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CHAPTER 1

INTRODUCTION

1.1. Discussion of the Problems, Methods and Previous Results

In this dissertation we look for radial solutions for a p-Laplacian equation and a nonlinear

laplacian equation.

There has been extensive study of the partial differential equation

(1) ∆u + f(u) = 0 in Ω

(2) u = 0 on ∂Ω

where Ω ⊂ RN is an open bounded domain with smooth boundary ∂Ω and f(u) is a

nonlinear function.

The standard way to proceed is to attempt to find critical points of the nonlinear func-

tional

(3) E(u) =

∫
Ω

1

2
|∇u|2 − F (u) dx

where F (u) =
∫ u

0
f(t) dt over an appropriate function space. Assuming there is a critical

point u0 with u0 = 0 on ∂Ω then for any smooth function v with v = 0 on ∂Ω we obtain that

(4) 0 =
d

dt
[E(u0 + tv)] |t=t0 =

∫
Ω

∇u0 · ∇v − f(u)v dx.

Applying Green’s formula we therefore obtain

(5) 0 =

∫
Ω

[∆u0 + f(u0)]v dx

for all v hence it follows that u0 satisfies (1)-(2). The usual function space used is W 1,2
0 (Ω):

the closure of C∞
0 (Ω) with respect to

|u|W 1,2
0 (Ω) = |∇u|L2(Ω).
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There are several challenges which arise in attempting to carry this procedure out. First,

one needs to have some way of finding a critical point of (3). One standard way of doing this

requires applying the Mountain Pass Lemma to the functional E(u) (see [15]). A standard

assumption on f(u) which guarantees that the assumptions of the Mountain Pass Lemma

apply is that f(u) grows slower than up where p < N+2
N−2

. For this reason N+2
N−2

is called the

“critical exponent” of the Laplacian operator. See [4] for the Mountain Pass Lemma and

the critical exponent.

In fact, for any convex region Ω, the critical and supercritical growth of f is a real

obstruction to existence of solutions of (1)-(2). The Pohozaev Identity (see [3]) states that

any solution of (1)-(2) must satisfy:∫
Ω

[NF (u)− N − 2

2
uf(u)] dx =

∫
∂Ω

1

2
|∇u|2(x · n) dS

where n is the outward unit normal to ∂Ω. In particular, if f(u) = |u|p−1u and p ≥ N+2
N−2

and

Ω is a convex region then there are no nontrivial solutions of (1)-(2).

However, assuming that a critical point of (3) exists, one then needs to establish the

regularity of the critical point. That is, one needs to show that if u ∈ W 1,2
0 (Ω) and (4) holds

then in fact u ∈ C2(Ω) ∩C0(Ω) and is equal to zero on ∂Ω. Once this has been established,

one can apply (5) and obtain finally a solution of (1)-(2).

In a groundbreaking paper in 1979, B. Gidas, W. Ni, and L. Nirenberg [7] proved that if Ω

is a ball then all positive solutions of (1)-(2) are spherically symmetric. That is, u(x) = u(|x|)

so that u(x) only depends on the distance of x to the origin. This remarkable result allows

one to reduce the study of positive solutions of (1)-(2) when Ω is a ball to the corresponding

ordinary differential equation obtained by substituting u(x) = u(|x|) = u(r) where r = |x|.

This yields:

(6) u′′ +
N − 1

r
u′ + f(u) = 0 for 0 < r < R

(7) u(R) = 0.
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A variation of this problem is when (7) is replaced by

(8) lim
r→∞

u(r) = 0.

Strauss [17] and Berestycki and Lions [1] have proved the existence of infinitely many

radially symmetric solutions of (6)-(7) by variational methods when f(u) is odd. Then it was

an open question as to whether solutions exist with prescribed number of zeros. Jones and

Küpper [10] addressed this question using a dynamical systems approach and an application

of the Conley index.

In general, the set of radial solutions has been extensively studied. See Haraux and

Weissler [8], Lions [11], McLeod and Serrin [12], and Peletier and Serrin [14].

A standard way to proceed is to use the so-called “shooting” method. That is, one first

solves the initial value problem (6) along with

(9) u(0) = d

and

(10) u′(0) = 0.

One then varies the parameter d to hopefully obtain a solution satisfying (7) or (8).

One of the well-known papers proving existence of solutions of (6)-(7) was by A. Castro

and A. Kurepa [3] in which they proved the existence of infinitely many solutions of (6)-(7)

for nonlinearities which are superlinear (i.e. lim
u→∞

f(u)

u
= ∞) and subcritical. They use a

delicate phase plane analysis to establish the existence of solutions of (6)-(7) with many

zeros. In this thesis one of the things we present is an alternate proof of this result. The

proof presented here seems more natural and more easily applicable to other problems. We

feel confident that this method will allow us to prove a result similar to (6)-(7) for the p-

Laplacian and the result proved in McLeod, Troy and Weissler [13]. There are numerous

technical facts in the Castro and Kurepa paper which can be difficult to follow and the proof

that we provide seems much more straightforward. We simply divide the domain into two
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regions: one where |u| is large and the other when |u| is small. When |u| is small we can

approximate u by the solution of a well-understood linear problem and when |u| is large we

can easily estimate the size of u.

In mathematics, alternate proofs have always been significant as they can give a simpler

proof which indeed can help others to appreciate and also bring more people to the field. For

example, in 1799 Gauss gave his first proof to the fundamental theorem of algebra and also

stated his objections to other proofs that existed; this was his doctoral thesis. In fact Gauss

also gave two more different proofs for the same theorem. In mathematics there is also a

history that conjectures are made by someone and proved by someone else. For example,

the prime number theorem was conjectured by Legendre in 1796. Around 1850, Chebyshev

proved it using the zeta function. However, in 1949 Selberg gave a more elementary proof

and around the same time independently Paul Erdos also contributed an elementary proof.

A natural extension of (1)-(2) is

(11) ∆pu + f(u) = 0 in Ω

(12) u = 0 on ∂Ω

where ∆pu = ∇ · (|∇u|p−2∇u) is the p-Laplacian of u. Solutions of (11)-(12) arise as critical

points of

(13) E(u) =

∫
Ω

p− 1

p
|∇u|p − F (u) dx.

Here the usual function space is W 1,p
0 (Ω): the closure of C∞

0 (Ω) with respect to

|u|W 1,p
0 (Ω) = |∇u|Lp(Ω).

Equation (11) has been studied in different settings. Gazzola, Serrin and Tang [6] have

proved existence of radial solutions to (11) with Dirichlet and Neumann boundary condi-

tions. Calzolari, Filippucci and Pucci [2] have proved existence of radial solutions for the

p-Laplacian with weights.
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Here we look for radial solutions of (11)-(12) in RN . That is we attempt to solve

|u′|p−2

[
(p− 1)u′′ +

N − 1

r
u′
]

+ f(u) = 0

and

lim
r→∞

u(r) = 0

where f(u) grows like |u|q−1u with 1 < p < q + 1 < Np
N−p

.

This is a generalization of [13] where it is assumed that p = 2. Again we use the shooting

method and first solve:

|u′|p−2

(
(p− 1)u′′ +

N − 1

r
u′
)

+ f(u) = 0

u(0) = d

u′(0) = 0.

Then we vary the parameter d so that lim
r→∞

u(r) = 0.
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CHAPTER 2

THE PROBLEMS

2.1. Discussion of the Problems, Methods and Previous Results

In this dissertation we talk about two results. In the first result we look for localized

radial solutions of nonlinear p-Laplacian equation in RN . And in the second result we look

for infinitely many radially symmetric solutions for a superlinear dirichlet problem in a ball.

2.1.1. Result 1

Here is the introduction and motivation to the first result:

In this paper we look for solutions u : RN → R of the nonlinear partial differential

equation

(14) ∇ · (|∇u|p−2∇u) + f(u) = 0,

(15) lim
|x|→∞

u(x) = 0,

with 1 < p < N . We also assume f(u) behaves like |u|q−1u where u is large and f(u) < 0

for small positive u.

Motivation: When p = 2 then (14) is

∆u + f(u) = 0.

McLeod, Troy and Weissler studied the radial solutions of the above mentioned equation in

[13]. In this paper they made a remark that their result could be extended to the p-Laplacian.

In this paper we show that their conjecture is true. Also, Castro and Kurepa studied

∆u + g(u) = 0,

subject to Dirichlet boundary conditions on a ball in RN, where g is superlinear in [3].

We assume that the function f satisfies the following hypotheses:
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(H1) f is an odd locally Lipschitz continuous function,

(H2) f(u) < 0 for 0 < u < ε1 for some ε1 > 0,

(H3) f(u) = |u|q−1u + g(u) with
g(|u|)
|u|q

→ 0 as |u| → ∞ where 1 < p < q + 1 < Np
N−p

.

From (H2) and (H3) we see that f(u) has at least one positive zero.

(H4) Let α be the least positive zero of f and β be the greatest positive zero of f,

(H5) Let F (u) ≡
∫ u

0
f(s)ds with exactly one positive zero γ, with γ > β,

(H6) If p > 2 we also assume for some ε2 > 0∫ ε2

0

1
p
√
|F (u)|

du =∞.

We assume that u(x) = u(|x|) and let r = |x|. In this case (14)-(15) becomes the

nonlinear ordinary differential equation

(16)
1

rN−1
(rN−1|u′|p−2u′)′ + f(u) = |u′|p−2

(
(p− 1)u′′ +

N − 1

r
u′
)

+ f(u) = 0

for 0 < r <∞, with

(17) lim
r→∞

u(r) = 0, lim
r→0+

u′(r) = 0.

We would like to find C2 solutions of (16)-(17) but we will see later that this is not always

possible (see the proof of Lemma (3.6)). However multiplying (16) by rN−1 and integrating

gives

(18) rN−1|u′|p−2u′ = −
∫ r

0

tN−1f(u)dt.

Instead of looking for solutions of (16)-(17) in C2 we look for solutions of (17)-(18) in C1.

Main Theorem

Let the nonlinearity f have the properties (H1)-(H6), and let n be a nonnegative integer.

Then there is a solution u ∈ C1[0,∞) of (17)-(18) such that u has exactly n zeros.

The technique used to solve (17)-(18) is the shooting method. That is, we first solve the

initial value problem

rN−1|u′|p−2u′ = −
∫ r

0

sN−1f(u(s))ds

7



u(0) = d ≥ 0.

By varying d appropriately, we attempt to find a d such that u(r, d) has exactly n zeros and

u solves (18). In chapter 3 section 1, we establish the existence of solutions of this initial

value problem by the contraction mapping principle. In section 2.2 we show why we look

for C1 solutions instead of C2 solutions. In sections 3.2.1 and 3.2.2 we prove some technical

lemmas. In section 3.3 we show the uniqueness property of the initial value problem which

we use several times. In chapter 4 section 1, we see that after a rescaling of u we get a family

of functions {uλ}, which converges to the solution of

−rN−1|v′|p−2v′ =

∫ r

0

sN−1|v|q−1vds,

v(0) = 1,

where 1 < p < q + 1 < Np
N−p

. We will then show that v has infinitely many zeros which will

imply that there are solutions, u, of (18) with any given number of zeros. In chapter 5 we

prove our Main Theorem.

Note: From (H3) and (H5) we see that

(19) F (u) =
1

q + 1
|u|q+1 + G(u),

where G(u) =
∫ u

0
g(s)ds. Dividing both sides by |u|q+1 and taking the limit as |u| → ∞ gives

(20) lim
|u|→∞

F (u)

|u|q+1
= lim

|u|→∞

(
1

q + 1
+

G(u)

|u|q+1

)
.

Using L’Hopital’s rule and (H3) we see that

(21) lim
u→∞

G(u)

|u|q+1
= 0.

Thus, we have

lim
|u|→∞

F (u)

|u|q+1
=

1

q + 1
.

This implies that F (u) ≥ 0 for |u| sufficiently large, so F (u) ≥ 0 for |u| ≥ M . Also since F

is continuous on the compact set [−M, M ] we see that F is bounded below and there is a
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−L < 0 such that

(22) F (u) ≥ −L

for all u.

Note: When 1 < p ≤ 2, then assumption (H6) also holds. This follows from (H1). The

details of this are as follows: since f is locally Lipschitz and since f(0) = 0 we have

|f(u)| = |f(u)− f(0)| ≤ c|u− 0| = c|u|

for |u| < ε2 for some ε2 > 0, and where c > 0 is a Lipschitz constant for f in a neighborhood

of u = 0. Integrating on (0, u) where 0 ≤ u ≤ ε2 gives:

−
∫ u

0

ctdt ≤
∫ u

0

f(t)dt ≤
∫ u

0

ctdt.

