Flow Accelerated Corrosion Experience at Comanche Peak Steam Electric Station

PDF Version Also Available for Download.

Description

Flow accelerated corrosion (FAC) is a major concern in the power industry as it causes thinning of the pipes by the dissolution of the passive oxide layer formed on the pipe surface. Present research deals with comparing the protection offered by the magnetite (Fe3O4) versus maghemite (γ-Fe2O3) phases thickness loss measurements. Fourier transform infrared spectroscopy (FTIR) is used in distinguishing these two elusive phases of iron oxides. Representative pipes are collected from high pressure steam extraction line of the secondary cycle of unit 2 of Comanche Peak Steam Electric Station (CPSES). Environmental scanning electron microscopy (ESEM) is used for morphological ... continued below

Creation Information

Nakka, Ravi Kumar May 2008.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 2652 times , with 31 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Nakka, Ravi Kumar

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Flow accelerated corrosion (FAC) is a major concern in the power industry as it causes thinning of the pipes by the dissolution of the passive oxide layer formed on the pipe surface. Present research deals with comparing the protection offered by the magnetite (Fe3O4) versus maghemite (γ-Fe2O3) phases thickness loss measurements. Fourier transform infrared spectroscopy (FTIR) is used in distinguishing these two elusive phases of iron oxides. Representative pipes are collected from high pressure steam extraction line of the secondary cycle of unit 2 of Comanche Peak Steam Electric Station (CPSES). Environmental scanning electron microscopy (ESEM) is used for morphological analysis. FTIR and X-ray diffraction (XRD) are used for phase analysis. Morphological analysis showed the presence of porous oxide surfaces with octahedral crystals, scallops and "chimney" like vents. FTIR revealed the predominance of maghemite at the most of the pipe sections. Results of thickness measurements indicate severe thickness loss at the bend areas (extrados) of the pipes.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2008

Added to The UNT Digital Library

  • Oct. 2, 2008, 4:44 p.m.

Description Last Updated

  • Oct. 16, 2008, 10:40 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 1
Past 30 days: 31
Total Uses: 2,652

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nakka, Ravi Kumar. Flow Accelerated Corrosion Experience at Comanche Peak Steam Electric Station, thesis, May 2008; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc6072/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .