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Resultant moment
Resultant angular velocity

Reynolds number, V/p--- where / is a linear dimen-

sion (e.g., reran airfoil of 1.0 ft chord, 100 mph,
standard pressure at 15° C, the corresponding
Reynolds number is 935,400; or for an airfoil
of 1.0 m chord, 100 raps, the _orresponding
Reynolds number is 6_65,000) .

Angle of attack
_4ingle of downw_h

Angle of attack, infinite aspect ratio
Angle of attack,, induced
Angle of attack_ absolute (measured from zero-

lift position) _,- - _

Flig t-p th angle- - :
.=
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ON THE PLANE POTENTIAL FLOW PAST A LATTICE OF ARBITRARY AIRFOILS

By I. E. GAIlltlCK

SUMMARY

Thee two-dimen,_i<,md, ineompre._'sible potential flow pax( a

lattice +_ ail:foils <( arbitrar!! xhape ls b_vestigated theoretically.

The problem ix treated b!l usual methodx oJ eo,Jormal mappb+9
in. several stage.% one ,_tage eorre.sT*ond_ng to the mapping o.f

the .framework of the arbitrary line lattice and am>ther ._'ignifi-
cant stage eorrespondiml to the }3.eodorsen. meth,,d f,r the

mapping (_ the arbitrary sb+gb win9 prqfile i,to a eireb. A

l_artieular .feature in the theoretical treatme,+t i,_ the special

handling of the regions at an b_nite di._'talwe in .b'<,nt of and
behind the lattice, lfaTn'e._'._bms are gb,en, for eraluation ,( the

vel,eity aml pre,_'sure dixtribution at the airfoil boumtar!l. An
illudratire numerical ea'ample i._.bwluded.

INTRODUCTION

This paper treats the problem of determining the flow pat-

tern, or the velocity and pressure fiehls, associated with the
uniform flow past an infinite row of symmelrieally placed

airfoils of the same shape. This airfoil-lattice problem

occurs in the design of turbine Mades, wind-tunnel vanes or

grids, and elsewhere. There is a purely mathenmtical interest

in the problenl that concerns the fehl of conformal nmpping
of iniinitely connected regions. Analogous two-dimensiomd

"lattice" l)robh,ms occur in the steady th)w of heat and

electricity.
Considerable ingenuity has been devoted to the airfoil-

lattice problem, especially in the turbomachine studies in
;+he German literature and more recently in the British

studies; nevertheless, a survey of the awfilable literature
indicates that nearly all the treatments eml)loyed and t,he

results obtained are of a special or indirect ilaLilre which

involves, for example, lattices of thin lines or apl)roxilnate

graphical ])roee(lures. Recently, however, A. R. ttowell in

a British paper of limited circulation has written briefly on

+lie theory of arbitrary airfoils in cascade. Ilowell applies a

special transformation t;o an airfoil lattice to convert the
lattice region to a somewhat random, simply cmmccted

region and, wit, h the aid of several stages of conformal

malq)ing, obtains a region atmut a circle.

The prot)leIn of determining the incompressible potential

flow past an arbitrary single wing section was studied by
Theodorsen (reference 1), who gave a practical procedure

for its solution. The case of two wing sections, or lhe

arbimwy bil)lane, was later treated in reference 2. The
determination of the ttow past an infinite latA.ice of airfoils

of the same shape is a problem intermediate in difficulty in

743971--1_

coml)arison with the aforementioned ones. The treatment

for resolving this prol)lem given in the ])resent ret)ort is

similar to that: for the arbitrary single wing section but the
calculations are more involved.

The probh, m will herein l)e studied by the usunl method

of conformal mapping, it is convenient t(> aceoml)lish the

result in lht'ee or follr stages: The airfoil hittite is frst l'e-

placed by its skeleton, or framework of line seglll(qlts. The

initial mat)t>ing f|mction employed transforms the lattice

skeh,ton into a circle. In the plato' of this eirclc there are

two singular points, knmvn as bran('h t)oints. Fhest points

have dual significance: They correspond to intinite regions
itt front of att(I behind the lattice of lines, and they enter in

the l)rol)h,m of reducing the lattice region (multil)ly con-

nected region) to the region of a single body (siml)ly con-

net.ted region). If now an arbitrary airfoil shape is gen-

erated or given arollnd the fl'amework of lines, then in the

i)lane of the circle a circuhu'-like contour is generated around

the original circle. This contour may t)e transformed into

an exact ('ir<'le t)y the well-known procedure given in ref-
erence 1 or 3. The origimd two significant points are then

tl'a('e(I by a transformation due to It. A. Schwarz. A final

elementary transformation will bring the circle into a stand-

ard circle for which the two characteristic, branch points are

symmelrically I)laced. The region of this cir<'le is considered

tit(' standard region for determining the flow pattern.

For illustrative Imvposes _ln outline of a procedure for

calculating pressure distributions is included. The melhod

m,y be followed without reference to the theory by readers

imerested nminly in mameri<'al resuhs. For ('onvenienee, a

list of symbols is given in appendix A.

ANALYSIS

Initial transformation for lattice of straight lines.--Con-

sider the t ransformat ion (r(,feren<'e 4)

_',=2 q log b_z,q-lO_ z,_ ;. J (1)

where g, b, mt(t a are real nunlt)evs anti b_-_a. Introduce

coor(limltes _b and 0 I)y means of the relation

an(t let

z' =ae _+'° (2)

b
--e,0 (3)

a

1
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Equation (1) may then be expressed as

Vc0sl, l. Lcosh 70--eosh _3 (4)

If _=0, according to eqmttion (2), z' lies on a circle of

radius a (fig. l(a)). AccoMing to equation (4), _=xl+iyL

is the logarithm of s real posit i v(, fimctiolt anti, eonsettueatly ,

rel)resents a real funct ion (its t)rmeipal value) and the iltfinite

of values (lifferiag from this fimetion l)y _ 2kTri,seqtlence

where k is any integer. Th(, transformatiml illustr_ted in

figure l(b) is that of an infinile lattice of unsttrggeretl lint_s

of gap g in the i'm-plant" into the eirt'le of radius a irt tilt,

z'-plane. The pt)ints z'=b mM z'=--b ('orresl)ond 1o

infinity in front of aml hehind lhe lattice, rt,spectively. The
a2 (/2

-- - _ = b a,'e insi(h_ the cireh, ofinverse t)()ittts z'-- b anti -' --

ratlius a.

In order to introduc(, sta,_,,er it is convenient h) ct)nsider

t,h_, t raasformation

( o+_;iI
Zr (l-

• ih b+ z'._ .
_ p (/"

f_=--'2 lOgb__z, log b-/

where h is real. This transformatioa can l)e written with the

use of eqmttions (2) and (3) as

h log F sinh 7o+sinh (_b+iO)']
i-2=--i _ Lsinh 7o_sinh ( +io)l (s)

If ¢_=0, the expression within the I)ra(4{ets is a complex
number of unit nlagnitude; htmc(, the h)garithm is a pure

imaginary numl)cr plus 'm inlinite sequence of mmfl)(,rs

dift't, ring by 2_-;. Thtm _2=X2@iff2 I'('pl'(_S('ll|s tt s('(tllen('o of
rea.1 nulnbers differing by h anti tht, lattice is one of ht)ri-

zontal lines (lisphwe(I from (,'teh other I)y h. (fig. l(c)).

The transformation for tilt, general staggered-lint, lattice

is a eombimLtion of equatioas (4) and (51)

OF

_-- _'t+ i'., (6a)

( _3.e -_ lo,, log , a_
_ - b- z' b !

where

gap g=d cos

stagger h=d sin/3

stagger ratio h=tan /3
g

the parameter d may be ealh, d the slant gap (fig. l(d)),

anti _ the stagger angle.

The geometry of the lattice may l)e expressed in terms of

the parameters 70 and fl I)y noting that the chord length

may 1)e obtained fronl the (singular or ('ritiea]) vahles of 0

which eorresl)ond to the end points of the chor(I and are

d,,_0r This equation gives tile
solutions of the equation dz -- "

result
tan O=tanh 70 tan fl (7a)

or, for later refert,nc, e,

cos 0=_°sh _ cos _/ (7b)

sin o=sinh _ sin _J

where

Q = (cosh _ 70-- sin _ fl) !'_

Relations (7) may be emph)yed in two ways: (1) When the

parameters 70 and fl arc given, the relation determines the
two (_ritical vah,es of O, Oz and 0t, where the subserit)ts 1 and

t refer to leading edge anti trailing edge, resl)eelively, and

0_--0_+_'. (2) When O_ or tan 0t anti the stagger angle /3

are given, tilt, relation (letermines the t)arameter 70.

o /5 30 d5 60 75 90

51Qqger- unV/e*" :t,, Ltt,_

FI(iVRE 2. -(1al)-chord ratio against stagger angle for various values of b
71 = _'r°'

The chord c may I)e obtainetl by 1)utting 0=0_ amt 0=0_

in equation (6a) and taking the difference in abs(.issas x_ and

xt. From equations (4) to (7),

-- _d (cos fl log %_°;ofl+ sin ¢_tan-' _ ) (s)

By means of equation (N), the parameter y0 can 1)e tn'e -

sentetl directly in terms of given values of the gal)-chord

ratio for any stagger ratio. A representative (.hart relating

gat)-ehortl ratit), stagger angle, and _0 is shown in figure 2;

some values are given in t,a,I)le I.
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TABLE 1.--GAP-CHOIID I/ATIO, PARAMETER "1'o, AND COllllESt'ONI)ING \'ALUFS OF 0, FOIl VARIOUS S'I'AG(3t';I{ ANGLES

b/a

1. ()(}5

1. Ol

1.02

I. 05

1. l(I

1.15

l. 20

1.25

1. ,311

1.35

1.4(I

1.45

I. NI

7.60

l. 70

I. 91)

2.0

2.5

3.0

4.0

5.0

10. (1

!

3'_ Sillh TO

(). 004988 0. ()11498.b

• 909950 .0(99950

. (119_03 .019804

• (1487911 . (148809

• 995310 . (195455

• 139762 . ]40217

• 187J_22 • 1 _/3J_

• 223144 .228)00

• 2621164 .205385

• 111)1)1(15 . ;104(_1

• 336472 .342857

.371564 .38H72

• 405465 .416067

• 470(X14 .487500

• 530628 .555_,,82

• 5877x7 .622222

• 641854 .686842

• 693147 .7r)1XI(XA

• 916291 1.0E)1)11(10

l. 098613 1. 33:lJ/Jf(

1. 386"nJ4 I. 87,N)1)11

1.61_1438 2. 4011()1)11

2. 3025N5 4.95IX _00

eosh "Yo

t. 00(1012

L 00()1)&1

1.0()11190

I. 00119t

1.01(4M5

l. 0(19783

1. 010667

I. 02NI,IX)

1. 034615

I. (}45370

1. 057143

I. 0119_'28

l. 08331_1

I. 1125110

I, 144118

I. 177778

1. 21315S

I. 25()1)0(1

1. 451X)1)U

I. 666667

2, 125(X)0

2. 6(X)O(X)

5. ( h_XX)()11

B=0°; 0z=() °

die

0. 26207

• 29019

• 34039

• 42299

• 51594

• 58995

• 655[)7

• 7148)

• 77118

• 82489

• bt7(iB8

.92694

,97599

1.117124

I. I(662

1. 253_,7

I. 34250

1. 42980

1. 85391

2. 26019

3. I)7t84

3. S7402

7. 82840

B=30 °

d/c 0_ (deg)

0. 29481 O. 13

• 332O8 .33

• 37997 .66

• 46_15 1.61

• 5111141 3.14

• (i4331 4.58

• 71028 5.94

• 77129 7.22

• 82829 , 8.42

.8,8241 9.55

• 93433 l(k 61 I

• 98456 11, 59

1. 03340 12. 52

l. 12792 14.20
]. 21927 t5. 67

I. 30Y_0 16.96

1. :(9,_XH 18. I0

1.48157 19.11

1. _()_(,)4 22. 69

2. 30553 24.7(,1
3. I 1),5,_8 27•1111

3.89_94 28.06
7.84191 29.51

B=60 °

d/c 0t (deg)

(L 44157 0. 50

• 489114 .99

• 54774 I. 97

• 651110 4, _/

• 75547 9. 35

. b>I357 13.52

• _9906 17.35

• 95724 20. 82

1. (I 1I)64 2:1.96

1. (_1073 26. 78

1. l ()_41 '2t3. 33

1.1,5433 31.61

1, 19890 33.67

I. 28505 37.20

t. 36849 40. I)_

1. 45020 42. 4(;

I. 53967 44.44

I. 01036 46. 10

2. (X)292 51.44

2. 3924(I 54. 18

3. 17118 511. 81)

3. 95163 57.98

7. Ni(140 ,#)9.51)

.8=.,_)¢; I

Ot=9[) ° !

1.0[)319

1. 00637 I
t. 01277

1. 03204

1. 06450

I. 09732

1. 13051

1. 1641)1)

1. 19781

I. 23191

1. 26627

I. 30080

l. 33570

1.41)1_11

1. 47708

1. 55123

l. fi2114

1. 69397

2. 06407

2. 44105

3. 201_)5

3. 978_,3

7.88(122

Inversion of equations (4) to (6).--The initial transforma-

tions nmy I)e thought of as nmpping a framework of chords
of an arbitrary lattice into a circle. ]f a shal)e is gcnerated

around the chords in the Z'-l)lane, a contour is gcnerate(I

around the circle of radius a. This contour, which must

exclude the points z'=--b and z'=b and nmst enclose the

points z' a2 a2
:--_ and z'=_, may he considered to t)e con4-

pletely defined by the function ¢(0). If a lattice of airfoils

is preassigned, the function _ (0) nmst be found f4'onl the given

coordinates of the airfoil shape. In order not to interrup(

the sequence of main i(lcas, the (h, tails of this i)rohh,m arc

relegated to appendix B, with certain remarks on the practical

achievement of a nearly circular contour.