Thus,

−cu2

2
≤ F (u) ≤ cu2

2

for |u| < ε2. So, |F (u)| ≤ cu2

2
for |u| ≤ ε2. Thus, |F (u)|

1
p ≤

( c

2

) 1
p
u

2
p for |u| < ε2. Hence,

∫ ε2

0

1

|F (u)|
1
p

du ≥
(

2

c

) 1
p
∫ ε2

0

1

u
2
p

du =∞, if 1 < p ≤ 2.

2.1.2. Result 2

Here is the introduction and motivation for result 2: We look for radial solutions u :

RN → R of the partial differential equation

(23)


∆u + f(u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

for N ≥ 2 and where Ω is the ball of radius T centered at the origin in RN , ∆ is the Laplacian

operator, and f : R→ R is a continuous function.

Motivation: A. Castro and A. Kurepa proved existence of solutions of (23) for a wide

variety of nonlinearities See [3]. In this paper we give an alternate proof of this result.

We assume that the function f satisfies the following hypotheses:

(H1’) f(0) = 0, f is a locally lipschitz continuous function and increasing for large u,

9



(H2’)

lim
|u|→∞

f(u)

u
=∞,

(H3’) Let F (u) =
∫ u

0
f(s)ds,

(H4’) There exists a k with 0 < k ≤ 1, such that

lim
u→∞

(
NF (ku)− (N − 2)

2
uf(u)

)(
u

f(u)

)N
2

=∞

(H4*) There exists a k with 0 < k ≤ 1, such that

lim
u→−∞

(
NF (ku)− (N − 2)

2
uf(u)

)(
u

f(u)

)N
2

=∞

(H5’) There exists an M > 0 such that

NF (u)− N − 2

2
uf(u) > −M

for all u.

Note: It follows from (H2’) and by L’Hopitals Rule that

(24) lim
|u|→∞

F (u)

u2
=∞.

We assume that u(x) = u(|x|) and let r = |x|. In this case (23) becomes the nonlinear

ordinary differential equation

(25) u′′ +
N − 1

r
u′ + f(u) = 0, for 0 < r < T,

(26) u′(0) = 0, u(T ) = 0.

Main Theorem: If (H1’)-(H5’) are satisfied then (23) has infinitely many radially sym-

metric solutions with u(0) > 0. If in place of (H4’) we have (H4*) then (23) has infinitely

many radially symmetric solutions with u(0) < 0.

Again we solve the initial value problem

u′′ +
N − 1

r
u′ + f(u) = 0, for 0 < r < T

u(0) = d

u′(0) = 0.

10



Then we try to find appropriate values of d so that u(T ) = 0.

In chapter 6 section 1 we the solve the initial value problem and also show that energy

increases as d increases. In chapter 7 section 1 we use Bessel’s equation. In section 7.2 we

show that u has a zero. In section 7.3 we prove an important lemma. In chapter 8 we prove

the main result.
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CHAPTER 3

EXISTENCE OF SOLUTIONS OF THE INITIAL VALUE PROBLEM

3.1. Existence by Contraction Mapping

In this section we use contraction mapping principle to show the existence of the a

solution to the initial value problem

(27) rN−1|u′|p−2u′ = −
∫ r

0

sN−1f(u(s))ds,

with

(28) u(0) = d ≥ 0.

We define Φp(x) = |x|p−2x for x ∈ R and p > 1. Note that the inverse of Φp(x) is Φp′(x)

where 1
p

+ 1
p′

= 1, that is p′ = p
p−1

. Note that both Φp and Φp′ are odd for every p. Now

dividing (27) by rN−1, gives

(29) |u′|p−2u′ =
−1

rN−1

∫ r

0

sN−1f(u(s))ds.

Using the definition of Φp, we get

Φp(u
′) =

−1

rN−1

∫ r

0

sN−1f(u(s))ds.

Now applying Φp′ on both sides, leads to

u′ = −Φp′

(
1

rN−1

∫ r

0

sN−1f(u(s))ds

)
.

Integrating this again on (0, r) and using the initial condition u(0) = d gives

u = d−
∫ r

0

Φp′

(
1

tN−1

∫ t

0

sN−1f(u(s))ds

)
dt.

We will solve (27)-(28) by finding fixed points of

(30) Tu = d−
∫ r

0

Φp′

(
1

tN−1

∫ t

0

sN−1f(u(s))ds

)
dt.

12



Note that if f(d) = 0, then u ≡ d is a solution of (27)-(28). So, we now assume that

(31) f(d) 6= 0.

Let Bε
R(d) = {u ∈ C[0, ε], ||u− d|| ≤ R} for ε and R small enough and where || · || is the

supremum norm, and C[0, ε] is the set of continuous functions on [0, ε].

Lemma 3.1. Let f(d) 6= 0. Then T : Bε
R(d)→ Bε

R(d) for ε and R small enough.

Proof. Let u ∈ Bε
R(d) and R > 0, then by (30) we have

|Tu− d| ≤
∫ r

0

∣∣∣∣Φp′

(
1

tN−1

∫ t

0

sN−1f(u(s))ds

)∣∣∣∣ dt.

Since f is a continuous function on [d
2
, 3d

2
], there exists an M such that |f | ≤M . So, on [0, ε]

and for ε small enough we have the following

|Tu− d| ≤
∫ r

0

[
1

tN−1

∫ t

0

sN−1Mds

] 1
p−1

dt

=

∫ r

0

1

t
N−1
p−1

[∫ t

0

sN−1Mds

] 1
p−1

dt

=

(
M

N

) 1
p−1
∫ r

0

1

t
N−1
p−1

t
N

p−1 dt

=

(
M

N

) 1
p−1
∫ r

0

t
1

p−1 dt

=
p− 1

p

(
M

N

) 1
p−1

r
p

p−1

≤ p− 1

p

(
M

N

) 1
p−1

ε
p

p−1

< R.
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Therefore, T : Bε
R(d)→ Bε

R(d) for ε and R small enough. �

Lemma 3.2. Let f(d) 6= 0. Then T : Bε
R(d)→ Bε

R(d) is a contraction mapping for R and ε

chosen small enough.

Proof. Since f(d) 6= 0, and d ≥ 0 then d > 0. Let u, v ∈ Bε
R(d) and choose R so that

0 < R < d
2
. Also,

(32) Tu− Tv = −
[∫ r

0

Φp′(X(u))dt−
∫ r

0

Φp′(X(v))dt

]
,

where

(33) X(u) =
1

tN−1

∫ t

0

sN−1f(u(s))ds.

Note p′ = p
p−1

, p′ − 1 = 1
p−1

and p′ − 2 = 2−p
p−1

. For a fixed t, by the mean value theorem we

have

(34) Φp′(X(u))− Φp′(X(v)) = Φ′
p′(c)(X(u)−X(v)),

where

c =
1

tN−1

∫ t

0

sN−1[λf(u) + (1− λ)f(v)]ds

for some 0 < λ < 1, and where

(35) Φ′
p′(c) = (p′ − 1)|c|p′−2 =

1

p− 1
|c|

2−p
p−1 .

Thus,

Φ′
p′(c) =

1

p− 1

∣∣∣∣ 1

tN−1

∫ r

0

sN−1(λf(u) + (1− λ)f(v))ds

∣∣∣∣ 2−p
p−1

(36) Φ′
p′(c) =

1

(p− 1)t
(N−1)(2−p)

p−1

∣∣∣∣∫ t

0

sN−1|λf(u) + (1− λ)f(v)|ds

∣∣∣∣
2−p
p−1

.

We now estimate ∫ t

0

sN−1|λf(u) + (1− λ)f(v)|ds.

Case (i): 1 < p ≤ 2. Since |f | ≤M this gives the following∫ t

0

sN−1|λf(u) + (1− λ)f(v)|ds ≤
∫ t

0

MsN−1ds =
MtN

N
.
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For 1 < p ≤ 2, we have

(37)

[∫ t

0

sN−1|λf(u) + (1− λ)f(v)|ds

] 2−p
p−1

≤
[
MtN

N

] 2−p
p−1

= C1t
N(2−p)

p−1 ,

where C1 = (M
N

)
2−p
p−1 .

Case (ii): 2 < p. Since f is continuous and f(d) 6= 0 (by assumption), let ε = |f(d)|
2

. Then

there is a δ > 0 such that for every y with |y − d| < δ, |f(y)− f(d)| < ε = |f(d)|
2

.

By the triangular inequality it follows that

|f(d)| ≤ |f(y)|+ |f(d)− f(y)|,

and since |f(d)− f(y)| ≤ |f(d)|
2

this gives

|f(d)| ≤ |f(y)|+ |f(d)|
2

.

Thus, we have

(38) 0 <
|f(d)|

2
≤ |f(y)|

for all y with |y − d| < δ. Note now that if |u− d| < δ and |v − d| < δ, then both f(u) and

f(v) are of the same sign; for if f(u) > 0 and f(v) < 0 then there is a w between u and v

such that |w − d| < δ and f(w) = 0 which contradicts (38). Now using (38) and the fact

that f(u) and f(v) are of the same sign we have the following estimate:

|λf(u) + (1− λ)f(v)| = λ|f(u)|+ (1− λ)|f(v)|

≥ λ
|f(d)|

2
+ (1− λ)

|f(d)|
2

=
|f(d)|

2
.

For p > 2 we have[∫ t

0

sN−1|λf(u) + (1− λ)f(v))|ds

] 2−p
p−1

≤
[∫ t

0

sN−1 |f(d)|
2

] 2−p
p−1

=

(
|f(d)|

2

) 2−p
p−1
(

tN

N

) 2−p
p−1

.

15



So,

(39)

[∫ t

0

sN−1|λf(u) + (1− λ)f(v))|ds

] 2−p
p−1

≤ C2t
N(2−p)

p−1 ,

where C2 = ( |f(d)|
2N

)
2−p
p−1 .

Now plugging (37) and (39) into (36) we get

(40) Φ′
p′(c) ≤

1

p− 1

1

t
(N−1)(2−p)

p−1

Ct
N(2−p)

p−1 =
Ct

2−p
p−1

p− 1
,

where C = C1, if 1 < p ≤ 2 and C = C2, if p > 2. Now using (40) in (34), we have

(41) |Φp′(X(u))− Φp′(X(v))| ≤ C

p− 1
t

(2−p)
p−1 |X(u)−X(v)|.

Then by (33), it follows that

|X(u)−X(v)| ≤ 1

tN−1

∫ t

0

sN−1|f(u)− f(v)|ds.

By (H1), f is locally Lipschitz, therefore |f(u)−f(v)| ≤ C3||u−v||, where C3 is the Lipschitz

constant for f on [d
2
, 3d

2
]. Thus,

|X(u)−X(v)| ≤ 1

tN−1

∫ t

0

sN−1C3||u− v||ds

=
C3||u− v||tN

NtN−1

=
C3||u− v||t

N
.

Utilizing this in (41), we have

|Φp′(X(u))− Φp′(X(v))| ≤ CC3t
2−p
p−1 t||u− v||

(p− 1)N

=
Kt

1
p−1 ||u− v||
(p− 1)N

where K = CC3. Then by (32) and the above inequality, we get

||T (u)− T (v)|| ≤
∫ r

0

Kt
1

p−1 ||u− v||
(p− 1)N

dt

=
K||u− v||
(p− 1)N

∫ r

0

t
1

p−1 dt

16



=
Kr

p
p−1 ||u− v||(p− 1)

(p− 1)Np

=
Kr

p
p−1 ||u− v||

pN

≤ K||u− v||ε
p

p−1

pN

= ω||u− v||,

where ω = Kε
p

p−1

pN
< 1 for ε small enough. Therefore, T is a contraction mapping on Bε

R(d).

�

Now by the contraction mapping principle, T has a unique fixed point u ∈ Bε
R(d) for

R > 0 and ε > 0 small enough. Hence, u ∈ C[0, ε] and

(42) u = T (u) = d−
∫ r

0

Φp′

(
1

tN−1

∫ t

0

sN−1f(u(s))ds

)
dt.

Now we show that u is in C1 on a small interval

Lemma 3.3.

lim
t→0

1

tN−1

(∫ t

0

sN−1f(u(s))ds

)
= 0.

