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OPTIMUM LIFTIIW BODIES AT HIGH SUPERSONIC AIRSPEEDS

By Meyer M. Resriikoff

SUMMARY

The shapes of bodies having minimum pressure drag for a given lift
at high supersonic speeds and satisfying conditions of given length ad
width are determined with the aid of Newton’s law of resistance. The
resulting shapes, as had been srgued by S&ger, have flat bottoms which
sre, in addition, rectangular. If it is further required that, for the
given conditions (both geometric and aerodynamic), the shapes have msxi-
mum volume, then they become simple wedges.

To determine if these bodies do, in fact, have improved lift-drag
ratios at high supersonic speeds, several wedges satisfying numerically
different sets of given conditions were tested at a Mach number of ~.
Measured aerodynamic characteristics are compared with theory and with
the measured characteristics of corresponding bodies of revolution having
fineness ratios from 3 to 7. It is found from experiment that the wedges
have maximum lift-drag ratios from 40 to 100 percent higher than those
of the corresponding bodies of revolution.

INTRODUCTION

It was argued by E&ger (refs. 1 md 2) that at high supersonic
speeds a lifting body having a flat bottom would have higher lift-drag
ratio than one having, say, a round bottom like a body of revolution.
E%nger did not, however, pursue this subJect to the extent of determining
the shape of an opt@m lifting body; nor did he prove, for that matter,
that such a body would have a flat bottom.

The determination of an optimum lifting body is nomally, at best,
a difficult problem because of the complexi@ of theories which must be
employed to predict accurately the forces on an arbitrary shape. In
hypersonic flow, however, a theory of remarkable simplicity becomes

a available, namely, the so-called impact theory of Newton (ref. 3).
Newton himself pointed out that the theory should apply to flows in
which the inertial forces are large ccmpared to the elastic forces aud

.

~
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it is now well known (see, e.g., refs. 1 a@ 4) that hypersonic flow
tends to satisfy this condition. For application at the high Mach num-
bers presently of interest, say of the order of 5, the theory is, of b

course, only approximate. Nevertheless, it was found to be a useful
tool in the determination of optimum (minimwn-drag) nonlifting bodies
of revolution (ref. 5). It might be expected therefore that impact
theory could also be used effectively in determining optimum lifting
bodies. —

The objective of the present report ie, then, to determine with the
aid of impact theory, and subject to given-conditions, a complete body
shape possessing minimum drag for given lift in inviscid hypersonic
flow. In addition, it is undertaken to measure experimentally the
characteristics of the bodies so determined.

SYMBOLS

A

CD

CL

D

d

f

L

2

M

P

P

q

Re

s

v

plan-form area

Ddrag coefficient, —
%1”

lift coefficient, 4
qolv

foredrag

base diameter of body of revolution

(
fineness ratio, + $

)
for bodies of revolution

lift

projected body length

Mach number

P-PO .
pressure coefficient, —

%
static pressure

dynamic pressure

Reynolds number

body surface area

body volume
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u

w

x,y,z

y(x)

a

T

e

air-flow velocity

maximum body width

coordinates of points on surface of body (positive x axis in
the direction of free-stream velocity, origin of the coor-
dinate system coinciding with nose of body)

one-half the lateral dimension of the body at a distance x
downstream of the body nose

angles formed by body surface normals and the x,y, and z
axes, respectively

angle of attack of body (for wedges, measured from line
bisecting apex angle)

variable of integration

wedge angle

Subscripts

Z,U values on lower and upper surface, respectively

v values on vertical portions of body surface

o free-stream conditions

Superscripts

— values pertaining to a comparison body

THEORY

The geometric characteristics of the optimum body will be found by
a comparison procedure rather than by the customary calculus of vari-
ations. The comparison procedure will be developed during the applica-
tion and is complete within this report. The methcd is more direct than
the variational method, thus enabling constant surveillance of physical
characteristics throughout the development and avoiding some of the
difficult questions associated with the application of the calculus of
variations in two independent variables.
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The comparison is made between the physical characteristics of a
given body and those of its transform.1 The trsmformed body satisfies
the given aerodynamic and geometric conditions. In particular, the
transformation is so chosen that its application leads to a body with
lift force unchanged and either leaves the drag force unchanged or
decreases it. Applied to sm optimum body, it is necessary that the
transformation leave the drag force unchanged. The requirement that
the optimum body have the same drag as its transform yields analytic
statements prescribing the geometric characteristics it must have.