Transformation of contour in z'-plane to circle in z=
plane.--It is assumed now that the circular-like contour

in the g-plane which corresponds to the airfoil contour of

the lattice is either given or determined; that is, the function

¢(0) is known in the boundary expression z'=ae _+_°. By
the procedure of reference 1 or 3, the transformation

z' = zero) (9'0
where

C Z',n

.f(z) =_-_, _=log -- (9b)

and c_ are complex coefficients deternfined hy the t)oundary,
is then employed to transform the z'-contour into a circle

z=a#o+_o in the z-plane. The transformation (9a) kccps
the regions alike at infinity in the z'- and z-plum,s; that is,

dz'-- Iz=z' and dz-- at infinity. The correspondeuce of the

boundaries is determincd by the functiomfl equation

,_-0= _(,t,)
1 "2,_ ¢,__4

=--_,[0 T(O') cot 2--- do' (10)

for which a convenient numerical solution has been outlined

in reference 3. The radius of the circle R=aeto is determined

by the relation
_b 1 r2_

9=2,: j ° ,r(¢)&, (11)

For consisten(,y, the functional symhol q,(+) is here:used to
d('note the quantity _/, expressed as a function of q_--that

is, ¢[0(q_)]. In reference 3 the notations ¢(40 an(l _b[0(4))]
qrc used.

It is necessary also to trace the correspondence of the

points z'=b a n(t z'=--b. Let z=_1 correspond to z'--b

and let z=--fl2 correspond to z'=--b. The values _ and

¢_2may be determined by a relation (due to Schwarz) that
exl)resscs the value of a comph,x function in terms of an

integral of thc real part (if the function along a circle. A

simple (h,rivation of the desired relation is shown in appendix
C. The cxpressio)_ is

Z _

log z =f(z)

------1Ji2=xI'(O)---d: _i, (12)

1 --Re

The vahzes of fl, and _2 may })e determined from equation

(12) hy an iteration process that converges extremely

rapidly. The process may be described as follows: In

equation (12), let the zeroth approxinmtion to _, t)e z=zo=b

and let the corresponding vahze of z' be written z'= zo'=be/O),
whcref(b) is the cvahzation of equation 112) for z=b. It is

actually (h,sired, however, to have z'=b but, because

z'= zo'=b + zo'--b

the initial value of z' diffem from the desired value by

Zo'--b. Furthermore, Z=Zo diffcrs from z=fl, by approxi-

mately the same amount; hence, reducing z0 hy the quantity
zo'--b gives

z_= zo + b-- zc'

=b[2--e;Ol]

which may be considered a first approximation to B_. If it

is desired to check this result or to obtain a second approxi-

mation, the process may be repeated; thus, from equation
(12), find ](z_) and

_'1 ' _---- Zt e'f(z_
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Tll(m,
22= z1-Lb--zl'

which is a second approxhnat.ion to 5_ aiM, in genrral, thr
nth approximation is

Zn = Zn-I -[-b -- Zn_l t

It is clear flint, should z_ correspond to =,_,, z._,' must eof

respond to b and the process automatically stops. The nu-

morical process is given in appendix C; relatively eh,m,>n-
tary stops are involvetl. In order to drlerminr --f12, the

process is aptflied with b replaced t}y --b.

Transformation to standard circle in w-plane.--In order

to obtain the tlow pattern, it. is desirable to introduce another

function which transforms the circle in the z-plane into

another circle in the w-plane in such a way that the char-
acteristic points z=/_, and z= --_ map into w=b and w-- --b,

resprctiw,ly. ']'lit, region of the cir,'h, in the w-plane may

I)e considered the standard region. The (h,sire(1 trans-

formation may t)e written as (see al)l)en(lix l))

b--w _./_,--z\
-- =lk - -b+w t,&+z) (13)

whet?

K= b_+ 6,_ _1_t-- R='

and R=ae_,_ is the radius of the origin',/circle in O,e z-plane,

31 is the ('Oml)lex conjugate to _, and S is the radius of the

new circle in the w-phin-. The radius S is (lct(,rnfin(,d by

S= be -_ C15)

whpre 71 is ol>tained fron)

=-11
cosh 3q Ill _:@_2 I (16)

Oomplex velocity potential in w-plane. Consider the ilow

f,m(,tion .q(w) =+l,+.iq,, which is (h, fin(,<l as

N+\ + N +

b+w , _++ w-- -( I ir w+--_
_.!(w) =--_ e '_ log _-w±e log Sz/--4_ " log 5_- w_

(17)

The flow pattern titan I)e rt,gaM(,(I as (lue to tl (,onll)ination

of singtihu'iti(,s, sink.% sour('(,s, and vortices, l)la('t,d at the

t>oints w= -i-b and w= ! b- as illdicate(I in figure 3. It may

.//f :"fr'er'gth

Vd r-o5 tx

/'.-Vd _in _+

��if> r12. (//5. ("

FIC, IJI_N :L--Flow singularities in Shlndar(l #r-llhn0.

I)e readily verified that the circle of radius S- that is,

w=Set:--is part of a streamline and it may further 1)e

observed from figure 3 that the ('ir('ulatioli around any
S _

contour whMl enclos(,s the 1)oints w= J: b and for which

the points w= :Fb are exterior points is F (positive if coun-

ter(,hwkwise). The ])arameter a will lie intrrl)reh,(l later

as an angle of atta(,k.

The value of the ('irculation r niay t)e (h,ierniined by
lllOllllS (if the Kutta-Joul_owsld ('ondili(in for snlooth [low

al the trailing edge of the latli('e. Let 0% bo the viilue of

Oil the })Olill(]al'y ('ir(,le Se_ that ('orl'osi)OtldS 1o the trailing

e(lge of the latti('(,. Tlir Kuttii-,]oukowski (.on(litton then

ro(tuli'es lhlit the flow sel)liraie ill 0=a0, or thai a stagnalion

1)oint exist thel'(_.

d.q 0
With du'= and w=Se +_°, tile following rehition for' I" is

fotln(l:

[ s2 ]F=-- 41"Nd b sit) ((r0+a)-4-_ sit) (_0--a) (1S)
b._ S +

]fi

If S/b is rrplm.(,d I,y r -st (cqil+ltioli (1,_)), eqil+lii()ll (IN) iilOy

I)e exl)r(,s_od as

( cos (r,_sin siti q. co,_ a) 119)F= 21"d t rosh +t a+sinh 7t

Expressions for velocity in lattice field. --I n order to obtain

the flow ])Itll(,rn in the lutti<'e Ii(,hl .('-l)llln,,), lh(, ('onll)onent

fti('loi's of the following oxi)i'l,s_iOll ai'(_ re(tuh'ed"

dP. d(2 d,, dz dz'
i]_--_ d-? dz' d_- ('-)0)

These ternis nnly I)e ol)tainrd front equations (17), (13),

(9), and (6).