Proof. Since f is a continuous function and so is bounded on say [0, 1], there exists an

M > 0 such that |f | ≤M on [0, 1]. Now consider∣∣∣∣ 1

tN−1

(∫ t

0

sN−1f(u(s))ds

)∣∣∣∣ ≤ 1

tN−1

(∫ t

0

|sN−1f(u(s))ds|
)

≤ 1

tN−1

(∫ t

0

sN−1Mds

)
=

tM

N
.

Clearly,
tM

N
→ 0 as t→ 0 and hence the lemma follows. �

Note Hence, Φp′

(
1

tN−1

∫ t

0
sN−1f(u(s))ds

)
is continuous on [0, ε]. So by (27), u′ is defined

and is continuous on (0, ε).

17



Lemma 3.4.

u′(0) = 0.

Proof. By definition,

u′(0) = lim
h→0

u(h)− u(0)

h
= lim

h→0

∫ h

0
−Φp′(

1
tN−1

∫ t

0
sN−1f(u(s))ds)dt

h
.

Now we consider∣∣∣∣∣∣
∫ h

0
Φp′

(
1

tN−1

(∫ t

0
sN−1f(u(s))ds

)
dt
)

h

∣∣∣∣∣∣ ≤
∫ h

0
( 1

tN−1 |
∫ t

0
sN−1f(u(s))ds|)

1
p−1 dt

h

≤ 1

h

∫ h

0

1

t
N−1
p−1

(
M

N

) 1
p−1

t
N

p−1 dt

=
1

h

∫ h

0

(
M

N

) 1
p−1

t
1

p−1 dt

=
p− 1

p

(
M

N

) 1
p−1 h

p
p−1

h

=
p− 1

p

(
M

N

) 1
p−1

h
1

p−1 .

Clearly,
(p− 1)

p

(
M

N

) 1
p−1

h
1

p−1 → 0 as h→ 0 and hence the result follows. �

Lemma 3.5.

lim
r→0

u′(r) = 0.

Proof. Taking absolute values and taking the limit as r → 0 in equation (29) we get

lim
r→0
|u′|p−1 = lim

r→0

∣∣∣∣ −1

rN−1

∫ r

0

sN−1f(u(s))ds

∣∣∣∣
and from Lemma (3.3) we have that the right hand side is 0. Thus, lim

r→0
u′(r) = 0. �

Thus, u ∈ C1[0, ε].

In the following section we explain why we aim at solutions of (17)-(18) instead of solu-

tions of (16)-(17).
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3.2. Why C1 Solutions

Lemma 3.6.

u ∈ C2[0, ε)

if 1 < p ≤ 2 and

u ∈ C2{r ∈ [0, ε)|u′(r) 6= 0}

if p > 2.

Proof. Recall that after differentiating (42) we have

−u′ = Φp′

(
1

rN−1

∫ r

0

tN−1f(u)dt

)
.

Since Φp′(x) = |x|p′−2x, so Φ′
p′ = (p′ − 1)|x|p′−2. Since p′ − 2 =

2− p

p− 1
, we see that Φ′

p′ is

continuous for all x, if 1 < p ≤ 2 and Φ′
p′ is continuous at all x 6= 0, if p > 2.

Let

k(r) =
1

rN−1

∫ r

0

tN−1f(u)dt.

By Lemma (3.3), k is continuous on [0, ε). Now,

k′(r) =

[
−(N − 1)

rN

∫ r

0

tN−1f(u)dt + f(u)

]
so k′ continuous on (0, ε).

Claim: k′ is continuous on [0, ε).

Proof of the Claim: We do this in two steps:

Step 1: We show k′(0) = f(d)
N

.

By definition

k′(0) = lim
r→0

k(r)− k(0)

r − 0

= lim
r→0

1
rN−1

∫ r

0
tN−1f(u)dt− 0

r − 0

= lim
r→0

∫ r

0
tN−1f(u)dt

rN
.

Applying L’Hopital’s rule gives k′(0) =
f(d)

N
.

Step 2: We show lim
r→0

k′(r) = k′(0) =
f(d)

N
.
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Differentiating k(r) and taking the limit as r → 0 gives

lim
r→0

k′(r) = lim
r→0

−(N − 1)

rN

∫ r

0

tN−1f(u)dt + f(u)

=
−(N − 1)

N
f(d) + f(d)

=
f(d)

N
.

We get the second equality by using L’Hopital’s rule.

Steps 1 and 2 imply that k′ is continuous on [0, ε).

Finally, by the chain rule and (27) we see u′ is differentiable and that

−u′′ = Φ′
p′

(
1

rN−1

∫ r

0

tN−1f(u)dt

)
k′(r)

= (p′ − 1)

∣∣∣∣ 1

rN−1

∫ r

0

tN−1f(u)dt

∣∣∣∣p′−2 [−(N − 1)

rN

∫ r

0

tN−1f(u)dt + f(u)

]

=
1

p− 1

∣∣∣∣ 1

rN−1

∫ r

0

tN−1f(u)dt

∣∣∣∣ 2−p
p−1
[
−(N − 1)

rN

∫ r

0

tN−1f(u)dt + f(u)

]
=

1

p− 1
|u′|2−p

[
−(N − 1)

rN

∫ r

0

tN−1f(u)dt + f(u)

]
.

By the previous claim, k′ is continuous. Note that |u′|2−p is continuous for 1 < p ≤ 2 and

|u′|2−p is continuous at all points where u′ 6= 0 for p > 2 and hence the lemma follows. �

Remark: If p > 2, u′(r0) = 0, and f(u(r0)) 6= 0, then u′′(r0) is undefined.

To see this, suppose on the contrary that u′′(r0) is defined. Using the fact that u′(r0) = 0,

(27) becomes

−rN−1|u′|p−2u′ =

∫ r

r0

tN−1f(u)dt.

Dividing by (r − r0) and taking the limit as r → r0 gives

lim
r→r0

−rN−1|u′|p−2

(
u′

r − r0

)
= lim

r→r0

∫ r

r0
tN−1f(u(t))dt

(r − r0)
.
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Using L’ Hopital’s rule we obtain

0 = −|u′(r0)|p−2u′′(r0) = f(u(r0)).

Thus, |f(u(r0))| = 0 which is a contradiction to our assumption that f(u(r0)) 6= 0. Thus,

u′′(r0) is undefined.

Remark: If p > 2, u′(r0) = 0, and f(u(r0)) = 0, then it is not clear whether u is C2 in a

neighborhood of r0 when u′(r0) = 0. However, for the purposes of this paper a more detailed

analysis of this situation is not needed.

To prove the following two lemmas, let [0, R) be the maximal interval of existence for

which u is a solution for (27)-(28).

Our goal is to show that u solves (27)-(28) on [0,∞). So, we aim at proving R =∞, and

we will do this in two lemmas. In the first lemma we show that if R <∞ then the limits of u

and u′ as r → R− are defined. Once the limits exist then in the second lemma, we establish

that R =∞.

Lemma 3.7. Suppose u solves (27)-(28) on [0, R) with R <∞, then there exists u0, u
′
0 ∈ R

such that

lim
r→R−

u(r) = u0,

lim
r→R−

u′(r) = u′0.

Proof. The following is the energy equation for (27)-(28)

(43) E(r) =
(p− 1)|u′|p

p
+ F (u).

Using (27) we see that

(44) E ′(r) =
−(N − 1)|u′|p

r
≤ 0.

Note that E ′(r) ≤ 0, so E is decreasing, and so E(r) ≤ E(0) which is

(p− 1)|u′|p

p
+ F (u) ≤ E(0) = F (d).

Then by (22)

(p− 1)|u′|p

p
− L ≤ F (d).
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Further simplification gives

|u′|p ≤ p(F (d) + L)

p− 1
.

Then |u′| ≤M where M =
[

p(F (d)+L)
p−1

] 1
p
. So, by the mean value theorem we have

|u(x)− u(y)| ≤M |x− y|

for all x, y ∈ [0, R). This implies that u has a limit as x → R−. So, there exists a u0 ∈ R

such that lim
r→R−

u(r) = u0. Taking the limit as r → R− on both sides of (27), we see that

lim
r→R−

u′(r) exists, and we call it u′0. �

Lemma 3.8. A solution exists for (27)-(28) on [0,∞).

Proof. If R =∞, we are done. Suppose R <∞.

Case(i): If u′(R) 6= 0, then by Lemma (3.6), u ∈ C2 in a neighborhood of R, so differen-

tiating (18) and then dividing by |u′|p−2, we have

(p− 1)u′′ +
N − 1

r
u′ + |u′|2−pf(u) = 0.

Since u′(R) 6= 0, then by the standard existence theorem for ordinary differential equations

there exists solution for the differential equation on [R,R+ ε) for some ε > 0 with u(R) = u0

and u′(R) = u′0. This contradicts the definition of R, hence, R =∞.

Case(ii): If u′(R) = 0 and f(u(R)) 6= 0, then we can use the contraction mapping

principle as in Lemma (3.2) and extend our solution u to [R,R + ε) for some ε > 0. This

contradicts the definition of R.

Case(iii): If u′(R) = 0 and f(u(R)) = 0 we can extend u ≡ u(R) for r > R. Again this

contradicts the definition of R. �

3.2.1. For d large, |u| < d

Lemma 3.9. Let d > β, then |u(r)| < d for 0 < r <∞ and f(d) 6= 0.

Proof. From (43)-(44) it follows that

(p− 1)|u′|p

p
+ F (u) +

∫ r

0

N − 1

t
|u′|pdt = F (d).
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If there exists a r0 > 0 such that |u(r0)| = d, then∫ r0

0

N − 1

t
|u′|pdt = 0.

This implies |u′| = 0 on [0, r0]. Hence, u(r) ≡ d on [0, r0]. Then by (18), f(d) = 0, but this

contradicts our assumption that f(d) 6= 0. �

3.2.2. Only one extremum between two consecutive zeros

Lemma 3.10. If z1 < z2, with u(z1) = u(z2) = 0, and |u| > 0 on (z1, z2), then there is exactly

one extremum, m, between (z1, z2) and also |u(m)| > γ.

Proof. Suppose without loss of generality that u > 0 on (z1, z2). Then there exists an

extremum, m, such that u′(m) = 0. And

F (u(m)) = E(m) ≥ E(z2) =
p− 1

p
|u′(z2)|p ≥ 0.

Thus |u(m)| ≥ γ for any extremum. Suppose there exists consecutive extrema m1 < m2 <

m3 such that at m1 and m3 we have local maxima and m2 is a local minimum with u′ < 0

on (m1, m2) and u′ > 0 on (m2, m3). We have z1 < m1 < m2 < m3 < z2 and since the

energy is decreasing we obtain E(m2) ≥ E(m3) ≥ E(z2). Since u′(m2) = u′(m3) = 0 and

since F (u(z2)) = 0 this gives

(45) F (u(m2)) ≥ F (u(m3)) ≥
p− 1

p
|u′(z2)|p ≥ 0.

And by (H5) it follows that u(m2) ≥ γ and u(m3) ≥ γ. Also, since m2 is a local minimum

and m3 is a local maximum we have γ ≤ u(m2) < u(m3). But by (H5), F is increasing for

u > γ and this implies F (u(m2)) < F (u(m3)) which is a contradiction to (45). �

3.3. If u(r1) = u′(r1) = 0, then u ≡ 0.

Lemma 3.11. If u(r0) = u′(r0) = 0 then u ≡ 0.

Proof. Suppose u(r0) = 0 and u′(r0) = 0. First we will do the easy case, and show that

u ≡ 0 on (r0,∞). Since E ′ ≤ 0 and E(r0) = 0 then either E < 0 for r > r0 or E ≡ 0 on
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(r0, r0 + ε) for some ε > 0. We will show E ≡ 0 on (r0, r0 + ε). For suppose E < 0 for r > r0.

Then we see that |u| > 0 for r > r0, for if there exists an r1 > r0 such that u(r1) = 0 then

0 ≤ p− 1

p
|u′(r1)|p = E(r1) < 0.

This is a contradiction. So suppose without loss of generality that u > 0 for r > r0. Then

for r > r0 and r close to r0 and by (H2), f(u) < 0 so

−rN−1|u′|p−2u′ =

∫ r

r0

tN−1f(u)dt < 0.

Thus u is increasing on (r0, r0+ε) for some ε > 0. Now since E(r) < 0 on (r0, r0+ε) therefore

p− 1

p
|u′|p + F (u) < 0,

and so

|u′| <
(

p

p− 1

) 1
p

|F (u)|
1
p .