Lift and Drag Expressions

The well-known impact theory expression for local pressure coef-
ficient at a point on a body is (see sketch)

P= 2 sin2 (~ -3)=2 CO=E (1)

z

x

The lift and drag forces acting on an element. dS of surface area are
given by the pro~ection of the force P dS on the vertical (z) axis
and on streamwise (x) axis, respectively, multiplied by the free-stream
dynamic pressure, ~:

‘The comparison of given geometric configurations with properly chosen
transforms leaving desired geometric or physical properties invariant
has been used extensively by Polya and Szego to solve quite general
problems (ref. 6).
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and

dL

al)

~’

= (P Cos g) q#S

= (P Cos E) (@S

5

(2)

(3)

By use of the pressure coefficient, equation (1), and the geometric
relations

dS=dxdysec~

cosz~+cos= y+coszt=l

the lift and drag expressions (2) and (3) may be written

dL = 2% COS2 k dx dy (4)

and

where dDv represents the drag force on a vertical surface (i.e., an
area dS for which dx dy = Oandcosg=O). The lift and drag forces
acting on the entire forebody are obtained by summing the lift and drag
expressions, respectively, over the forebody surface:

L = h% &z ~y(x) [ - COS2 ~u(X,y) + COS2 ~~(X,y)] dydi

and

D = ~ fZ~Y(X)

[J

COS3 gu(x,y)
+

00
1 - COS2 gu(x,y) - COS2 q~(x,Y)

cos~ ‘5Z(xjy)

1dydx+Dv- COS2 E~(x,Y) - COS2 ~~(x,y)

where Dv represents the total of the drag
vertical.portions of the body surface.5

forces acting on finite

●

(6)

(7)



Development of Optimum Body Shape

Consider the optimum
lift requirements and let
normals with the x smd y

A second body, satisfying
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body satisfytig the given length, width, and
the angles made by its up~r- and lower-surface
axes be, respectively,

Eu(X,y) VU(%Y)

Ez(x,y) 1 (8)
ll&Y)

the given requirements of this section, will
be defined in terms of the surface-normal direction angles (eq. (8)). The
requirement that the drag force D of the optimum body be less than or
equal to the drag force H of the comparison body will specify geomet-
rical characteristics to determine the shape of the optimum body.l Let
the comparison body be two-dimensional, bounded laterally by the vertical
surfaces y = *w/2, and with no forward-facing vertical surface. Let the
cosines of the angles made by its upper- and lower-surface normals with
the free-stream-velocitydirection be given by the root mean squares of
the corresponding quantities for the optimum body:

●

J
With the use of the lift-force expression (eq. (6)) and the definitions
of the direction cosines of the comparison body~s surface normals (eq.
(9)), a direct cml?utation verifies that the lift force acting on the
comparison body is equal to that of the optimum body. Similarly, the
drag force acting on the comparison body is obtained by use of the
direction cosines (eq. (9)) In the drag-force expression (eq. (7)):

(COS3 it(x) + ; COS51+X) + ●

Cosqx)
+ 1dydx

Fu(x) + . . .) +

. .)]dx (lo)

‘See footnote 1, p. 4..

~-’-”
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the last expression being obtained by use of the binomial expansion of
the radicals in the integral end by sn inte~ation.

In order_to compsre the drag force, D, of the optimum bcdy with the
drag force, D, of the c_mpsrison body, the cosine terms in the expression
(10) for the quantity D sre evaluated by use of’ their defining
expression, equations (9):

2n+~

Cos=l+l lqx) =
[ 1; ~y(x)‘=s2 !%(-) dT 2 (n)

Application of H81der~s inequalitfi (ref. 7) then gives

Cos=n+= Fu(x) <Y n-n= (x)

(w/2)
n+z/2

*Y(X)
o

COs==+x ~u(X,T) dT

~ ; g(x) COS2n+= ~u(x,T) dT (12)

The following sequence of inequalities results by using inequality (12),
together with the corresponding expression for the lower surface, in the
drag-force expression (eq. (10)), sad comp=ing the result with the
drag-force expression for the optimum body (eq. (7)):

.

