposes to record the real
and imaginary parts of equation (3)

1 2
= 9 —2-log %)

T 2n

For small values of 8, the relation sinh ¥= may be used.

(B5)
= (—
5 o ¢ ¢2)
where
pit= (cosh yo+cosh ¢ cos 6)*+ (sinh ¢ sin §)*

p.2=(cosh vyo—cosh ¥ cos 6)2+ (sinh ¢ sin 6)*
11

[
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. 1 . .
sin ¢;= - sinh ¢ sin ¢
P1

. 1. .
sin ¢, = -, sinh ¢ sin 4

The angles are to be chosen between —r and =, and the
b
quadrants may be determined by noting also the relations

cos ¢1=;1 (cosh y,+cosh ¢ cos 6)
1

cos ¢2:p1~ (cosh yo—cosh ¢ cos 9)
Stagger angle 8—=90°.—From equation (5), there is
obtained

sinh (¢ +19) =sinh v, tan % & (B6)

With ¢,=x,+14y, and the real and imaginary parts of equation
(B6) denoted by & and g, respectively,

. . 2
sinh +, sin 7, T2

sinh ¢ cos f=¢,— 5o 5
cosh 5 o, +cos == 7,
I3 J2+ AR

(B7)
. . 27
sinh v, sinh Ve
. )
cosh ¢ sin =143,= L
cosh T}T Yy -+cos HT: 2o
If ¢ and 6 are eliminated suceessively,
mf};)z__ 12 )22_1
cos @ sin 4
(BS)

1

& 2 2
s Ty _
(sin 1 ¥ +<cosh ¥ =1

From equations (B8) there resulg finally the following
expressions, which serve to define the function ¥(8) in terms
of the airfoil coordinates:

cos’=¢-++/o*+ &2
(B39)
sinh®y= —q4 21 g2
where
t=g (l—t1—n?)
"9 2 M2
For values of 6 near £90°, the relation sinh ¢=06§:@ may
be used.

It is useful for computational purposes to write the real
and imaginary parts of equation %)

h
=g (3 —s)
(B10)

h /1 P
Yo=— 27(@ log ﬁ

where
ps*= (sinh y,+4-sinh ¢ cos 6)2+ (coshly sin 8)?

ps’=(sinh y,—sinh ¢ cos 6)*+- (cosh ¢ sin 6)?

sin ¢, = ! cosh ¢ sin ¢
03

sin ¢, = — ;1); cosh ¢ sin ¢

The angles are to be chosen between —x and 7, and the
quadrants may be determined by noting also the relations

cos ¢3=; (sinh y,+sinh ¢ cos 6)
3

cos ¢4=;1(sinh Yo—sinh ¢ cos 6)
4

Arbitrary stagger angle 8 and choice of coordinates.—
Because of the transcendental nature of equation (6), a
direct inversion expression seems unobtainable; however,
the values (¢, 8) that correspond to coordinates (x, y) may
be obtained without difficulty by an iterative process. For
this purpose and for the purpose of choosing the coordinate
axes, expansions of xy, x,, v, and y, in powers of ¢ are useful.
The following expansions may be readily verified:
cosh v, +-cos ¢

d
1=, cos B log- :
L2 Bl: = cosh yy—cos 0

. _sinh? y,—sin® § i (B11a
~+¢?* cosh v, cos 6 (cosh? 7o cos? B)Q—}- e )

d .

sin @
Tp=; sin B [2 tan~! -
T

sinli v,

. . . cosh? v, cos? @
“+¢*sinh v, sin 6 E&lizﬁ’:ﬂ—cosﬂz’bf-'_ .. A’ B11ib)

d 2 cosh «, sin ¢
B0 5 B oiht mp—costp ¥ (Bl1o)
2 sinh v, cos 6
7/:""_“) S1 a)?lﬁ%—cosrﬂ lﬁ (Bl]d)
Then
Y=+
~ f-f vF@®) (B12)
where