Therefore,

∞ =

∫ u(r0+ε)

0

ds
p
√
|F (s)|

=

∫ r0+ε

r0

|u′|
|F (u)|

1
p

dt <

∫ r0+ε

r0

(
p

p− 1

) 1
p

dt <∞.

This is a contradiction to (H6) and to the note at the end of the introduction. Then E ≡ 0

on [r0, r0 + ε) and so

−(N − 1)

r
|u′|p = E ′ ≡ 0

on [r0, r0 + ε) and thus u ≡ 0 on [r0, r0 + ε). Denote [r0, r1) as the maximal half open interval

for which u ≡ 0. If r1 < ∞, again we can show that u ≡ 0 on [r1, r1 + ε), but this will

contradict the definition of r1. Thus, E ≡ 0 on (r0,∞). Hence u ≡ 0 on [r0,∞).

Now we will prove that u ≡ 0 on (0, r0). To prove this we use the idea from [5] and do

the required modifications to fit our case. We will use hypothesis (H6). Let

r1 = inf
r>0
{r|u(r) = 0, u′(r) = 0}.

If r1 = 0 then u ≡ 0 on (0,∞) and then by continuity u ≡ 0 on [0,∞) and we are done. So

suppose by the way of contradiction that r1 > 0. Let r1

2
< r < r1, so 2

r1
> 1

r
. Now consider
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the derivative of the energy function given in equation (44) and then integrate it between r

and r1 to obtain

E(r1, d)− E(r, d) = −
∫ r1

r

(N − 1)|u′|p

r
dt.

Since u(r1) = 0, so F (u(r1)) = 0 and u′(r1) = 0, we get

(46)
(p− 1)|u′|p

p
+ F (u) =

∫ r1

r

(N − 1)|u′|p

r
dt.

Now let

w =

∫ r1

r

(N − 1)|u′|p

t
dt.

Differentiating we get

w′ = −(N − 1)|u′(r)|p

r
.

Solving this for |u′|p, gives

|u′(r)|p =
−rw′

N − 1
.

Substituting this in (46) gives

(47)
−(p− 1)rw′

p(N − 1)
+ F (u) = w

and rearranging terms, we get

(p− 1)rw′

p(N − 1)
+ w = F (u).

Letting η = (N−1)p
p−1

then we have

w′ +
ηw

r
=

ηF (u)

r
.

Multiplying both sides by rη, gives

(rηw)′ = ηrη−1F (u).

Integrating between r and r1 for r sufficiently close to r1, gives

rη
1w(r1)− rηw =

∫ r1

r

ηtη−1F (u)dt.

Since w(r1) = 0, and by (H2), F (u(t)) ≤ 0 for t sufficiently close to r1 we obtain

w =
−η

rη

∫ r1

r

tη−1F (u(t))dt =
η

rη

∫ r1

r

tη−1|F (u(t))|dt.
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Now plugging w and w′ in (47) we have

(p− 1)|u′|p

p
+ F (u) =

η

rη

∫ r1

r

tη−1|F (u(t))|dt.

Solving this for |u′|p gives (for r close to r1)

(48) |u′|p =
p

p− 1

[
η

rη

∫ r1

r

tη−1|F (u(t))|dt + |F (u(r))|
]

.

Observe next that for r < r1 and r sufficiently close to r1 that u′(r) 6= 0; for if there

exists r2 < r1 such that u′(r2) = 0 then from (48), u ≡ 0 on (r2, r1), this contradicts the

definition of r1. Hence without loss of generality assume that u′(r) < 0 for r < r1 and r

sufficiently close to r1. Now for r < t < r1, u is decreasing so u(r) > u(t) > 0 which implies

F (u(r)) < F (u(t)) < 0 and so |F (u(r))| > |F (u(t))| > 0, which leads to the following

|u′|p ≤ p

p− 1

[
|F (u(r))|+ η

rη
|F (u(r))|

∫ r1

r

tη−1dt

]
=

p

p− 1

[
|F (u(r))|+ η

rη

|F (u(r))|
η

(rη
1 − rη)

]
=

p|F (u(r))|rη
1

(p− 1)rη

≤ p2η|F (u(r))|
p− 1

.

The last inequality follows as 2
r1

> 1
r
, so

|u′|p ≤ p2η|F (u(r))|
p− 1

.

Solving this for |u′|, we get

|u′| ≤ p

√
p2η

p− 1
p
√
|F (u(r))|.

Dividing by p
√
|F (u(r))|, integrating on (r, r1) and using (H6) and the remark following (H6)

we obtain

∞ =

∫ u(r)

0

1
p
√
|F (s)|

ds =

∫ r1

r

|u′|
p
√
|F (u)|

dt

≤ p

√
p2η

p− 1

∫ r1

r

dt

= p

√
p2η

p− 1
(r1 − r)
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<∞.

Thus we get a contradiction and so r1 = 0 and hence u ≡ 0. �

27



CHAPTER 4

SOLUTIONS WITH A PRESCRIBED NUMBER OF ZEROS

4.1. Rescaling Argument

In this section we show that there are solutions for (27)-(28) with a large number of zeros.

For this we study the behavior of solutions as d grows large. We consider the idea from [13],

page 371 and we do the required modifications to fit our case. Given λ > 0, let u(r) be the

solution of (27)-(28) with d = λ
p

q−p+1 . Define

(49) uλ = λ
−p

q−p+1 u(
r

λ
).

Then uλ satisfies

(50) rN−1|u′λ|p−2u′λ = −
∫ r

0

sN−1λ
−pq

q−p+1 f(λ
p

q−p+1 uλ(s))ds,

and

(51) uλ(0) = 1.

Lemma 4.1. As λ → ∞, uλ → v, uniformly on compact subsets of [0,∞), where v is a

solution of

(52) rN−1|v′|p−2v′ = −
∫ r

0

sN−1|v(s)|q−1v(s)ds,

(53) v(0) = 1.

Proof. Let

E(r, λ) =
(p− 1)|u′λ|p

p
+ λ

−pq
q−p+1 F (λ

p
q−p+1 uλ)

then

∂

∂r
E(r, λ) ≡ E ′(r, λ) = −(N − 1)|u′λ|p

r
.
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This implies E(r, λ) is decreasing in r. So for λ > 0

E(r, λ) ≤ E(0, λ)

= λ
−pq

q−p+1 F (λ
p

q−p+1 )

Using (19) to simplify the right hand side, gives the following:

λ
−p(q+1)
q−p+1 F (λ

p
q−p+1 ) = λ

−p(q+1)
q−p+1

λ
p(q+1)
q−p+1

q + 1
+ λ

−p(q+1)
q−p+1 G(λ

p
q−p+1 )

(54) λ
−p(q+1)
q−p+1 F (λ

p
q−p+1 ) =

1

q + 1
+ λ

−p(q+1)
q−p+1 G(λ

p
q−p+1 ).

Then by (21)

(55)
G(λ

p
q−p+1 )

(λ
p

q−p+1 )q+1
→ 0,

as λ→∞. Thus, E(r, λ) < 2
q+1

for large λ. Moreover E(r, λ) is bounded above independently

of r and for large λ.

The usual trick to show the convergence of uλ is to use Arzela-Ascoli’s Theorem. For

this it suffices to show uλ and u′λ are bounded.

Claim: uλ(r) and u′λ(r) are bounded.

Proof of Claim: By Lemma (3.9), |u(r)| ≤ d = λ
p

q−p+1 . Thus, by (49), |uλ(r)| ≤ 1. Also,

since E(r, λ) ≤ E(0, λ) we have

(p− 1)|u′λ|p

p
+ λ

−pq
q−p+1 F (λ

p
q−p+1 uλ) ≤ λ

−pq
q−p+1 F (λ

p
q−p+1 ).

Since F (u) ≥ −L (proved in introduction) then we get

(p− 1)|u′λ|p

p
≤ 1

q + 1
+ λ

−p(q+1)
q−p+1 G(λ

p
q−p+1 ) + Lλ

−pq
q−p+1 .

By (55) we see that

(56)
(p− 1)|u′λ|p

p
≤ 2

q + 1
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for large λ. Hence, |u′λ| is bounded independent of r and for large λ. By Arzela-Ascoli’s

theorem and by a standard diagonal argument there is a subsequence of uλ(r), denoted by

uλk
(r), such that

lim
k→∞

uλk
(r) = v(r)

uniformly on compact subsets of R and v is continuous. End of proof of Claim.

We have

(57) rN−1|u′λ|p−2u′λ = −
∫ r

0

sN−1λ
−pq

q−p+1 f(λ
p

q−p+1 uλ(s))ds

rN−1|u′λ|p−2u′λ = −
∫ r

0

sN−1
[
|uλ|q−1uλ + λ

−pq
q−p+1 g(λ

p
q−p+1 uλ(s))

]
ds

also,

(58) u′λk
= −Φp′

(
1

rN−1

∫ r

0

sN−1

[
|uλk
|q−1uλk

+ λ
−pq

q−p+1

k g(λ
p

q−p+1

k )uλk

]
ds

)
.

Since uλk
(r)→ v(r) uniformly on compact subsets of R and using (H3), gives

lim
k→∞

u′λk
= −Φp′

(
1

rN−1

∫ r

0

sN−1|v|q−1vds

)

≡ φ.

Hence, u′λk
→ φ (pointwise) and since v is continuous it follows that φ is continuous. We

also have

uλk
= 1 +

∫ r

0

u′λk
ds.

Since uλk
→ v uniformly, and u′λk

→ φ pointwise, and by (56), u′λk
is uniformly bounded say

by, M, applying dominated convergence theorem we get

v(r) = 1 +

∫ r

0

φ(s)ds.

So,

v′ = φ.
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Thus, from (58) we see that

v′ = −Φp′

(
1

rN−1

∫ r

0

sN−1|v|q−1vds

)
.

Hence,

−rN−1|v′|p−2v′ =

∫ r

0

sN−1|v|q−1vds.

Note that v(0) = 1, v′(0) = 0. Hence, v ∈ C1[0,∞) and v satisfies (52)-(53) for 1 < p <

q + 1 < Np
N−p

. �

As uλk
converges to v uniformly on compact subsets of R, so now we look for zeros of v.

This is done in two steps. In step one we show v has a zero and in step two we show v has

infinitely many zeros.

4.2. v has a Zero

The following lemma is technical and we use the result in the subsequent lemma.

Lemma 4.2. Let v solve (52)-(53). If 1 < p < q + 1 < Np
N−p

and if v > 0, then∫ ∞

0

sN−1vq+1ds <∞.

Proof. By Lemma (4.1), we know that v is continuous and hence bounded on any compact

set so to prove this lemma it is sufficient to show
∫∞

1
sN−1vq+1ds <∞. We have

−rN−1|v′|p−2v′ =

∫ r

0

sN−1|v|q−1vds

and v > 0. So v′ < 0 and so v is decreasing. Therefore,

rN−1|v′|p−1 =

∫ r

0

sN−1vqds

≥ v(r)q

∫ r

0

sN−1ds

=
vqrN

N
.

Thus,

|v′|p−1 ≥ vqr

N

−v′ = |v′| ≥ r
1

p−1 v
q

p−1

N
1

p−1
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−v′

v
q

p−1

≥ r
1

p−1

N
1

p−1

.

Integrating this on (0, r), gives [
−v

−q
p−1

+1

−q
p−1

+ 1

]r

0

≥
∫ r

0

s
1

p−1

N
1

p−1

ds

further simplification gives [
(p− 1)v

p−q−1
p−1

q − p + 1

]r

0

≥ (p− 1)r
p

p−1

pN
1

p−1

.

Since by assumption q−p+1
p−1

> 0, multiplying both sides with q−p+1
p−1

leads to

[v
p−1−q

p−1 ]r0 ≥
(q − p + 1)r

p
p−1

pN
1

p−1

.

Thus,

v(r)
p−1−q

p−1 − 1 ≥ Cr
p

p−1 ,

where C =
q − p + 1

pN
1

p−1

. So,

1

v
q+1−p

p−1

= v
p−1−q

p−1 ≥ 1 + Cr
p

p−1 ≥ Cr
p

p−1 .

Thus,

v
q+1−p

p−1 ≤ C1r
−p
p−1 .

So,

v ≤ C1r
−p

q+1−p .

Thus we see that ∫ ∞

1

sN−1vq+1ds ≤ Cq+1
1

∫ ∞

1

sN−1− p(q+1)
q+1−p ds <∞.