. 2H61der!s inequality states that

( )
IJf(x) g(x) dxlm<f [f(x) I=dx J [g(x)l+ dx ‘-=

for any value of m greater than one:. Applied to the right side of
expression (U.) with m = n + 1/2, Holderls inequality yields

If:(x)COS2$+, T) ; dT ln+l’2

n+1/2

<jY(x) Co$=+l

K ) 1
~(x~7) dT ~ ‘-’12 ~(z) ‘-’/2-o

- [$-1
n-z/2

<: x)
W2 f:(x) Cos=n+’ VX’T) ‘T
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(J

C!osaEu COBS El
+

)

dy dx

1- Cos’ Eu ‘ 1 - COS2 E2

(,

Cos= ~u
+

v 1- Cos’

E, \

Eu - f=s’ vu

dy dx (13)

(14)

Since the optimum body cannot have gxeater drag than another body with
the same lift, the inequalities (12) to (14) inclusive must be equalities,
and the drag force Dv on vertical surfaces must be zero. Thus, by
expression (12), the lateral boundary, y(x), of the surfaces of the
optimum body must also be w/2 throughout the entire length of the body
so that the plan-form shape must be rectsmgular, and by expression (13),
the surface normals must always be orthogonal to the lateral axis, that
is, the body ia ‘ftwo-dimensional.f~Finally, Dv = O states that the nose
of the body cmnot have a finite forward-facing area of infinite slope.

By an analogous procedure, with the application of a second trans-
formation (see AppendIx)

Cos ()Tu =0

/

(15)

Cos (?J = J+ J: [ - Cos’ %(’) + Cos’ %(x)] b

it can be shown that the upper surfaces may not project beyond the flow
shadow (hence, by impact theory, may not be subJect to flow forces) and
the lower surface must be planar.

To show that the body so characterized is unique (insofar as the
lower surface is concerned, since this is the only surface subject to
air-flow forces) end actually presents less drag than any other body
satisfying the given conditions, it is noted that the consecutive appli-
cation of the transformations (9) and (15) to an arbitrary body (satisfy-
ing the given dynamic and geometric conditions) always leads to a body
with the same lower surface. That is, substituting transformation (9)
in transformation (15] and using the lift condition (6) gives

.

.
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L (16)
‘~

and the inequalities

(5) ~F~

Thus, the optimum body characterized by

(Et ) (eq. (16)) Possesses ~ abSOIUte.

D

the surface-normal direction

minimum drag chmacteristic.

J&cm equation (16), the angle @ between the free-strean direction and
the pl&ar bottam is

e 1 ‘L
= arc sin —

2~wz

resulting in a drag force, at the given lift, of

.
The volumes of the bodies were not considered in

optimizing procedure. However, above the flat bottom
optimum body and in the flow shadow there is a space

$wz*tsZIQ=*
~

L
2 2wZ~ - L

Thus, if it is desired that the optimum body have a

then the optimizing
prescribed volumes
volume is utflizedy

(17)

(18)

the foregoing
surface of the

volume V, with

(19)

procedure applies for the additional condition of
It should be noted that if the maximum available
the optimum body is uniquely a simple wedge.

‘A canparison of several wedges smd typical bodies of revolution showed
that for given lengths and width, the volumes of wedges were approxi-

● mately equal to those of corresponding bodies of revolution. Thus, it
does not seem probable that the bound on given volume (inequality (19))—
will be appreciably exceeded by bodies of usual proportions.