7o) __cosh y4 cos B8 sirr_lrﬂ—;—/sip_h Yo Sin 8 cos 6
cosh® y,—cos? 6

If the a-coordinate of the straight-line lattice, which is con-

sidered the skeleton of the airfoil lattice, is denoted by x,
then x, is given by the value of r=r,+x, for y=0, or

_d cosh yo+cos g . _, sin @
Tﬂ-z,r<C°S B1og Coch yo—cos g2 Sin 8 tan ;in”h—%)
(B13)

and

zmatoL YG0) B14)
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where
cosh v, cos B cos 8-+sinh v, sin B sin #
G(0)= R P O
) cosh? yo—cos® #
__(cosh v, cos B sin f—sin v, sin § cos 0) 2 sin 6 cos §
(cosh? y,—cos? 6)?
=F'(9)

In particular, the leading- and trailing-edge points z=ur, and
r=r,, are determined by the values of =6, and =48, that
may be obtained from equations (7b).  Then,

(.
rzzro,-h_)(r Y, (B15)

where

2 <9
cos® B sin® 8
G,— o N
=0 sinh? ﬂ,fu+cosh‘* Yo
and 2y, denotes the leading cdge of the line given by ¢=0.
A similar expression holds for x,.
From equation (B12), for constant ¢,

oy _d .,
26~ V(@
d
:;9’/0(0)

In the neighborhood of the leading edge, therefore,

y=~dyG 00 (B16)

For x, near g, there is obtained from cquation (313),

6-—0,)"
TO:TUI+(‘9‘“01)-7'(}/+( ‘,l

N P

where the following relations are found to hold:

d ...
J‘U{,:;[I’ (ﬂ)]o=gl=0

I/4 d 1
.fﬂl :;;[_0(0)]0=61:::_%GU
Henee,
s d ,
]'U%;I‘OZ—‘F% (}:/(9700

Then, from equation (B14),

(.
x——;rglzxo—fof*‘z;;r $*a o)

d
i Gil— (060" ¢]

2
It follows from equation (B16) that, for r=u,,

A—0,= l//
and

!t o
y=uy = Y

With this value of 3, and equation (B15),

yl)[
X ;—Jo

é

t

If the total ordinate for both upper and lower sides at
=1y, is denoted by

?/1 ~4
I, Iy,

(B17)

This result leads to a simple and convenient way of choosing
axes of coordinates in order that (8 will behave smoothly
at the edges, that is, that the value of ¢ at the leading edge
is approximately the mean of the values of ¢ at nearby
ordinates on the upper and lower surfaces. For a parabola
the latus rectum, or ordinate through the focus, s four times
the distance from the vertex to the focus. Equation (B17)
states that the end point of the skeleton chord should be
approximately the focus of a parabola at the nose.

The scheme for choice of axes is as follows: Locate a point
F near the leading edge where the ordinate through F'is four
times the distance of F from the leading edge.  Similarly
locate a point F” near the trailing edge. The origin of coor-
dinates then biseets the line FF’, which is on the r-axis and
represents the chord of the skeleton line airfoil y=0. (To
the order of approximation employed, the aforementioned
choiee of axes coineides with that given for the single wing
section in reference 1 or 3.)

Procedure for finding (¢, 6) from (x, y) for arbitrary
stagger angle 3.—An iterative procedure is given herein for
finding ¢(8) from (x, ) for arbitrary g, in which the knowledge
of the case for 8= 0° is employed to help in formulating the
initial approximation. In brief, values of 6 are obtained for
stagger angle 8=0° for both the airfoil and its line skeleton.
Values of 6 are then found for the skeleton, in the case of
stageer angle 8. These functions permit approximate values
of 8 to be found for the airfoil, for stagger angle 8. Equation
(B12) then enables approximate values of ¥ to be obtained.
These values of (¢, 8) are then readily checked and improved,
if necessary. The steps are as follows:

(1) Choose the axes as outlined and express the airfoil
coordinates in percent chord, where the chord for this pur-
pose is the part of the s-axis intercepted by the airfoil.
Denote the coordinates thus obtained by (o, ). Find
k=FF'in percent chord.  Find z,—uxq, the distance from the
leading edge to F in percent chord, and denote this value by e.
Obtain the ratio ¢/d, where ¢ means here FF' and d is the
spacing between corresponding points on adjacent airfoils of
the lattice. Find conversion factor m by

i
8
)

U e
)~..| —
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(2) Convert coordinates of the airfoil from (xsy ¥u) to

(21r g; 27 ZZ) as follows:

T

=m <e—}—;§—:r,,>

27 %zmy,,

aulw

(3) Find the parameter , that corresponds to the deter-
mined value of ¢/d for the given value of g from graph or by
calculation (equation (8)). Also find for later use the value
of ¢/g corresponding to this value of v, for B=0°.

(4) Consider, for this value of v, the two straight-line
cases (=0, 8=0°) and (y=0, 8=p); associate values of
#=6, for 8=0° with values =46; for the stagger angle 8 by
referring associated values of 4 to geometrically similar
points of the lines (cquation (B13)).

(5) Multiply coordinates in step (2) by the ratio EZ;Z;Z
where the chord-gap values are from step (3) for =0° and
for g=8. Using equation (B4), find values of ¢ for 8=0°.

(6) With the aid of step (4) obtain approximate values of
3 associated with the values of 6 obtained in step (5). Then,
with =05, use cquation (B12) to obtain an approximate
value of ¢, where

27y F(8)

V=g Ty
and the leading- and trailing-edge values of ¥ are obtained
from equation (B15).

(7) Calculate, from equations (B5) and (B10), exact values

of (21r g, 27 Z), associated with the initial values of (¢, ) in

step (6) where x=ux-+r, and Y=+

(8) If, on comparison of the coordinates in step (7) with
the coordinates in step (2), it is deemed necessary to approxi-
mate (¢, 8) more closely for several of the points (x, ¥), one
procedure is the following: An expression for d \bdj;'iﬁ) can
be found from equations (4) to (6) as

_d

d(y-+18)

d sinh (y+6) sinh (¢--16)
25°08 B l:cosi}T;yo +cosh (¢+i8) +cdsh Yo—cosh (Y +i6)

~i L sin o g ok (1t )

_cosh (446 cosh (¢+1i6)
sinh y,+sinh (¢+16)

sinh y,—sinh (y+i6)

With the notation of equations (B5) and (B10), this expres-
sion may be written

(7
%ﬁg =p+ig

=cos 3 sinh (y+10) (pll 6—i¢l+;12 e—i¢2)

—1i sin 8 cosh (Y +4i8) (pl- e“"%-l—p% e”%)
3

where
p=cos g [sinh ¥ cos 6 (COS ¢1+(‘Os ¢2>
P P2
+-cosh ¢ sin 6 (ilrz ﬁgm)
M pe /|
in B si in p (08 %2 008 &
+sin Bl:smh Y sin 9( > + > )
—cos sin ¢, §ill_¢ﬁ>-
cosh ¢ cos 6 ( e + )
and

e e . cos ¢; | €Os ¢2)
g=cos B[( osh ¢ sin 9( o - N

—sinh ¢ cos 6 <S"l ¢1+§U}79")]
P1 22

—sin 8 l_cosh ¥ cos 6 (('0; ¢3+ms d)f‘)
3

P4
+Sinh |// sin ] (Ql!l ¢3+Slﬂ ¢4>]
P3 P4

The following relation may then be noted:

2wrN . 27y
A( d >+m<ﬂd >

ayisem N0 2

20\ _ (., ¥ AN
A<7(1 >‘(h71)o (hd)x
27N _ (0¥ (0. ¥
a7 )‘(“”’d)o (2r),

where the subscripts 0 and 1 refer to the coordinates given
in steps (2) and (7), respectively. If the values (¢, 8)
obtained in step (6) are used, evaluation of equation (B18)
gives values (Ay, A8), and (y-+Ay, 6-+A8) represents the next
approximation to the desired coordinates. The process in
steps (7) and (8) can be repeated if deemed necessary.