The last inequality is due to our assumption that 1 < p < q + 1 < Np
N−p

. �

Lemma 4.3. Let v be a solution of (52)-(53). Then v has a zero.
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Proof. To prove this lemma, we use an idea of paper [8]. Suppose v > 0 for all r, and

consider integrating

(rN−1vv′|v′|p−2)′ = rN−1|v′|p − rN−1vq+1

on (0, r), which leads to

rN−1vv′|v′|p−2 =

∫ r

0

sN−1|v′|pds−
∫ r

0

sN−1vq+1ds.

After rearranging terms, we have

(59) −rN−1vv′|v′|p−2 +

∫ r

0

sN−1|v′|pds =

∫ r

0

sN−1vq+1ds.

Since v > 0, v′ < 0, and since p < q + 1, it follows from (59) and Lemma (4.2) that

(60)

∫ ∞

0

sN−1|v′|p ≤
∫ ∞

0

sN−1vq+1ds <∞.

Then using (60) in (59) and taking the limit as r →∞, gives

(61) − lim
r→∞

rN−1vv′|v′|p−2exists and is finite.

Now integrating the following identity(
(p− 1)rN |v′|p

p
+

rNvq+1

q + 1

)′
=
−(N − p)|v′|prN−1

p
+

NrN−1vq+1

q + 1

on (0, r), gives

(62)

(
(p− 1)rN |v′|p

p
+

rNvq+1

q + 1

)
=

∫ r

0

−(N − p)|v′|psN−1

p
ds +

∫ r

0

NsN−1vq+1

q + 1
ds.

Then by (60), both the integrals on the right hand side of (62) converge, hence

lim
r→∞

(p− 1)rN |v′|p

p
+

rNvq+1

q + 1

exists. Denote

h(r) =
(p− 1)rN |v′|p

p
+

rNvq+1

q + 1
.

We have shown that lim
r→∞

h(r) = l for some l ≥ 0. Then by (60),∫ ∞

0

h(s)

s
ds <∞.
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Thus, it follows that l = 0, so that

lim
r→∞

(p− 1)rN |v′|p

p
+

rNvq+1

q + 1
= 0.

Then taking the limit as r →∞ in (62) gives

0 =

∫ ∞

0

−(N − p)|v′|psN−1

p
ds +

∫ ∞

0

NsN−1vq+1

q + 1
ds.

So, ∫ ∞

0

sN−1|v′|pds =
Np

(N − p)(q + 1)

∫ ∞

0

sN−1vq+1ds.

But by (60) we have ∫ ∞

0

sN−1|v′|p ≤
∫ ∞

0

sN−1vq+1ds.

So it follows that

Np

(N − p)(q + 1)
≤ 1.

This contradicts our assumption that q + 1 < Np
N−p

. So, v is not positive for all r. Hence, v

has a zero. �

4.3. v has Infinitely Many Zeros

Lemma 4.4. Let v be the solution of (52)-(53). Then v has infinitely many zeros.

Proof. We have from the above lemma that there exists a z1 such that v > 0 on [0, z1)

and v(z1) = 0. So after z1 we have two cases, Case(i): v has a first local minimum call

it m1 > z1, or Case (ii): v′ < 0 for all r > z1. We want to show that the Case(ii) is not

possible. Suppose v′ < 0 for all r > 0. Then

E ≡ (p− 1)|v′|p

p
+

1

q + 1
|v|q+1 ≥ 0

and E ′ ≤ 0 so

1

q + 1
|v|q+1 ≤ E(r, d) ≤ E(0, d) =

1

q + 1
.

Thus |v| ≤ 1. So v is bounded and v′ < 0 and thus lim
r→∞

v = J. Also since E is bounded and

since E ′ ≤ 0, so lim
r→∞

E(r, d) exists and thus lim
r→∞

v′(r) exists.

Claim: lim
r→∞

v′(r) = 0.
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Proof of Claim: Suppose not, which means −v′(r) > m > 0 for large r. Then integrating

from (0, r), gives

−v(r) + v(0) > mr.

Taking the limit as r →∞, we see that −v is unbounded, which contradicts our assumption

that v is bounded. So, we have the claim. End of proof of Claim.

Consider dividing (52) by rN and then taking the limit as r → ∞ and using the above

claim, gives

0 = lim
r→∞

−
∫ r

0
tN−1|v|q−1vdt

rN
.

Applying L’Hopital’s rule on right hand side and using lim
r→∞

v(r) = J < 0 gives

0 =
−|J |q−1J

N
.

This contradicts our assumption that J < 0. So Case(ii) is not possible.

Hence, v has a first local minimum call it m1, where m1 > z1, and let v1 = v(m1) < 0.

Now v satisfies

rN−1|v′|p−2v′ = −
∫ r

m1

tN−1|v|q−1vdt

and

v(m1) = v1.

We may now use the same argument as in Lemma (4.3) to show that v has a second zero at

z2 > z1. Proceeding inductively, we can show that v has infinitely many zeros. �

As uλ → v on any fixed compact set when λ is large, this means that the graph of uλ is

uniformly close to the graph of v. Since v has infinitely many zeros, suppose the first ρ zeros

of v are on [0, K] for K > 0. By uniform convergence on compact subsets uλ will have at

least ρ zeros on [0, K + 1] for large λ. By (49), uλ(r) = λ
−p

q−p+1 u
(

r
λ

)
, so u will have at least

ρ zeros on [0,∞). So now we are ready to shift gears from v to u.

The following lemma is technical and we mimic the idea from [9] and we do necessary

changes to fit our case.
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4.4. An Important Lemma

Lemma 4.5. Let u(r, d) be the solution of (27)-(28). Let us suppose that u(r, d∗) has exactly

k zeros and u(r, d∗)→ 0 as r →∞. If |d− d∗| is sufficiently small, then u(r, d) has at most

k + 1 zeros on [0,∞).

Proof. Our goal is to show that for d close to d∗, u(., d) has at most (k + 1) zeros in

[0,∞). So we suppose there is a sequence of values dj converging to d∗ and such that u(., dj)

has at least (k + 2) zeros on [0,∞) (if there is no such sequence, we are done). We write

uj(r) = u(r, dj) and we denote by zj the (k + 1)st zero of uj, counting from the smallest.

We will show that if uj has a (k + 2)nd zero, then u(r, d∗) is going to have a (k + 1)st zero,

which is a contradiction.

First we show that u(r, dj) → u(r, d∗) and u′(r, dj) → u′(r, d∗) on compact subsets of

[0,∞) as dj → d∗ and j →∞. We prove this in two claims.

Claim 1: If lim
j→∞

dj = d∗, then |u(r, dj)| ≤ M1 and |u′(r, dj)| ≤ M2 for some M1, M2 > 0

for all j.

Proof of Claim 1: We use the fact from (43) and (44) that energy is decreasing and hence

E is bounded by E(0, dj) = F (dj), we can write the energy at r as the following

E(r, dj) =
(p− 1)|u′(r, dj)|p

p
+ F (u(r, dj)) ≤ F (dj) ≤ F (d∗) + 1

for large j. Also, by (22), F (u) ≥ −L thus

(p− 1)|u′(r, dj)|p

p
≤ F (d∗) + 1 + L ≤ C

for large j and for some C > 0. Thus, for j large, |u′(r, dj)| ≤ M2 for some M2 > 0. Also,

note that since lim
r→∞

E(r, d∗) exists and since lim
r→∞

u(r, d∗) = 0 it follows that

F (d∗) = E(0, d∗) > lim
r→∞

E(r, d∗) ≥ 0.

Thus, F (d∗) > 0. Hence by (H4) and (H5), d∗ > γ. By lemma (3.9), |u(r, dj)| ≤ dj and since

lim
j→∞

dj = d∗ we have |u(r, dj)| ≤ d∗ + 1 = M1 for large j. End of proof of Claim 1.

Claim 2: u(r, dj) → u(r, d∗) and u′(r, dj) → u′(r, d∗) uniformly on compact subsets of

[0,∞) as j →∞.
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Proof of Claim 2: By Claim 1, |u(r, dj)| ≤ M1 and |u′(r, dj)| ≤ M2. So the u(r, dj)

are bounded and equicontinuous. Then by Arzela-Ascoli’s theorem we have a subsequence

(still denoted by dj) such that u(r, dj)→ u(r, d∗) uniformly on compact subsets of [0,∞) as

j →∞. Then by (27) and since uj → u uniformly on compact subsets of [0,∞) we have

lim
j→∞
|u′j|p−2u′j = lim

j→∞

−1

rN−1

∫ r

0

sN−1f(uj)ds

=
−1

rN−1

∫ r

0

sN−1f(u)ds.

Therefore, |u′j|p−2u′j converges uniformly on compact subsets of [0,∞). Thus, u′j(r) converges

uniformly say to g(r). We now show that g(r) = u′(r, d∗). Integrating on (0, r), gives

lim
j→∞

∫ r

0

u′j(t)dt =

∫ r

0

g(t)dt

lim
j→∞

(uj(r)− uj(0)) =

∫ r

0

g(t)dt.

Since uj(r, dj)→ u(r, d∗), we get

u(r, d∗)− u(0, d∗) =

∫ r

0

g(t)dt.

Differentiating this we get u′(r, d∗) = g(r) = lim
j→∞

u′j. End of proof of Claim 2.

Let tj be the (k + 2)nd zero of uj. Then there exists an lj such that zj < lj < tj and lj

is a local extremum. So by Lemma (3.11)

F (u(lj)) = E(lj, dj) ≥ E(tj, dj) =
p− 1

p
|u′(tj)|p > 0.

Then by (H5), |u(lj)| > γ. Now let bj be the smallest number greater than zj such that

|uj(bj)| = α. Let aj be the smallest number greater than zj such that |uj(aj)| = α
2
. Let mj

be the local extrema between the kth and (k+1)st zeros of uj. So we have mj < zj < aj < bj.

Since the energy is decreasing we have E(zj, dj) ≤ E(mj, dj). Since u′j(mj) = 0, uj(zj) = 0,

F (uj(zj)) = 0, and by Lemma (3.11), we have

0 <
(p− 1)|u′j(zj)|p

p
≤ F (uj(mj)).
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Thus, |uj(mj)| > γ. So there exists a largest number qj less than zj such that |uj(qj)| = γ.

Note mj < qj < zj < aj < bj < lj < tj.

Claim 3: bj − aj ≥ K1 > 0, where K1 is independent of j for sufficiently large j. Also,

ξ2 − ξ1 ≥ K2 > 0 where ξ1 and ξ2 are two consecutive zeros of uj.

Proof of Claim 3: Since the energy is decreasing and since dj → d∗ for j large we have

p− 1

p
|u′j|p + F (uj) ≤ F (dj) ≤ F (d∗) + 1

for large j. Rewriting this inequality gives

(63)
|u′j|

(F (d∗) + 1− F (uj))
1
p

≤
(

p

p− 1

) 1
p

.

So integrate (63) on (aj, bj) to get∫ α

α
2

dt

(F (d∗) + 1− F (t))
1
p

=

∫ bj

aj

|u′j|

(F (d∗) + 1− F (uj))
1
p

ds ≤
(

p

p− 1

) 1
p

(bj − aj).

So letting

(64) K1 ≡
(

p− 1

p

) 1
p
∫ α

α
2

dt

(F (d∗) + 1− F (t))
1
p

we see that K1 ≤ bj − aj for all j.

Turning to the second part of the claim, using Lemma (3.10), let m be the extremum

between ξ1 and ξ2. Let us integrate (63) on (ξ1, m) and using (63) and that |u(m)| > γ (by

Lemma (3.10)) gives(
p− 1

p

) 1
p
∫ γ

0

dt

(F (d∗) + 1− F (t))
1
p

≤
(

p− 1

p

) 1
p
∫ |u(m)|

0

dt

(F (d∗) + 1− F (t))
1
p

=

(
p− 1

p

) 1
p
∫ m

ξ1

|u′j|

(F (d∗) + 1− F (t))
1
p

ds

≤ m− ξ1.

Similarly on [m, ξ2] we have,(
p− 1

p

) 1
p
∫ γ

0

dt

(F (d∗) + 1− F (t))
1
p

≤ ξ2 −m.
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So,

(65) K2 ≡ 2

(
p− 1

p

) 1
p
∫ γ

0

dt

(F (d∗) + 1− F (t))
1
p

≤ ξ2 − ξ1.

End of proof of Claim 3.

In particular uj → u uniformly on

[
0, y∗ +

K2

2

]
where y∗ is the kth zero of u(r, d∗).