It isof l)ai'ti('tllar interest 1o evaluatr e(tuation (20)

exlili('iily for ill(, regions tit ilifinily in frolil of iliid liehind

the lattice llli<l lllso oil l}le lattice i)(iliillllii'y itsolf. It, is

re('ttlh,d thai _".... (.orr(,._pon(Is t<) =':b, z--f_i, u,=b alld tltaL

_-----co corresponds to z'=--b, z_--j:, w=--b. Ily <!Oill-

bitting lel'ins li(.(.(ir(ling lit O(lUlition (20), the (re[h,cled)
inhq-v(,locity v(,t't<ir is ol)hlined its

dff 1

-- "[ _(_+_) _ e '_ (91)

and t]w (.olrrsFOlldhi 7 (,xln'cssion

dL)]
il_!_ += l ",:- i I +_,

ii' ,_
.... l'e'(:+_' +24 e

for (h(, oilth,t-vt,lo+.ity

(22)
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By addition of equations (21) and (22), it t)c('omes clear

that the velocity vector of magnitude V and angle of attack
a+fl with respect to the x-axis is one-half the vector" sum

of the inlet and outlet velocities (fig. 4).

L

//

/

//

L ' _ Po_:t/ve cc
I \

S ,m,/

FIGURE 4.--InlO, outlet, and mean velocity vectors and angles of attack.

If tile angle of attack of the mean velocity vector with

respect to the x-axis (chord (lirectioil) is denoted by

a_=a+/3, the velocity components in t,quations (21)
and (22) are

and

F
V_, = -- V cos a. +._d sin

F
V_l = -- V sin a_ +_t cos B

V_2= -- V cos a_--2d sin ¢_

V_2= V sin a.--2d cos

The conventional angle of attack a is measured with
respect to the normal to the slant line of the lattice. The

components normal to and along the slant line of the lattice,

sometimes referred to as "axial" anti "whM" components,

respectively, are found by rotating all vectors in the xy-plane

1)3' angle ¢_ (fig. 4).

velocity,
Thes(, ('omponcnts are, for the inlet

l ..... V cos a
N 1 --

V sin a+2_

and, for the outlet velocity,

V.,,_= - V cos _ = VN_

I s

__V,2= V sin a -- 2d

The squares of the magnitudes of the inlet and outlet
velocities are

I:_2= V211+ 26 Vd

I'
l,V=t- E1--221.2

I _ 2

sin a+(2vd) ]

F 2s,.
where r/2Vd may 1)e obtained front equation (19). Observe

that the inlet and outlet speeds are cqual, 1"_----1"2, when

a=0 ° for any value of r. The inlet and outh, t angles of
attack with respect to the normal to the latti(,e line ave

a_=tan_ _sin a+2V d

COS oL

a._=tan_ t sin a--2i,_

cos ot

and tile angle through which the stream is turned is

2 _ cos

a_--a_=t.an-'-1_ ( p)22Vd (23)

The component factors in equation (20) are now to be

evaluated at tile lattice boundary and, as the boundary

itself is part of a streamline, only the magnitudes of tile
factors are of interest.

From equations (17) and (19) and with w=Se_%

d9. I 2 Vd 1
_l =rS cosh 2_,1--cos 20: [sinh "h sin a(cos a--cos a0)

+ cosh _1 cos a(sin a--sin ao)] (24)

where the parametcr q,t is defined in equation (15).

In order to obtain dw/dz, it is convenient first to express
equation (13) explicitly in w as

b(l + K) z--b(K_,-- _2)
w (1 --K)z+KB,+_2- (25a)

A standard fol'm for' the transformation of a circular region
]z]> R into [w[> S is

w=RSe a R2 2_z (25b)
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Comparison ot' equations (25n) nnd (25b) mnke_ it dear lhal

the ('olllplcx pllrllfll(qer fi llll(/ the re_l.1 [)arltlllcter X lllay })e

ol)h_ined from lhe following relations:

or, as n check re/aLion,

K_,- _ (20.)
6=-1 +K

/?_(K-- 1)
;=/x'_, + _; ('_'(_h)

and

Se_ x (14-K)b

or, by equnting angles on both sides,

X= nrg (1 -_-K) -- a rg (NS_ + d:,) (27)

]"tom equalion (2510, lhe exl)lMt rorreslmn_h,.we of a Iminl
on the circle .tr:Nd" to n lminl_ on the circle ,::Re _+ ran 1..
obtained ns follows:

gt(OaX_ ] __ _1_ g-m,
e' :: (2s)

l -- 1¢e**

Let_ the complex nulnlwr # be expressed qs 182*_ and h't.

Wh(q'P

6
1--]{ e-i*:la'te tu (29)

lllld

I_i sin (C--r)

u(4)=tan_ _ R
1-_

h' cos (_-- r)

()bserve llml. tlw denominnl.or in equation (28) is lhe ron-

jugal_e of eqmttion (29) and is therefore eqmd to v_e-%
There result, s for t,lle correspondence of a aml ¢

,,=¢+ x+2u (ao)

In particular, if the (tr'tiling-edge) value of ¢ 1hal ¢'orre-

sponds t.o 0, as del, ermim'd by equations (7) is wril4en as

Oo=OH-_t, where _t is the value of e(4) nt O=Ot from e(luat, ion

(10), then
_o=4,o+ Xq-2_o

By different.iation of equation (25b),

dw RS(R_'--ag)e 'x
d--z= (R:'--a:I _ (31)

On the houndnry, put, z=l?e¢°; lhen,

equat, ion (31) is

!dw S / ]_,_h 1
tdz_ =R k 1 ---/?_J ,,_

74:',971 4S 2

'd/l
The expression for d= on the boundary is oblaim,d frmn

equnlion (9) in term,_ of lhe fimctions _(_) m.1 .1.(¢) of
equation (10) as follows (see reference 3):

, , .,{ ,ff, 
l: ='_ \1 +z dzJ (3:In)(,/2 g

.'rod, becaus,,/(:) on the boundary is

fie) = q'(e) - ¢0+ i(o-e)

where

lhen

'd:" [-'_ [( d."_"+(d'P'y'],_" _ (33b/,4:i :l _-,ig/ \,/,]j

The lnsl fro'lot of (,qualion (20) is expressed from equation
(0) on the boundary ='=.e_ +*° as

_vh(,l'( /

di" 2,1 1( 1
dz'-- _r D z _ (34)

F
E= cosh-'v,,(eosh' -eos'0)

-_-sin_/_ sinh:-ro(cosh:C_--sin-_0) --g sin 2_ sinh 23'o sin 20 !_

D-: icosh 2T0--eosh 2(¢.@i0) I

= [(rosh 2yo--c.sh 2¢. cos 20)2+ (sinh 2_t sin 20)"1!_

Finally, combining in equa, tion (21) l]w faelors given in
equat.ions (24), (32), (33b), and (34) yields

_(.:[

1

=.ll;CD lC 1" (3,5)
where

1
A = eosh 2y_--cos 2_r [sinh % sin c_(eos _--cos _'0)

-+ eosh 71 cos c_(sin _--sin au')]

( _a%1B= 1 ]?_j;;;_

(': [(,-",dOJ \ doJ d

1) [(('osh 2v,,--eosh 2¢. cos 20)_q (sinh 2_ sin "20)q!_

_eos:fl cosh-'y. (cosh-'¢.-- eos_0)/'L-

• , 1 07.'_-ksin_ smh%c'(c°sh_--sin_0) --4 sin 2/_ sinh 2T0 sin 2
-1

An al)plieation of _'quatim_ (35) fro" the 1)m'tmse of ill.s-

traling the various steps involved in a rnlculation of the

surface velocity aml pressure of the airfoil lattice is givea in

nl)l)('mlix E nml illustrnted in figures 5 ltll.d 6. Igor the sake

of (,m_l)arison , the singh,-airf()il case is given in tigure 7.
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(a) --

o 20 ,40 60 (dO /o0

[;J) ('t. =(k o,= -- ;.2,r) a,

(b) ('L=ILS; (_=--0.12 _.

_--+ !----- (c)-

-2 l____[

' 1

.... i........

l
o 20 dO (;o oo loo

(e) {"l= 1.I1; a= L02 °.

((l? ('al-tl.fil; c_=().hl] z,

l( "!

|.'z,;t'_',E 7.-- I'ressuro di_lribuliotl h_r :N'A('A lll2:_irf_,i]. Sill,,'h.-ab [_.il (.:is,., _ lp-el_, _1 ta_i¢), inlblil_,; M(,l>(,of 1 f[(._ll _(* d _ =t. _,;.

Some special results from equation (3,5) for a lattice of

lines.--In the ca._e of a'lattice of straight, lines, the :"-,

z-, and _,-plm:es merge; hev.<'e 0=4,=(T aml I_= ._'-_(I.

From equation._ (19) aml (7) nm[ with c_-_ B_, whivh is

the nf:g'h, of nttack with respect (o [he chord,

I' .ain c_z

'2_ "d=: (cosh _ "_o-- sin" _) !: (36)

Tim lift per unit slmn on _t single member of the lattice is

given by
L=pI'I'

where 0 is (he niv densily. The lif( vevlov is l)erl)endieular
t,o the menn velocity veclov (fig. 41). This resull, is genm'al

nml nol limited lo a slm_ight-line lnt_ive. The lifl coelli-
cient is

, ol'r "-r 4_1 _' (37)

whey(' I"/21}1 is givcu in ('(um tio)_ (;:1_;)aml c"d (._tn b(' l'()u),.(l

by equation (S).

, (o.)) ! |)t'('()m('sTlw locnl v(,locitv ()n the, ._m'fn('(, (t.(itmti()n "_

i\_ si)l <t_),'= l'(('(,s _v:+,,_/

wh(,r(,

1 _cos 3 ('o_ 0q_sin 2 sin 0
A'==((.()s])., "r,--sin-' _) !-' ' ('()sh _',_ sinh Y0-

_1 cos BsinO sin HcosO
' -= sinh-_i_--- eosh ":'0

In (h(, Sl)(,('ia[ ('ns(,s in which ¢_=0 ° rim{ /3 90 °, lhe relations

"S siml)h'r.(;3(i) to (,>,)av('

For st._gg(,r angle .B=O ° qn(l will) d=.q,

'21 ":1= (Tosh "_,

From equal.ion (S),

mld
2.q

L=2_V:',.I tanh zrc sin a:
?q

t_l[/h we_

---- rrpcl ,=, . 2H _in o.
1re

2t.1

The lid co(,tticien(, ,)cvor(lin_' 1_, (.qlmtiot_ _:;7>, is

(',:::__rr 2.q sin ,_.,
"a-("

2!]
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For _=(1 °, thm'ofore, Ill(, slol)O of the lift ('urvc is always less
than 27r. Note that, for large gap, c,/g-+0 and tho lift

coctticient is
CL=27r sin a_

When the gap g is small ('ompared with the chord c,

C._->4 g sin a_
C

The local velocity ab the surfac_, by equat.ion (3S), is

( 0 )v=V cos o_+tanh 3'o cot _ sin a_

This result may be compared with that for the single-lira,

a;rfoil (%= oo)
0

_'=V(cos a_+eot _ sin a_)

For st.aggor angh, fl=90 ° and wi_h d=h,

From equation (8),

r sin az
'2t_-s3nh %

sinh v0=eot

7/'('

L=2ol'2h tat) _ sin a_

7re

tan
--- _-oe1TM --- sin az

lrc

?h

Fm fl=_.)0 °, therefore, t.ho slopo of the lift. curve is always
Pte local velocity a_ the surface isgreater than 27r. ' I .,

cos a_+coth 7. cot 12 0-- 2 sin a_

It may be noted in passing that, for c=2h ,

C_= S sin a,

as compared with

CL=2r sin a_

for tl_e singh, airfoil.

For flw limiting case in which b and d al)proach co, the
t.ransforma.tion (6) becomes

d (z,e_,¢ + a"f ----2_rb _ z,e -_ )

d --+1
and, with limit 2_rb and a new wu'iable z"= z'e-'o

a 2
M

_'=z +z"

which is the i'amilial Joukowski transformation. If the

vaviabh,s ff and 0 (equation (2)) aro introduced, the col

responding result is expressed as

,C--2a cosh {¢-t--i(0--¢)]

where the linfit, as 3,_--_, of

equal to l i

d
-- has been put_

2ra cosh 7_

The lift coefficient, according to equation (37) is

7re

tan 2h
CL--2_- - - sin a_

,.trc

2h

LANGLEY _[EMORIAL AERONAUTICAL LABOI:tATORY_

NATIONAL .ADVISORY COMMITTEE FOR AERONAUTICS_

L_-NGLEY FIELD, VA., November 19, 194.3



_" complex plane of airfoil lattice (x+iy)

¢1, _'_ complex planes of airfoil lattice for stagger angles

t3=0 ° and $=90 °, respectively (x_+iyl; X2@_'y2)

z' complex l)hme of circular-like contour (ae _+_°)

z circle of ra(lius R=ae ¢o in z-t)lane (he +0+t_)

w circle of radius S=be TM in v:-plane (be -_+_)

i'= co, z' = b, z = _, u,= b correspond ing poira!s

_=--_o, z'=--b, z=--$._, u,=--b eorrespomling points

a, b reference lengths

70 gap-chord parameter (b=(te_o)

_3 stagger angle

d lattice spacing, or "slant?' gap for any value of _3

APPENDIX A

MAIN SYMBOLS

(I
h

t_ 1-

_1_ _2

lattice spacing, or gap for _=0 °

lattice spacing, or stagger for _= 9() °

magnitude of mean of inh,t- and outlet-velocity

vectors (fig. 4)
angle of attack with resI)(,ct to x-axis of mean

velocity vectm"

angle of atla, ck with respect to norma] 1,o shmt line

of lattice of mean wqocity veer,or

inlet and outh, t angles of attack with resl)eet t_o

normal to shmt line of hm, i(.e; resl)ectiw@

magnitauh,s of inlet aml outlet velocities, re-

spectively

APPENDIX B

INVERSION OF EQUATIONS (4) TO (6) AND CHOICE OF C, OORDINATES

It is desired to find from a given airfoil lattice in the

i'-planc the contour defined by _(0) in the z'-planc. This

problem corresponds to an inversion of equations (4) to (6)
and can be exactly treated for the eases in which _--0 ° and

b3=90 ° (equations (4) and (5), respectively) but an iteration

or successive-approximation method is required for equation

(6). Fm'thermore, although the parameters g and h are

fixed by the geometry of the lattice, a choice exists in the

deiinition of the chords aml the origin of ('oordinates. This

choice is diseusse(l following equation (Bl7).