(B18)
L(‘t



APPENDIX C
DERIVATION OF EQUATION (12)

The transformation (equation (9)) from the 2’- to the
z-plane may be rewritten

log Zglzf (2)

S (1)

where the complex constants ¢, may be defined as
e =aa by

On the boundaries, 2’ =ae*** and z=ae»"*; henee,

log % =y — o+ i(6—9)
and
\L~¢D:$<I(§: cos n¢+IgZ sin nqs) (C2)
where

R=ae*

With ¢ considered as a function of ¢ denoted by ¥ (¢), the
coeflicients in equation (C2) are obtained as

a, 1

.
Téhz;rjo ‘I’(¢) cosS N (Id)

b, 1(?r .
=t @ sinnods ©3)

™

¢, 1

2r
S [vigenae

Substituting equation (C3) in equation (C1) yields

I{n ing

A=t [T S e )

For

R . L .

=<1, the geometric series in equation (C4) can be
4

summed and

f(z):;‘l‘;f., O ©)

which can immediately be expressed as in equation (12).

For computational purposes, ecquation (12) may be
separated into real and imaginary parts.  Let f(z)=p+ig
and z=z--iy (where, for example, in the zeroth approxima-
tion =06, y=0). Then,

1 (2 N,
r=y ), v g ae
1 ‘i A‘\Y»
= JO V(o) 77 d9
where
N,:E o8 ¢'+%‘ sin ¢—1

]\*'2:% sin d;—]l; cos ¢

2 1 a,2
D=1-2 (2 cos ¢+~1¥ sin ¢>—+—J [gzy

and the integrations can be conveniently performed by
Simpson’s rule.

APPENDIX D
TRANSFORMATION FROM z-PLANE TO w-PLANE

The linear fractional transformation

_az+b
W=ad
on which the derivation of equation (13) is based, has the
following well-known properties:

(1) When z traverses a cirele O, w traverses a cirele Cy.

(2) Two points w; and wy inverse with respect to a circle
C,, correspond to two points z; and z inverse with respect to
the circle C;.

(3) The anharmonic ratio of four points is preserved; that
is, if 21, 25, 23, and z4 correspond to wy, wy, wy, and wy,

(21— 24) (22 —z3)
(41 2>(~3 24)

For the desired correspondence it is known that four points

(wy — wy) (U — wy)
= (w1 (W — wy)

2 2
- . S —
w="5, wy=—b, and their inverse points Wy W= are
to correspond to z;=8,, z=—438; and their inverse points
R —R? . )
23:B y zy= — + Property (3) yields a relation that may he
. )

used to solve for the radius S and that can be expressed by
equations (15) and (16).  When the radius of the cirele in
the w-plane has been determined, property (3) can again be
used by replacing—-say, wy by wand z by z. This procedure
will vield a result that is equivalent to equation (13).
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APPENDIX E

OUTLINE OF CALCULATION PROCEDURE

(1) List airfoil-section coordinates in percent chord.

(2) Choose axes (appendix B, paragraph following equa-
tion (B17)).

(3) List stagger angle 8 and find v, and value of ¢/d for
the skeleton line lattice (table I, fig. 2, and equation (8)).

(4) Find (¢, 8) (appendix B).

(5) Find (¢) (equation (10)) by method given in appendix
of reference 3.

(6) Plot ¥ against ¢ where ¢=0-1e.
(cquation (11)) and R=ae¥.

(7) Find complex constants 8, and 8, (equation (12) and
appendix C),

(8) Find constants cosh v, v,, S, and K=k, +ik, (equa-
tions (16), (15), and (14)).

(9) Find complex constant d=|3je” (equation (26)) and
real constant N (equation (27)). Also obtain functions
m(¢) and u(¢) from equation (29).

(10) Find ¢ and, in particular, o, (cquation (30)).

(11) Evaluate factors B, C, D, and E (equation (35)).