Along with Lemma (3.11) and the previous claim, it follows that for large j, uj has exactly

k zeros on

[
0, y∗ +

K2

2

]
. Let yj be the kth zero of uj, then by Claim 2, uj(r, dj)→ u(r, d∗)

as j →∞ on

[
0, y∗ +

K2

2

]
, so yj → y∗ as j →∞.

Claim 4: zj →∞ as j →∞.

Proof of Claim 4: Suppose not, that is if |zj| ≤ A then there exists a subsequence jk such

that zjk
→ z and u(r, djk

)→ u(r, d∗) on [0, A] which in turn implies

0 = u(zjk
, djk

)→ u(z, d∗).

Since zjk
> yjk

and yjk
→ y∗ as j →∞, then z ≥ y∗. On the other hand, u(r, d∗) has exactly

k zeros, therefore z = y∗. Thus uj(yj) = 0 = uj(zj). By the mean value theorem, u′j(wj) = 0

for some wj with yj ≤ wj ≤ zj. Since uj → u uniformly on [0, A] and yj → y∗ ← zj, so taking

the limit gives u′(y∗) = 0, but by Lemma (3.11), this implies u ≡ 0. This is a contradiction

to our assumption that u has exactly k zeros. End of Claim 4.

Now let us show that the qj are bounded as j →∞. Since uj → u and u′j → u′ uniformly

on compact subsets of [y∗, m∗ + 1], where m∗ is the local extremum of u(r, d∗) that occurs

after y∗, we see that u′j must be zero on [y∗, m∗ + 1] for j large. Thus there exists an mj

with yj < mj < m∗ + 1 such that u′j(mj) = 0.

Next, we estimate qj−mj on [mj, qj], since u ≥ γ > β on [mj, qj] so we have f(u) ≥ C > 0.

So

−rN−1|u′j|p−2u′j = −
∫ r

mj

(rn−1|u′j|p−2u′j)
′dt =

∫ r

mj

rN−1f(uj)dt ≥
C(rN −mN

j )

N
≥ C

N
(r−mj)r

N−1.

So we have

−|u′j|p−2u′j ≥
C

N
(r −mj).
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Further simplification and integrating on [mj, qj] gives

dj − γ ≥ u(mj)− γ =

∫ qj

mj

u′jdt ≥
(

C

N

) 1
p−1
∫ qj

mj

(r −mj)
1

p−1 dt.

Now using Lemma (3.9) and the fact that j is large gives

d∗ + 1 ≥ dj − γ ≥
(

C

N

) 1
p−1
(

p− 1

p

)
(qj −mj)

p
p−1

for large j. As we saw in a previous paragraph that mj are bounded by m∗ + 1, it follows

that qj are bounded.

Claim 5: For sufficiently large j, |uj(r)| < γ for all r > zj.

Proof of Claim 5: Suppose on the contrary that there is a smallest cj > zj such that

|uj(cj)| = γ. Thus, on (zj, cj) we have 0 < |uj| < γ. Hence, F (uj) ≤ 0 on (zj, cj). So there

exists an aj and a bj such that zj < aj < bj < cj with |uj(aj)| =
α

2
, |uj(bj)| = α. Also, F is

decreasing on [α
2
, α], so that F (α

2
) ≥ F (uj) for all α

2
≤ uj ≤ α.

Now integrating the following identity on (qj, cj)

(r
p(N−1)

p−1 E)′ =
p(N − 1)F (uj(r))r

Np−2p+1
p−1

p− 1

and since |uj(qj)| = |uj(cj)| = γ and F (uj(qj)) = 0 = F (uj(cj)), gives

(66)

0 ≤
c

p(N−1)
p−1

j |u′j(cj)|p(p− 1)

p
=

q
p(N−1)

p−1

j |u′j(qj)|p(p− 1)

p
+

∫ cj

qj

p(N − 1)F (uj(r))t
Np−2p+1

p−1

p− 1
dt.

Since qj is bounded, for an appropriate subsequence qj → q∗ where u(q∗, d∗) = γ and since

u′j → u′ uniformly on [0, q∗ + 1], then u′j(qj)→ u′(q∗, d∗). Hence

(67) lim
j→∞

inf

∫ cj

qj

t
(N−2)p+1

p−1 F (uj(r))dt ≥ −(q∗)
p(N−1)

p−1 |u′(q∗, d∗)|p(p− 1)

p
> −∞.

Also, since zj →∞ and since zj < aj < bj, so aj →∞.

On other hand, by Claim 3∫ cj

qj

t
(N−2)p+1

p−1 F (uj(t))dt ≤
∫ bj

aj

t
(N−2)p+1

p−1 F (uj(t))dt

≤ F
(α

2

)
(b

(N−1)p
p−1

j − a
(N−1)p

p−1

j )

(
p− 1

(N − 1)p

)
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≤ F
(α

2

)
a

(N−1)p
p−1

−1

j (bj − aj)

(
p− 1

(N − 1)p

)
≤ K1F

(α

2

)
a

(N−1)p
p−1

−1

j

(
p− 1

(N − 1)p

)
→ −∞

as j → ∞. (We obtain the last inequality by using K1 ≤ (bj − aj) from Claim 3 and also

F
(

α
2

)
< 0.) Thus, ∫ cj

qj

t
(N−2)p+1

p−1 F (uj(t))dt→ −∞,

but this is a contradiction to (67). Hence, |uj(r)| < γ for large j and for r > zj. End of

proof of Claim 5.

Now suppose uj has another zero, call it tj > zj. Then there is a local extrema for uj at

a value sj such that zj < sj < tj. Since the energy is decreasing, we have E(tj) ≤ E(sj). By

Lemmas (3.10) and (3.11) we have

0 <
(p− 1)|u′j(tj)|p

p
≤ F (uj(sj)).

Thus |uj(sj)| > γ (by (H5)). By Claim 5, for sufficiently large j and for all r > zj we have

|uj(r)| < γ. In particular |uj(sj)| < γ, a contradiction. Hence, there is no zero of uj larger

than zj. �

We use the above lemma to prove our Main Theorem in Chapter 4.
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CHAPTER 5

PROOF OF THE MAIN THEOREM

5.1. Constructing Sets

To prove the Main Theorem we construct the following sets such that u has any prescribed

number of zeros.

Let Sk = {d ≥ γ|u(r, d) has exactly k zeros for r ≥ 0 } and let dk = supSk.

We will then show that Sk for k ≥ 0 is nonempty and bounded above.

Let S0 = { d ≥ γ|u(r, d) > 0 for all r ≥ 0 }.

5.1.1. S0 is nonempty

Claim: γ ∈ S0.

Proof of Claim: If d = γ, then u(0) = γ > 0. So the energy at r = 0 is

E(0, γ) =
p− 1

p
|u′(0)|p + F (u(0)) = 0.

So E < 0 for r > 0; for if there is an r1 > 0 such that E(r1, γ) = 0 then E ≡ 0 on [0, r1],

this implies u ≡ 0 on [0, r1], but u(0) = γ > 0. Thus E < 0 for r > 0. If there exsits an r2

such that u(r2) = 0 then

E(r2, d) =
p− 1

p
|u′(r2)|p ≥ 0

contradicting E < 0 for all r > 0. Therefore, u(r, γ) > 0 for all r ≥ 0. Hence γ ∈ S0. End of

proof of Claim.

Lemma 5.1. S0 6= 0 and S0 is bounded above.

Proof. S0 is nonempty by the above Claim and S0 is bounded above by the lemmas (4.1)

and (4.3). �

Let d0 = supS0. Since d > γ for all d ∈ S0 so d0 > γ > 0.
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Now our goal is to show that u(r, d0) > 0 and that u(r, d0) satisfies (17). As d0 is the

supremum of S0 we expect u(r, d0) > 0. We prove this in two lemmas. In the first lemma we

show u(r, d0) ≥ 0 and in the second lemma we show u(r, d0) > 0.

5.1.2. u(r, d0) stays postive

Lemma 5.2. u(r, d0) ≥ 0 for all r ≥ 0.

Proof. If u(r0, d0) < 0 for some r0, then by continuity with respect to initial conditions

on compact sets for d close to d0 and d < d0 , we have u(r0, d) < 0. This contradicts the

definition of S0. �

Lemma 5.3. u(r, d0) > 0.

Proof. Suppose there exists an r1 such that u(r1, d0) = 0. By Lemma (5.2), we know

u(r, d0) ≥ 0. So u(r, d0) has a minimum at r1 and also since u ∈ C1[0,∞), this implies

u′(r1) = 0. Then by Lemma (3.11), u ≡ 0 which is a contradiction to u(0) = d0 6= 0.

�

Let d > d0. Then u(r, d) has at least one zero, otherwise d would be in S0 which it is not.

Moreover, as d approaches d0 from above, we expect that the first zero of u, z1(d), should

go to infinity. This is shown in the following lemma.

Lemma 5.4. lim
d→d+

0

z1(d) =∞.

Proof. Suppose lim
d→d+

0

z1(d) = zd0 <∞. Since u(r, d)→ u(r, d0) uniformly on compact sub-

sets as d→ d0, this implies u(zd0) = lim
d→d0

u(z1(d), d), and which in turn implies u(zd0 , d0) = 0.

However, by Lemma (5.3), u(r, d0) > 0, which is a contradiction. �

Next we want to show the energy E(r, d0) ≥ 0. This is crucial, as if E(r, d0) < 0 at some

point, say n1, then u will not have any zeros after n1, and also u will not decay as r → ∞.

So we have the following lemma.

5.1.3. E(r, d0) is never negative

Lemma 5.5. E(r, d0) ≥ 0 for all r ≥ 0.
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Proof. If E(r0, d0) < 0 then by continuity E(r0, d) < 0 for d > d0 and d close to d0. On

other hand, since d > d0 then u(r, d) has a first zero, z1(d), (F (u(z1(d))) = 0) so the energy

is

E(z1(d), d) =
p− 1

p
|u′|p ≥ 0.

But since E ′ ≤ 0, we must have that z1(d) ≤ r0. This contradicts Lemma (5.4). Hence the

result follows. �

Lemma 5.6. u′(r, d0) < 0 on (0,∞).

Proof. Since u(0) = d and u′(0) = 0, first we want to show that u is decreasing on (0, ε)

for some ε > 0. Dividing both sides of (27) by rN and then taking the limit as r → 0, and

applying L’Hopital’s rule, gives

lim
r→0
|u′|p−2

(
u′

r

)
= lim

r→0

−f(u(r))

N
=
−f(u(0))

N
=
−f(d0)

N
< 0.

The last inequality is true since by the definition of S0, we have that d0 > γ and then by

(H5), γ > β where β is the largest zero of f. Thus, f(d0) > 0. So, u′ < 0 on (0, ε) for some

ε > 0.

Let [0, Rd0 ] be the maximal interval so that u′ < 0 on (0, Rd0). If Rd0 =∞, then u′ < 0

on (0,∞) and we are done. Otherwise Rd0 <∞ and u′(Rd0) = 0.

Claim: 0 < u(Rd0) ≤ β.

Proof of Claim: Suppose f(u(Rd0)) > 0 and let us look at the following identity:

−
∫ Rd0

r

(rN−1|u′|p−2u′)′ =

∫ Rd0

r

tN−1f(u)dt.

Using u′(Rd0) = 0, this gives

rN−1|u′|p−2u′ =

∫ Rd0

r

tN−1f(u)dt > 0

for r < Rd0 and r close to Rd0 . We get the last inequality since f(u(Rd0)) > 0, and by

continuity, f(u) > 0 for r near Rd0 . This implies u′ > 0 on (r, Rd0) for r close to Rd0 . But

by assumption u′ < 0 on (0, Rd0). Hence, f(u(Rd0)) ≤ 0 and since we also know u(Rd0) > 0,

this implies 0 < u(Rd0) ≤ β. End of proof of Claim.
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The previous claim implies F (u(Rd0)) < 0. Since u′(Rd0) = 0 we obtain

E(Rd0 , d0) = F (u(Rd0)) < 0,

which is a contradiction to Lemma (5.5). Hence, u′(r, d0) < 0 for all r > 0. �

5.1.4. lim
r→∞

u(r, d0) = 0

Since we now know that u(r, d0) > 0 and u′(r, d0) < 0, it follows that lim
r→∞

u(r, d0) exists.

Lemma 5.7. lim
r→∞

u(r, d0) = U ≥ 0 where U is some nonnegative zero of f .

Proof. Since E is decreasing and bounded below we see that lim
r→∞

E(r, d0) = E. Rewriting

(43) we obtain:

p− 1

p
|u′|p = E(r, d0)− F (u(r, d0)).