Stagger angle 2=0%--From equation (3), there is obtained

7r

eosh (¢+i0)=eosh 70 tanh _ _'_ (B1)

Putting _l----&Tiy_ and denoting the real and imaginary
parts of equation (B1) by ,q aim m, respectively, leads to

%r
cosh %sinh _ x_ I

cosh +cosO:_: .-2_" .... 7fl2rr I
coslx - x_+co, yg

o ,q [
(B2)I') 71"

eosh yosin-- _h ]

sinh _ sin O--n_= ---'-)rr .... _;-].

eosh-g x_+cos g Y'/

The expressions containing Xl and y_ in equation (B2) are

considered given since these quantities are known from the

coordinates of the airfoil lattice. If ¢ and 0 are eliminated

m_ecessively,

and

cos 0/ \sin 0/

¢} "\sinh ¢):= 1

(B3)

From equation (B3), there result the following expressions,

which serve to define the function ¢(0) in terlns of the airfoil
coordinates:

sin _ O=p+ _/p2_.,.
(B4)

sinh 2 _b= --p + "V/p2 + *h2

w]lere

1
P=2 (1 --_t2-- rh2)

For small values of 0, the 1"elation sinh ¢ =sin 0 nmy be used.

It is useful for computational purposes t,o record the real

and imagina.ry parts of equation (3)

where

_,(1 <x,--2_ r log p=]

y_=g (¢_- ¢,_)

(Bs)

o/= (eosh 7o+eosh + cos 0)_+ (sinh ¢ sin O)_

0.,2= (eosh %--eosh _ cos 0)2+ (sinh ¢ sin 0) 2
11

/I
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sin ¢,= ! sinh ¢ sin O
Pt

sin 4)_=- 1 sinh ¢ sin 0
P2

Tile angles arc to be chosen between --rr and z', anti the

quadrants may be determined by noting also th(, relations

1
cos ¢1=. (eosh 3,0+cosh ¢, cos O)

Pl

!
cos ¢2=7 (cosh 3`o--cosh _bcos 0)

P2

Stagger angle _=90°.--From equation (5), there is
obtained

7r

sinh (¢+i0)=sinh 3`0 tan _ f2 (B6)

With ¢2=x2+iy2 and the real and imaginary parts of equation

(B6) denoted by _ and rl.,, respectively,

sinh 3`0 sin _ xa
sinh ¢ cos 0= (_= 2z- 2_r

cosh t7- y_ + cos _- x=,

271"

sinh 3`o sinh h( Y2
eosh ¢ sin 0=,_2= 27r 27r

eosh -._ Y2 + cos Tt x2

(BT)

If ¢ and 0 are eliminated successively,

('-'V
cosO/-\sin o/= - i

sinh _J \eosh _/ --I

(Bs)

From equations (B8) there result tinally the following

expressions, which serve to define the function ¢(0) in terms
of the airfoil coordinates:

where

1sinh2_=--q+ ¢_

1
q - _ (t - &_-,C)

(B9)

For values of 0 near 4-90 °, the relation sinh ¢_= $2
cos 0 may

be used.

It is useful for eomputatimml purposes to write the real
and imaginary parts of equation (5)

(B10)

_vB ere

m2= (sinh 3`0+sinh _kcos 0)2+ (cosh_k sin 0) 2

p/= (sinh %--sinh ¢ cos 0)2+ (cosh ¢ sin 0) 2

sin ¢:,=- 1 eosh _bsin 0
pa

sin ¢4=-- 1 cosh _ sin 0
P4

The angles are to be (.hosen between --Tr and _r, and the

quadrants may be determined by noting also the relalions

1 (sinh 3`0-ksinh _bcos 0)
cos ¢_= 0_

4_4=l(sinh %--sinh ¢ cos 0)Cos

Arbitrary stagger angle _ and choice of eoordinates._

l_ecaus(, of the transcen(h, ntal nature of equation (6), a

(lirec_ inversion expression seems mmbtainable; however,

the values (_, 0) that corresI)ond to coordinates (x, y) may

he obtained without difficulty by an iterative process. For

this purI)ose and for the purpose of choosing the coordinale

axes, expansions of x_, x2, y_, and y.o in powers of _ are useful.

The following expansions may b(' readily verified:

d [- eosh %@cos 0x, =2_ cos _ log cosl(yo'eos 0

sinh_ >,--sin: 0 , ] (lltla)q-_b 2 cosh 3`0cos 0 (¢osh2 %.cos2 0)2+ . . .

d [ sin 0x2_27 r sin B 2 tan -1 sinh 3`0

eOSll 2 3`a@ ('OS 2 0 --I-
+ ¢2 sinh 3'o sin 0 (eosli2 %.cos _0)_ .... 1 (B1 lb)

d 2 cosh % sin 0
Y' _2_r cos ¢t costi2 3`0_eos_- 0 _ (B1 l e)

d 2 sinh 3`0 cos 0
?h_--2_r sin 1_eosh2 %--COS_ _ _b (Blld)

Then

Y=71i-t-Y2

where

F(0) = eosh % cos 5 sin 0--sinh 3`0 sin B cos 0
eosh 2 3`o--COS 2 0

If the a:-coordinate of the straight-line lattice, which is con-
sidered the skeleton of the airfoil lattice, is denoted by x0,

then x0 is given by the value of x=xl+x2 for _,=0, or

d , eosh 3`o+eos 0__ _sin 0 "_
Xo=:2_r(eos _ log e07s[[ 3`0_eos 0@z sin fl tan -t sinh _'o/

(B13)
and

X_xoT dr _G(O) (B14)
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where

G(0__cosh/3"0 cos _3cos 0+sinh 70 sin _ sin 0
cos h2 3"o--C0S 2 0

(cosh 3'0 cos 6 sin 0--sin % sin _ cos 0) 2 sin 0 cos 0
...... (cosh 2 %--cos _ 0) 2.....

=F'(0)

In particular, the leading- and trailing-edge points x--x_ and

x=x,, are <leternfim, d by the vah,es of 0-0t and 0=0_ that

may be obtained from equations (71)). Then,

where

x,::o,+/+<

(cos 2_ • sin _)Go=Q \sinh" %+coslV 3"o

anti xo_ denot_es t.he leading edge of t.he line given by ¢=0.
A simihu" expression hol<ls for x,.

From cquat.ion (B12), for constant _b,

5Y
= -_ CF' (0)

d ¢C(o)
71"

In the neighborhood of the leading edge, therefore,

Y ._ d ¢ (;o(0-- 0_3 (B 16)

For x0 near x0_, there is obtained from equation 07,13),

x0= _0,+ (o- 0_)._<,_'+ (o-T0/x,,/' + ...

where the following relations are fouml 1o hohl:

+o,= d [I,'(0)]oZo,= o

d
x0/'-:: d [- a(0)] _:_,.... g (;0

l ]-(_'tlCO_

d

Then, from c(t un t i<m (B 14),

d
._- a'o,_ xo- xo,+ _;r ¢"G(O)

d
=2% 6'0[- (o-o,)_+ ¢:1

]t follows from eq,mtion (B16) tirol, for x=a',,t,

and
0--0,_¢

q
?1_-?!_1 _- I1+"(;

With this value of Yoz and equation (B15),

Yo l

.r _--Xo t

If the total ordinate for l)oth ul)per and lower sides at

x=xq is denoted 1)y y,,

Y' ._4 (B17)
Xl--X0t

This result h'ads to a simph, and convenient way of choosing

axes of coordinates in order thai ¢(0) will behave smoothly

at tiw edges, that is, that, the wlhw of ¢ at the leading edge

is approxiInat(qy the mean of the wdues <>f _ at nearl>y

ordinates on lhe upper and lower sm'faces. Fo," a paral)ol_t

the latus rectum, or ordinate through the focus, is four times

the distance from the vertex to the focus. Equation (BI7)

stales that the end point of lhe skelclon chord shouhl be

al)proxinmtely the focus of a par,d)ola al lhe nose.

The schenw for choice of axes is as follows: Local.e a l)oint,

F nimr the leading edge where the or(linate through 1+'is four

limes lhe distance of F from the leading edge. Simibwly

locate a point. F' ne'w the trailing edge. The origin of coor-
(|inates lhen 1)ise('ts l he line FF', which is on the x-axis and

represents the chord of ill(, skeh,tml line airfoil ¢--0. (To

the order of _q>l)roximation employed, the aforcnlenl.ioned
ch(>ice of axes coincides with that given for the single wing

section in reference 1 or 3.)

Procedure for finding (¢, 0) from (x, y) for arbitrary

stagger angle _.--An iterative procedure is given herein for

[inding ¢(0) from (x, ?t) for arl)itrary _, in which the knowh,dge
of the case f¢)r _=()° is employed to hell> in formulating the

initi_fi al)l)roximation. In 1)ricf, wflues of 0 are obtained for

stagger angle fl--0 ° for both fin, _irfoi] mid its line skeleton.

Values of 0 are then found for the skeleton, in the case of

st a,*,w • angle f3. 1 he, e functions 1)crmit approximate values

of 0 to be found for the airfoil, for stagger angle _. Equation

(Bl2) then enables approxinmte wflues of _ to t)e ot>tained.

These values of (¢, 0) are then readily checked and improvcd_

if necessary. The steps are as follows:

(1) (?hoose the axes as outlined and express the airfoil

coordinates in percenl, chord, where the chord for this pu>

pose is the part of the x-axis intcrcvl)ted by lhe airfoil.
Denote the coordinates thus ot)taincd t>y (xp, y,). Find

,{:--f'F' in 1)erccnt chord. Find x,--xov the distance from the

h,mling edge to F in per('eD! chord, _md denote this wflue by e.
Obtain the rat.io c/d, where c means here FF' aml d is the

sl)acing t)etween corresponding points on adjacent airfoils of

the lattice. Fimt conversion factor ni by

cl
_.g__2_ -- --

dl"
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(2) Convert coordinates of the airfoil from (xp, yp) to

x, 2_ -_) follows:(27r _ as

27r d = m k
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(3) Find the parameter % that corresponds to tile deter-

mined value of c/d for the given value of fl front graph or by

calculation (equation (8)). Also find for later use the wtlue

of c/g corresponding to this wflue of 70 for fl=0 °.

(4) Consider, for this value of 70, the two straight-line

eases (@--0, _--0 °) and (¢=0, _=_); associate values of

0=0o for ¢_=0 ° with values 0--=0_ for the stagger angle /_ by

referring associated vahws of 0 to geometrically sinfilar

points of the lines (equation (B13)).
(c/g) o

(5) Multiply eoordinates in step (2) by the ratio _(c/d)_

where the chord-gap values are from step (3) for fl-0 ° and

for /_=/_. Using equation (B4), find values of 0 for _=-0 °.

(6) With the aid of step (4) obtain approximate values of

% associated with the values of 0 obtained in step (5). Then,

with 0=0_, use equation (B12) to obtain an approximate

value of ¢, where

2_y F(O)
¢=d" 2

and the leading- an(I trailing-edge values of ¢ are obtained
from equation (B15).

(7) Cah'ulate, from equations (B5) a,nd (B10), exact vahws

(X27rY)of 2_r d' _/ , associated with the initial values of (_b, 0) in

step (6) where x=xt-bx2 and Y=Ylq-?I2.

(8) If, on comparison of the coordinates in step (7) with

the coordinates in step (2), it is deemed necessary to approxi-

mate (_b, 0) more closely for several of the points (x, y), one

d_ can
procedure is the following: An expression for d(¢+i0)

be found from equations (4) to (6) as

d [- sinh (@+iO) + sinll (@4-i0) -]
_cos _]_cosh %+eosh (¢+i0) eosh 70--cosh (_b+iO)J

-i,_sm /_ksinh %÷sinh (@÷iO) sinh 7n--sinh (¢+iO)_J

With the notation of equations (B5) and (B10), this expres-

sion may be written

d-(_+ iO)

(1e-,,÷1-)--i sin _ cosh (_+iO) m p4 e-'¢4

where

/,:cos, [sinh _ cos 0 (c°;,_'A-c°; 4_2)

+cosh _ sin 0 (sin ¢,+si n *,_]
k Pl P2 /_J

+sin ¢_[sinh ¢ sin 0 \(e°_¢_+c°spa o, j-_)/

-eosh, 0 ( eLn %sin
\ P3 P4 /...]

and

--sin i_ _.eOStl I/] COS 0 (e023_3-_-C024_4)

+sinh _bsin 0 (si2 4'z ÷si; q'4)]

The following relation may then be noted:

a¢+;a0= -
p+iq (B18)

Let

where the subscril)ts 0 and 1 refer to the coordinates given

in steps (2) and (7), respeetiwdy. If the values (_k, 0)
obtained in step (fi) are used, evahmtion of equation (B18)

gives values (A_b, AO), and (_q-k_, O+AO) represents the next

al)proximation to the desired coordinates. The process in

steps (7) and (8) can be repeated if deemed necessary.
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APPENDIX C

DERIVATION OF EQUATION (12)

Tile transformation (equation (9)) from the z'- to the

z-plane may be rewritten

Z p

log z _/(z)

where the complex constants c, may be defined as

c, =a, + ibn

Oil the boundaries, z' = ae ¢+_0 and z- oe ¢°+_*; hence,

2 t

log z----_--_o+i(O--O)
fiT)(|

_--_o=_(1_ cos he+b: sin It¢) (C2)

W [ I el'e

]_ =- ae¢o

With _ considered as a function of 4) denoted by ,I,(¢), the

coefficients in equation (C2) are obtained as

1_"=;'30 ,I,(¢) cos n4) de'

b, 1f_
]?/-_rJo ,!,(¢) sin nepd¢ (C3)

Cn 1 2_ in

Substituting equation (C3) in equation (CI) yMds

f 1 £2_

R
For -_ <_ 1, ill(,

Slllllnled ll, II (1

(C4)

geometric series in equation (C4) can be

1 __7 '_ Re i¢J'(z) -_ 't,(¢) z--Re'+ dep (C5)

which can immediately be expressed as in equation (12).