(12) Evaluate factor A in cquation (35), first choosing
the angle of attack o as indicated in the following paragraphs:

The lift coefficient is as in equation (37)

Find constant ,

L r =9 EZ. ‘]Ll_.“iz

C=daavaT e v

Here ¢/d refers to the value of #/d at 0 percent chord minus
z/d at 100 pereent chord. By using equation (19) for I'/2 Vd,
C;, may be expressed as

Co=H sin (a-17) (E1)
where
—4 4] cos @ Y ( sin a0 \TH
=4 E[(cosh 'yl> +(sinh ‘yl>:|
and

—tan-! sin g COShV‘):l>
= COS oy Sinll Y1

This relation may be used to find « for any desired value
of Cy. and it is further noted that a=—y is the angle of zero
lift.

The ““ideal” angle of attack, introduced by Theodorsen, is
defined for a thin section as the angle of attack for which a
stagnation point exists not only at the sharp trailing edge
but also at the sharp leading edge. For thick airfoils, the
ideal angle of attack is defined in the same manner (the
pressure difference at the leading edge vanishes) although
the point that is considered the leading-edge point is not
precisely defined. If this point is taken to be the intersection
of the z-axis with the airfoil leading edge, the ideal lift and
ideal angle of attack are found as follows: Let o, be the value
of o corresponding to the leading-edge point. The quantity

,3—2)' in equation (24) (or the factor A in equation (35))

vanishes for o=g¢,. The relation that gives the value of,
the ideal angle of attack a=a; is then
sin @ cosh ¥y, sin ¢;—sin g,

cosa  sinh v, cos a,—cos o,

and the ideal lift coefficient, from equation (E1), is

1 1
Cp= —-45 JCos 5 C))
where
1 2 . 1 2
J2:[cosh v COS 3(0,—}—00)] + [smh v sin 5(0,4—00)]
(13) The surface veloeity ratio ¢/V is now found from

cquation (35) and the (mean) superstream pressure is found
from Bernoulli’s equation as

P, (*V
=1-(v)

The angle through which the stream is turned may be found
from equation (23).

A remark may be inserted here regarding an inverse
calculation procedure. Instead of starting with a given
lattice, it may be convenient to start with given function
¥(¢), (quantity ¢ as a function of ¢) and given parameters
vo and 8. Then both the lattice arrangement and the flow
properties follow uniquely and, in this way, systematic
families of lattices can be studied.
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Positive directions of axes and angles (forces and moments) are shown by arrows
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Axis Moment about axis Angle
Force
(parallt)el o
to axis . . .
Designation Sggzll- symbol | Designation sg;?- Eli)i?':ﬁi‘;i Disi:)%]na- Sg:l"
Longitudinal ._______ X X Rolling_______ L Y—sZ7 Roll._____..__ @
Lateral Y Y Pitching _____ M Z—X Piteh _______ 0
Normal Z zZ Yawing ____. N J X—sY Yaw. ___.__ ¥
Absolute coefficients of moment Angle of set of control surface\ (rela.ttuv
L M N position), § (Indxcate surfaoe by g'q
Ol=—~~ Omz— =5 o
S " qeS gbS
(rolling) (pitching) (yawing)
4. PROPELLER SYMBOLS cT
D Diameter P
P Geometric pitch
p/D  Pitch ratio o
Vv Inflow velocity s
V., Slipstream velocity r 7 Efficiency ,
T Thrust, absolute coefficient OT=_77"D—‘ n Revolutions per second, l‘PS
P
. d Effective helix a; le-ta.n '(
Q Torque, absolute coefficient C’Q=;ﬁzﬁ ne

1 hp=76.04 kg-m/s=550 ft -Ib/sec
1 metric horsepower=0.9863 hp

1 mph=0.4470 mps

1 mps=2.2369 mph

5. NUMERICAL RELATIONS

1 1b=0.4536 kg o
1 kg=2.2046 Ib T
1 mi=1,609.35 m=5,280 fb
1 m=3.2808 ft