The limit of both terms on the right exists and so we have

lim
r→∞

(p− 1)|u′|p

p
= E − F (U).

Thus, lim
r→∞
|u′| exists.

Claim 1: lim
r→∞
|u′| = 0.

Proof of Claim 1: Suppose not, then lim
r→∞
|u′| = L > 0. So |u′(r)| > L

2
> 0 if r ≥ R .

Suppose |u′(r)| = −u′(r), now integrating |u′(r)| > L
2

> 0, gives∫ r

R

−u′(r)dt >

∫ r

R

L
2

dt

for r ≥ R, this implies

d0 ≥ u(R) ≥ u(R)− u(r) ≥ L
2

(r −R)→∞,

which is a contradiction. Hence, lim
r→∞
|u′| = 0 and so lim

r→∞
u′ = 0. End of proof of Claim 1.

Dividing both sides of (27) by rN gives

|u′|p−2u′

r
=
−
∫ r

0
tN−1f(u)dt

rN
.
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Taking the limit as r →∞, and then doing simplification on right hand side by L’Hopital’s

rule, gives

0 = lim
r→∞
|u′|p−2

(
u′

r

)
= lim

r→∞

−
∫ r

0
tN−1f(u(t))dt

rN
= −f(U).

So, f(U) = 0. �

Lemma 5.8. U = 0.

Proof. Taking the limit as r → ∞ in (27), gives E = F (U). By Lemma (5.4), E ≥ 0.

Hence F (U) ≥ 0. Also by Lemma (5.7), f(U) = 0. Thus by (H5) and (H6), U ≡ 0. �

Let S1 = { d > d0|u(r, d) has exactly one zero for all r ≥ 0 }.

Lemma 5.9. S1 6= ∅ and S1 is bounded above.

Proof. By Lemma (4.5), if d > d0 and d close to d0 then u(r, d) has at most one zero. Also,

if d > d0 then d /∈ S0 so u(r, d) has at least one zero. Therefore, for d > d0 and d close to

d0, u(r, d) has exactly one zero. Hence S1 is nonempty. Also by Lemmas (4.1)-(4.4), S1 is

bounded above. �

Define d1 = sup S1.

As above we can show that u(r, d1) has exactly one zero and u(r, d1)→ 0 as r →∞.

Proceeding inductively, we can find solutions that tend to zero at infinity and with any

prescribed number of zeros. Hence, we complete the proof of the main theorem. �
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CHAPTER 6

PRELIMINARIES FOR RESULT 2

6.1. Initial Value Problem

The technique used to solve (25) - (26) is the shooting method. That is, we first look at

the initial value problem

(68) u′′ +
N − 1

r
u′ + f(u) = 0, for 0 < r < T ,

(69) u(0) = d > 0, u′(0) = 0.

By varying d appropriately, we attempt to find a d such that u(r, d) has exactly n zeros on

(0, T ) and u(T ) = 0.

Multiplying (68) by rN−1 and integrating on (0, r) gives

(70) u′ =
−1

rN−1

∫ r

0

tN−1f(u)dt

Integrating (70) and applying the initial conditions we get

(71) u(r) = d−
∫ r

0

1

rN−1

∫ r

0

tN−1f(u)dt.

Let φ(u) be equal to the right hand side of (71). It can be shown that φ(u) is a contraction

mapping on C[0, ε], the set of continuous function on [0, ε] for some ε > 0. Then by the

contraction mapping principle there exists a u ∈ C[0, ε] such that φ(u) = u. Thus, u is

continuous solution of (71). Then by (H1’), (69) and (70), u′ is continuous on [0, ε]. From

(H1’) and (70) it follows that
u′

r
is bounded on (0, ε] and then it follows from (68) that u′′

is continuous on [0, ε].

We define the energy equation of the (68)-(69) as

(72) E =
u′2

2
+ F (u).
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Observe that

E ′ = −N − 1

r
u′2 ≤ 0

for r > 0 so that

(73)
u′2

2
+ F (u) = E ≤ E(0) = F (d).

Note that it follows from (H3’) that there exists a J > 0 such that

(74) F (u) ≥ −J

for all u ∈ R. So from (72) and (73) it follows that

u′2

2
≤ F (d) + J

and so |u′| is uniformly bounded where ever it is defined and thus u is uniformly bounded

where ever it is defined. It follows from this that u is defined on all of [0, T ] and in fact

u ∈ C2[0, T ].

We will prove two results which in turn will help us to prove an important lemma.

Since f(u) > 0 for sufficiently large d, we see from (70) that u′ < 0 on (0, r) for small

r > 0. Let k be a number given by (H4). For sufficiently large d it follows that u′ < 0 on

(0, rkd) where rkd is the smallest positive value of r such that u(rkd) = kd.

Remark 1: First, we want to find a lower bound for rkd. Since f is increasing for large u,

we see from (72) that

−rN−1u′ ≤ f(d)

∫ r

0

tN−1dt

=
f(d)rN

N
.

So we have ∫ rkd

0

−u′dt ≤
∫ rkd

0

rf(d)

N
dt

(1− k)d ≤ r2
kdf(d)

2N

r2
kd ≥

2N(1− k)d

f(d)
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(75) rkd ≥

√
2N(1− k)d

f(d)
.

Remark 2: We want to find a lower bound on

(76)

∫ rkd

0

tN−1

(
NF (u)− N − 2

2
uf(u)

)
dt.

Then by hypothesis (H3’), F (u) =
∫ u

0
f(t)dt and F ′ = f > 0 for large u. Therefore, F is

increasing for large u. Since u is decreasing, kd ≤ u(t) ≤ d for 0 ≤ t ≤ rkd, this implies

F (kd) ≤ F (u) ≤ F (d). So on [0, rkd] we have

(77)

∫ rkd

0

tN−1NF (u)dt ≥ F (kd)rN
kd.

By hypothesis (H1’), f is increasing for large u. Using this we have∫ rkd

0

tN−1N − 2

2
uf(u)dt ≤ N − 2

2N
df(d)rN

kd

so

(78) −
∫ rkd

0

tN−1N − 2

2
uf(u)dt ≥ −N − 2

2N
df(d)rN

kd.

Now using the estimates in (77), (78) and (75) in (76) gives the following:∫ rkd

0

tN−1

(
NF (u)− N − 2

2
uf(u)

)
dt ≥

(
F (kd)− N − 2

2N
df(d)

)
rN
kd

=

(
NF (kd)− N − 2

2
df(d)

)
rN
kd

N

≥
(

NF (kd)− N − 2

2
df(d)

) 1

N

(√
2N(1− k)d

f(d)

)N


= C(N, k)

(
NF (kd)− N − 2

2
df(d)

)(
d

f(d)

)N
2
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where C(N, k) = 1
N

(
√

2N(1− k))N . So we have

(79)∫ rkd

0

tN−1

(
NF (u)− N − 2

2
uf(u)

)
dt ≥ C(N, k)

(
NF (kd)− N − 2

2
df(d)

)(
d

f(d)

)N
2

.

6.1.1. As d increases so does the energy

Lemma 6.1. If (H5) and (H4) are satisfied, then

(80) lim
d→∞

E(r, d) =∞

uniformly for r ∈ [0, T ]. If in place of (H4) we have (H4*) then lim
d→−∞

E(r, d) =∞ uniformly

for r ∈ [0, T ].

Proof. Let us suppose 0 ≤ r ≤ T. Consider Pohozaev’s identity{
rN

(
u′2

2
+ F (u)

)
+

N − 2

2
rN−1uu′

}′
= rN−1

(
NF (u)− N − 2

2
uf(u)

)
.

Integrating Pohozeav’s identity on [0, r] and using hypothesis (H5) and (79) gives

rNE(r, d) +
N − 2

2
rN−1uu′ =

∫ r

0

tN−1

(
NF (u)− N − 2

2
uf(u)

)
dt

=

∫ rkd

0

tN−1

(
NF (u)− N − 2

2
uf(u)

)
dt +

∫ r

rkd

tN−1

(
NF (u)− N − 2

2
uf(u)

)
dt

≥ C(N, k)

(
NF (ku)− (N − 2)

2
uf(u)

)(
d

f(d)

)N
2

−M

(
rN − rN

kd

N

)
.

Ignoring the last term on the right hand side we get

rNE(r, d) +
N − 2

2
rN−1uu′ ≥ C(N, k)

(
NF (ku)− (N − 2)

2
uf(u)

)
− MrN

N
.

Now let us estimate uu′.

First, it follows from (24) that lim
u→∞

u2

F (u)
= 0. Further lim

u→∞

u2

F (u) + J
= 0 (Recall F (u) ≥

−J for all u).

Thus, there exists a B such that if |u| ≥ B then
u2

F (u) + J
≤ 1 that is if |u| ≥ B then

u2 ≤ F (u) + J. On other hand if |u| ≤ B then u2 ≤ B2. So we see that for all u we have

(81) u2 ≤ F (u) + J + B2.
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By Young’s inequality, and then utilizing (81) and (72) gives us the following

uu′ ≤ 1

2
u2 +

1

2
u′2

≤ (F (u) + J + B2) +
1

2
u′2

=

(
1

2
u′2 + F (u)

)
+ J + B2

= E(r, d) + J + B2.

Thus,

rNE(r, d) +
N − 2

2
rN−1uu′ = rN

(
E(r, d) +

N − 2

2r
uu′
)

≤ rN

(
E(r, d) +

N − 2

2r
(E(r, d) + J + B2)

)
= rN−1E(r, d)

(
r +

N − 2

2

)
+

N − 2

2
rN−1(J + B2).

Therefore,

TN−1E(T, d)

(
T +

N − 2

2

)
+

N − 2

2
TN−1(J + B2) ≥ rNE(r, d) +

N − 2

2
rN−1uu′

≥ C(N, k)

(
NF (kd)− (N − 2)

2
df(d)

)(
d

f(d)

)N
2

− M

N
TN .

Now J , B, C(N, k), and T do not depend on d, then from (H4) we see that

lim
d→∞

E(T, d) =∞.

�
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CHAPTER 7

FINDING ZEROS FOR RESULT 2

7.1. Using Bessel’s Equation

We know that F (u) → ∞ as u → ±∞. Therefore, since E(T, d) → ∞ as d → ∞, for

sufficiently large d there are exactly two solutions of F (u) =
1

2
E(T, d) which we denote as

h2(d) < 0 < h1(d). For d > 0 sufficiently large we see that u′′(0) =
−f(d)

N
< 0 and u′(0) = 0

so u is initially decreasing.

Let

(82) C(d) = min
r∈[0,r1]

f(u)

u
= min

u∈[h1(d),d]

f(u)

u
.

Then by (H2) we see that C(d)→∞ as d→∞.

Lemma 7.1. r1 → 0 as d→∞.

Proof. To show this we compare

(83) u′′ +
N − 1

r
u′ +

f(u)

u
u = 0

with initial conditions u(0) = d > 0 and u′(0) = 0 with

(84) v′′ +
N − 1

r
v′ + C(d)v = 0

with initial conditions v(0) = d and v′(0) = 0 where
f(u)

u
> C(d) on [0, r1].

Claim: u < v on [0, r1].

Proof of the Claim: Multiplying (83) by rN−1v and (84) by rN−1u and then taking the

difference of the resultant equations gives

(rN−1(u′v − uv′))′ + rN−1uv

(
f(u)

u
− C(d)

)
= 0.
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Now integrating this from 0 to r where 0 < r ≤ r1 and using u(0) = v(0) = d, u′(0) =

v′(0) = 0 and
f(u)

u
− C(d) > 0 gives

rN−1(u′(r)v(r)− v′(r)u(r)) < 0.

Then dividing by v2(r) and integrating between 0 to r where 0 < r ≤ r1 and since u(0) =

v(0) = d leads to
u

v
< 1 this implies that u < v on [0, r1]. End of proof of Claim.

Let z(r) =

(
r√
C(d)

)N−2
2

v

(
r√
C(d)

)
. Then

(85) z′′ +
z′

r
+

(
1−

(
N−2

2

)2
r2

)
z = 0.

The above equation is a Bessel equation of order
N − 2

2
. Thus, z(r) = A1JN−2

2
(r)+A2YN−2

2
(r)

for constants A1 and A2. Since z is bounded at r = 0 and YN−2
2

is not, it must be that

z(r) = A1JN−2
2

(r) for some constant A1.