For cmnputational purposes, equation (12) may be

separated into real aml imagimwy parts, l_et .((z)-p+iq

and 2---_:_,i_.1 (where, for examph,, in the zeroth approxinm-

lion x--b, y=0). Then,

1f%(+ x,t, = _ 77 dep

_,V}lel'O

1 '"

q=_ _,(¢) 17 do

. x y
A',= R cos ¢+R sin ¢--1

?/
.\5=_ sin ¢-/) cos ¢

( :x ?/sin "_--x -+-y
D=l--2 RC°SO+ R _pj_ R_

and the integrations can 1)e conveniently performed

Siml)son's rule.

by

APPENDIX D

TRANSFORMATION FROM z-PLANE TO w-PLANE

The linear fractional transformation

az+b
W=cz+d

on which the derivation of equation (13) is base(l, has the

following well-known properties:

(1) When z traverses a circle C_, w traverses a circle C_.

(2) Two points u't aml u'2 inverse with respect to a circle

C_ eorresl)ond to two points z_ and zz inv(q.';e with resl)c('t to

tile circle (;_.

(3) The anharmonic ratio of four points is tlreserved ; lhat

is, if z,, z:, z3, and z4 COITPSI)On([ tO U_I, 71;2,'_/_3, l_n([ UY4,

(z,- z_)(z_- z4) (<-.,_) (_'_-_v,)

For tile desired corr(spond(mce it is known that four points

• , S 2 __ S_
w_=b, w2=--b, t/n(] their inverse pOlllls R3:: b-_ wl--- b are

to correspond to &=fl_, z2=--_.2 and their inverse I)oints
R _ --R _

za =_, z+-- _., ]'rol)erty (3) yiehls a relation that may I)e

used to solve for the radius S and that can Iw expresse(l by

equations (15) and (16). When the radius of tile circle in
the w-t)hme has heen determined, pml)evty (3) can again be

used I)y replacing: say, w_ t)y u, and z_ by z. 'l'his ]lrocedure

will yield a result that is equivalent to e(tualion (13).
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APPENDIX E

OUTLINE OF CALCULATION PROCEDURE

(1) last airfoil-section coordinates in percent chord.
(2) Choose axes (appendix B, paragraph following equa-

tion (B17)).
(3) List stagger angle _ and find 3'0 and value of e/d for

the skeleton line lattice (table I, fig. 2, and equation (8)).
(4) Find (¢, 0) (appendix B).
(5) Find e(4_) (equation (10)) by method given in appendix

of reference 3.

(6) Plot ¢ against ¢ where q)=O+t. Find constant ¢0
(equation (ll)) and R=a# o.

(7) Find complex constants ¢h and /_2 (equation (12) and
appendix C).

(8) Find constants cosh "y,, 3'1, S, and K=k_+ik2 (equa-
tions (16), (15), and (14)).

(9) Find complex constant (_=l_le t_ (equation (26)) and
real constant X (equation (27)). Also obtain functions
m(4,) and u(6) from equation (29).

(10) Find _ and, in particular, a0 (equation Ca0)).
(11) Evaluate factors B, C, D, and E (equation (35)).
(12) Evaluate factor A in equation (35), first choosing

the angle of attack a as indicated in the following l)aragraphs:
The lift coefficient is as in equation (37)

1 I' d IZLI- I'L2
eL=4 c/d 2Vd =2 c -- V

ltere c/d refers to the value of z/d at 0 percent chord minus
x/d at 100 percent chord. By using equation (19) for I'/2I'd,
Cr, may t>e expressed as

where

and

C,_=H sin (aA-n) (El)

dF( cos ¢o ,_2+( sin _o _27}6
H--4 c[_\cosli 3,i/ \shfl_ 3,;/_]

(sin _o cosh "(_'_
n=tan-_ ,,cos _0 sinh "n/

This relation may be used to find a for any desired value
of Ca and it is further noted that a=--n is the angh, of zero
lift.

The "ideal" angle of attack, introduced by Theodorsen, is
defined for a thin section as the angle of attack for which a
stagnation point exists not only at the sharp trailing edge
but also at the sharp leading edge. For thick airfoils, the
ideal angle of attack is defincd in the same manner (the
pressure difference at the leading edge vanishes) although

the point that is considered the leading-edge point is not
precisely defined. If this point is taken to be the intersection
of the x-axis with the airfoil leading edge, the ideal lift and
ideal angle of attack are found as follows: Let a_ be the value

of a corresponding to the leading-edge point. The quantity

I_ in equation (24) (or the factor A in equation (35))
itvw

vanishes for _=_. The relation that gives the value of.
the ideal angle of attack a=ai is then

sin a cosh 7_ sin a_--sin a0
cos a----sinh "el cos al--cos a0

and the ideal lift coefficient, from equation (El), is

where

J:=[cosh

CLr=_4d 1 1c 3 cos _ (_,-_0)

] [ 1 ]2
1 2+ _'l_ cos _(_1+_o) sinh sin _('I+_0)

(13) The surface velocity ratio v/V is now found from
equation (:35) and the (mean) superstream pressure is found

from Bernoulli's equation as

_P=l_//v'_ '
q \vj

The angle through which the stream is turned may t)e found
from equation (23).

A remark may 1)e inserted here regarding an inverse
calculation 1)roe(,dure. Instead of starting with a given
lattice, it may })e convenient to start with given function
,F(¢), (quantity ¢_as a function of 4,) and given parameters
_0 and _. Then both the lattice arrangement and the flow
properties follow uniquely and, in this way, systematic
families of lattices can t)e studied.
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Axis

Positive directions of axes and angles (forces and moments) are shown by arrows - "_'5--

I
i

Designation Sym-
bol

Longitudinal ........
Lateral ................
Normal ...............

X
Y
Z

Absolute coefficients of moment
L 214

c,= s
(rolling) (pitching)

Force
(paraUel
to axis)
symbol

X
Y
g

Moment about axis

Designation

Rolling .......
Pitching ......
Yawing ......

Sym-
bol

L
M
N

_Positive
direction

(yawing)

4. PROPELLER SYMBOLS

D Diameter

p Geometric pitch P

p/D Pitch ratio
re" Inflow velocity C,

V, Slipstream velocity
T

T Thrust, absolute coefficient Cr=pn2D _ n

__ Q +
Q Torque, absolute coefficient 0--7_-2_

Anglo

Designa-tion 8_Y_I"

Roll .........
Pitch ........ O

i Yaw ........ I

1 hp=76.04 kg-m/s=550 ft-lb/sec

1 metric horsepower=0.9863 hp

1 mph=0.4470 raps

1 raps=2.2369 mph

Angle of set of control surface.
position), & (Indicate

Power, absolute

Efficiency

Revolutions per se_6nd

Effective helix

$

Speed-power coefficient--.

5. NUMERICAL RELATIONS

1 1b--0.4536 kg

1 kg-----2.2046 lb
1 mi=1,609.35 m=5,280 f_
1 m=3.2808 ft