Denoting βN−2
2

,1 as the first positive zero of JN−2
2

(r), we see that the first positive zero

of v is
βN−2

2
,1√

C(d)
and since u < v on [0, r1] we see that

r1 <
βN−2

2
,1√

C(d)
→ 0

as d→∞. �

7.2. u has a Zero

Lemma 7.2. For large d, u has a zero, z1(d), and z1(d)→ 0 as d→∞.

Proof. First we show that u has a zero. We prove this by contradiction. Suppose u > 0

on [0, T ] and consider r > r1. Then 0 < u < u(r1) = h1(d) so F (u) < F (h1(d)). Also since

F (h1(d)) = 1
2
E(T, d) we obtain

u′2

2
+ F (h1(d)) >

u′2

2
+ F (u) ≥ E(T, d) = 2F (h1(d)).

Thus,

u′2 ≥ 2F (h1(d))
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∫ r

r1

|u′|dt ≥
∫ r

r1

√
2F (h1(d))dt.

Since u is decreasing and using u(r1) = h1(d) gives

(86) h1(d)− u(r) = u(r1)− u(r) ≥
√

2F (h1(d))(r − r1).

So

h1(d)−
√

2F (h1(d))(r − r1) ≥ u(r) > 0.

Thus,

(87)
h1(d)√

2F (h1(d))
≥ r − r1.

So evaluating at r = T and using (24) and by Lemma (7.1)

T ← T − r1 ≤
h1(d)√

2F (h1(d))
→ 0

as d→∞. Thus, T ≤ 0. A contradiction. Thus u has a first zero z1(d). Then repeating the

above argument on [0, z1(d)] and letting r = z1 in (87) we get

0 ≤ z1 − r1 ≤
h1(d)√

2F (h1(d))
→ 0

as d→∞. Also, since r1 → 0 as d→∞ (by Lemma (7.1)) we see that z1 → 0 as d→∞. �

Remark: Taking the derivative of (72) with respect to r gives

(88) E ′(r, d) = −N − 1

r
u′2 ≤ 0.

So E is decreasing and is bounded by E(0, d) = F (d) which is same as

(89) E(r, d) =
u′2

2
+ F (u) ≤ F (d).

Hence u is bounded.

Lemma 7.3. For large d, |u(r)| < d and f(d) 6= 0.
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Proof. From (88) and (89) it follows that

u′2

2
+ F (u) +

∫ r

0

N − 1

r
u′2 = F (d).

If there exists a r0 > 0 such that |u(r0)| = d, then

u′2

2
+

∫ r0

0

N − 1

r
u′2dt = 0.

This implies u′ = 0 on [0, r0], hence u′′ = 0 on [0, r0]. Then by (68), f(d) = 0, but this

contradicts our assumption that f(d) 6= 0. �

7.2.1. Using energy estimate

We next show that for sufficiently large d, u attains the value h2(d) at some r2 where

z1 < r2 < T. So we suppose u′ < 0 on a maximal interval (z1, r). Here −u > −h2(d) so

u < h2(d) and this implies F (u) < F (h2(d). Then as earlier

1

2
u′2 + F (h2(d)) ≥ 1

2
u′2 + F (u) ≥ E(T, d) = 2F (h2(d)).

So

u′2 ≥ 2F (h2(d)),

integrating this between (z1, r) gives∫ r

z1

u′dt =

∫ r

z1

|u′|dt ≥
∫ r

z1

√
2F (h2(d))

since u(z1) = 0 leads to

−u(r) ≥
√

2F (h2(d))(r − z1)

(90) u(r) ≤ −
√

2
√

F (h2(d))(r − z1).

Now suppose by the way of contradiction that u > h2(d) on (z1, T ) and plugging this in

(90) gives us

h2(d) ≤ u(r) ≤
√

2
√

F (h2(d))(r − z1)

−h2(d) ≥
√

2
√

F (h2(d))(r − z1).
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Evaluating this at r = T and then taking limit as d→∞ and by (24)

0← −h2(d)√
F (h2(d))

≥
√

2(T − z1)→
√

2T.

Hence T ≤ 0. A contradiction. Therefore, there exists a small value of r, r2, such that

z1 < r2 < T with u(r2) = h2(d). Now evaluating (90) at r = r2 and since u(r2) = h2(d)

h2(d) = u(r2) ≤ −
√

2
√

F (h2(d))(r2 − z1)

and then taking limit as d→∞ and by (24) gives

0← −h2(d)√
F (h2(d))

≥
√

2(r2 − z1).

Hence r2 − z1 → 0 as d→∞.

7.2.2. u has a minimum

We next want to show that u has a minimum on (r2, T ).

Suppose not. Suppose that u is decreasing on (r2, T ). Now we want to show that there

exists an extremum of u after r2.

Let G(d) = min
[r2,T ]

f(u)

u
. Note that G(d)→∞ as d→∞ by (24). Now we compare

(91) u′′ +
N − 1

r
u′ +

f(u)

u
u = 0

with

(92) v′′ +
N − 1

r
v′ + G(d)v = 0

with initial conditions v(r2) = u(r2) and v′(r2) = u′(r2). With an argument similar to the

Claim in Lemma (7.1) we can show that u > v on [r2, T ]. Let z(r) =

(
r√
G(d)

)N−2
2

v

(
r√
G(d)

)
.

Then

(93) z′′ +
z′

r
+

(
1−

(
N−2

2

)2
r2

)
z = 0.

Now it is a well known fact about Bessel functions (see [16]) that there exists a constant

such that the distance between two successive zeros of z is less than K. This implies that

the distance between two successive zeros of v is less than
K√
G(d)

→ 0 as d→∞. Thus for
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large d, v must have a zero on (r2, T ). Since u > v and 0 > h2(d) = u(r2) we see that u gets

positive which contradicts that u is decreasing on (r2, T ). Thus we see that there exists an

m1 with r2 < m1 < T such that u decreases on (r2, m1) and m1 is a local minimum of u.

Also we see that

m1 − r2 ≤
K√
G(d)

→∞

as d→∞. Hence m1 → 0 as d→∞. Also, F (u(m1)) = E(m1) ≥ E(T, d)→∞ as d→∞.

In a similar way we can show that for large d, u has a second zero, z2, with m1 < z2 < T

and z2 → 0 as d→∞ and u has a second extremum, m2, with z2 < m2 < T and m2 → 0 as

d→∞. Continuing in this way we can get as many zeros as desired on (0, T ) for large d.

Lemma 7.4. If u(T, d) = 0 then u′(T, d) 6= 0. In particular |u′(T, d)| ≥ C > 0 for T − δ ≤

r ≤ T.

Proof. Suppose on contrary that u′(T, d) = 0 and by assumption u(T, d) = 0, then by the

uniqueness of solutions for initial value problem we have that u ≡ 0. This contradicts the

initial condition that u(0) = d > 0. Thus, u′(T, d) 6= 0, so

(94) |u′(r, d)| ≥ C > 0 for T − δ ≤ r ≤ T

for δ > 0. �

Lemma 7.5. If u satisfies equation (68), then u has a finite number of zeros.

Proof. Suppose u has an infinite number of zeros, say {zn} on [0, T ]. Since [0, T ] is a

compact, there exists a subsequence of {znl
} of {zn} such that znl

→ z and u(z) = 0. Then

by mean value theorem u′(mnl
) = 0 where {mnl

} is a subsequence of the extrema {mn}

and where mnl
are between znl

and znl+1
and so lim

l→∞
mnl

= z. Then taking limit as l → ∞

gives u′(z) = 0. So we have u(z) = 0 and u′(z) = 0, this implies that u ≡ 0 but this is a

contradiction to u(0) = d > 0. �
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7.3. An Important Lemma

Lemma 7.6. Let u(r, d) be the solution of (25) and (26). Let us suppose that u(r, d∗) has

exactly k zeros on [0, T ) and u(r, d∗) = 0. If |d− d∗| is sufficiently small, then u(r, d) has at

most k + 1 zeros on [0, T ).

Proof. Since u(r, d∗) and u(r, d) have a finite number of zeros by Lemma (7.5), then this

result will follow if we can show that u(r, d)→ u(r, d∗) uniformly on [0, T ) as d→ d∗.

Claim 1: If lim
j→∞

dj = d∗, then |u(r, dj)| ≤M1 and |u′(r, dj)| ≤M2 for some M1, M2 > 0.

Proof of Claim 1: We use the fact from (88) and (89) that energy is decreasing and hence

E is bounded by E(0) = F (dj), we can write the energy at r as the following

E(r, dj) =
|u′(r, dj)|2

2
+ F (u(r, dj)) ≤ F (dj).

Also, by (74) we have F (u) ≥ −J, thus

|u′(r, dj)|2

2
≤ F (d∗) + 1 + J ≤ C

for some C > 0. Thus, for j large, |u′(r, dj)| ≤ M2 for some M2 > 0. By Lemma (7.3) we

have |u(r, dj)| ≤ dj and since lim
j→∞

dj = d∗ we have |u(r, dj)| ≤ d∗ + 1 = M1 for large j. End

of proof of Claim 1.

Claim 2: u(r, dj) → u(r, d∗) and u′(r, dj) → u′(r, d∗) uniformly on [0, T ] as dj → d∗,

j →∞.

Proof of Claim 2: By Claim 1, we have |u(r, dj)| ≤M1 and |u′(r, dj)| ≤M2. So the u(r, dj)

are bounded and equicontinuous. Then by Arzela-Ascoli’s theorem we have a subsequence

(still denoted by dj) such that u(r, dj) → u(r, d∗) uniformly on compact subsets of [0, T ] as

j →∞. Then by (72) and since uj → u uniformly on compact subsets of [0, T ] we have

lim
j→∞

u′j = lim
j→∞

−1

rN−1

∫ r

0

sN−1f(uj)ds

=
−1

rN−1

∫ r

0

sN−1f(u)ds.
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Therefore, u′j converges compact uniformly on [0, T ]. Thus, u′j(r) converges uniformly

say to g(r). We now show that g(r) = u′(r, d∗). Integrating on (0, r), gives

lim
j→∞

∫ r

0

u′j(t)dt =

∫ r

0

g(t)dt

lim
j→∞

uj(r)− uj(0) =

∫ r

0

g(t)dt.

Since uj(r, dj)→ u(r, d∗), we get

u(r, d∗)− u(0, d∗) =

∫ r

0

g(t)dt.

Differentiating this we get u′(r, d∗) = g(r) = lim
j→∞

u′j. End of proof of Claim 2. �

We will use the above lemma to prove the Main Theorem in chapter 8.

59



CHAPTER 8

MAIN THEOREM FOR RESULT 2

To prove the Main Theorem we construct the following sets such that u has any prescribed

number of zeros.

Let Sk = { d|u(r, d) has exactly k zeros for all r ∈ [0, T ) }.

Sk 6= 0 for some k since u(r, d) has a finite number of zeros. Also, Sk is bounded above

by remarks before Lemma (7.4).

Let dk = supSk.

Lemma 8.1. u(r, dk) has exactly k zeros on [0, T ).

Proof. Suppose u(r, dk) has more (less) than k zeros on [0, T ). Then for d close to dk, by

continuity with respect to initial conditions u(r, d) also has more (less) than k zeros on [0, T ).

However, there exists values of d ∈ Sk so that u(r, d) has exactly k zeros on [0, T ). This is a

contradiction to the definition of dk. �

Lemma 8.2. u(T, dk) = 0.

Proof. If u(T, dk) 6= 0 then u(r, d) has same number of zeros as u(r, dk) for d close to dk.

But if d > dk then d /∈ Sk, so it cannot have same number of zeros as u(r, dk). This is a

contradiction. Thus, u(T, dk) = 0. �

Let Sk+1 = { d > dk|u(r, d) has exactly one zero on [0, T ) }.

Lemma 8.3. Sk+1 6= ∅ and Sk+1 is bounded above.

Proof. By Lemma (7.6), if d > dk and d close to dk then u(r, d) has at most k + 1 zeros on

[0, T ). Also, if d > dk then d 6= Sk so u(r, d) has at least k + 1 zeros on [0, T ). Therefore, for

d > dk and d close to dk, u(r, d) has exactly k + 1 zeros on [0, T ). Hence Sk+1 is nonempty.

Then by remarks before Lemma (7.4), Sk+1 is bounded above. �
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Define dk+1 = supSk+1.

As above we can show that u(r, dk+1) has exactly k + 1 zeros on [0, T ). Proceeding

inductively, we can find solutions that tend to zero at infinity and with any prescribed

number, n, of zeros on [0, T ) where n ≥ k. Hence, we complete the proof of the main

theorem. �
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