.
‘+
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Expressions (6) end (7) show that according to impact theory the
dynamic forces on a flat bottom surface are unchanged by a redistribution
of plsa-form area. If the geometric requirements of given length and .

maximum width are relaxed, optimum bodies in inviscid corpuscular flow
may be characterized broadly (but precisely) as having flat bottom sur-
faces with shadwed upper surfaces. With plan-form area specified,
expression (18) shows that the drag force on a flat bottom surface, for
a plan-form sxea A

and
and

expression (17)
the flat bottom

and a lift force L, is

“LG
gives the angle @ between
surface as

If it Is desired that this body contain maximum

.-

the free-stream direction

volume, subject to the
dynamic condition of given lift and the geometric condition of given
plsm-form area and shape, then the side and top surfaces of the optimum
body are generated by lines passing through the boundary of the bottom
surface snd alined with the free-stream vector.

EXPERIMENT —.

The preceding analysis, tidicating that the wedge is a body with
minimum drag for a given lift, is based on the simplifying assumptions
of an inviscid fluid and, in effect, infinite Mach number. An experi-
mental program was undertaken, therefore, to determine if such a body has
improved lift-drag ratios in viscous air flow at moderately high but
finite supersonic airspeeds. TO this end, lift and drag characteristics
of three optimum bodies of revolution and three corresponding wedges

%he profile shapes of the 3/4-power b~di~~~are defined by the expression

()
r(x) = $ T

where r is the radius of the body at a distance x downstream of the
nose. The 3/4-power body was shown to approximate the body of given
fineness ratio offering minimum drag at zero lift in hypersonic air
flow (ref. 5), and under the assumption that the pressure forces in
hypersonic air flow are negligible on the upper surface of a lifting
body of revolution, it can be shown by impact theory that the 3/4-
power body approximates the body of revoluticm of given fineness ratio

.

having maximum lift over drag.
,
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(fig. l(a)) were investfgatedat a Mach number of5 (Re per ft =4x106)
in the Ames 10- by 14-inch supersonic wind tunnel. The bodies of

.
revolution had a 3/4-power profile and were of fineness ratios 7, 5, and
3 (fig. l(b)). The wedges had the ssme lengths as the bodies of revo-
lution and widths equal to their dismeters. The wedge angles were
determined so that, according to impact theory, the lift of each wedge
with its upper surface in free-stream alinement was equal to the lift
force of the corresponding 3/b-power body at the maximum point on the
theoretical lift-drag curve of the latter. These wedge angles were such
that the volumes of the wedges were approximately 15 percent less than
those of the 3/&power bodies. The testing was csrried out in the
msnner described in the experimental investigation reported in reference
8. A detailed description of the wind tunnel and its flow characteristics
may be found in reference 9. All forces sre those on the forebodies only,
forces on the m@el bases having been eliminated by correcting measured
base pressures to free-stream static pressure. The estimated accuracy
of the measured maximum lift-drag ratios is approximately & percent.

RXSULTS AND DISCUSSION

The theoretical results show that at high supersonic speeds the
flat bottom characterizes the best lifting shape. Moreover, it was shown
that the flat bottom must be rectangular for the geometric conditions of

. given length and width. Thus, if it is desired to use all of the avail-
able volume above the flat bottom surface, the minimum-drag body for a
given lift force, in invisctd hypersonic flow, is a wedge. This finding

. is supported by the experimental results5 presented in figures 2, 3, and
4. These results show that for all lift coefficients within the range
of the tests, the drag of each wedge was significantly less th~ that of
the corresponding body of revolution. The lower drag resulted in
increased L/D and the maxtium lift-drag ratios of the wedges were 100
percent, 42 percent, and -53percent higher than those of the corresponding
3/4-power bodies for fineness ratios 3, 5, and 7, respectively.

The measured lift - drag forces snd lift-drag ratios for the
fineness ratio 7 wedge are ccmrparedin figure 5 with predictions based
on impact theory and friction drag estimates (cf. Monagh=, ref. 10).
It is seen that theory underestimates lift for a given angle of attack.
Lift-drag ratio is underestimated.by as much as 25 percent at the higher
angles of attack. It follows that the underestimation of the drag forces
is not as great, percentagewise, as the underestimation of lift forces.

5The force coefficients sre referred to the body length times the base
width, two of the given conditions, in preference to the customary base

● reference area used in comection with bodies of revolution.

.
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The greater *curacy of the drag estimate is due to the fact that the
drag of the wedge at the lower angles of att~ck is predominantly the
result of.skin friction. The skti-friction estl.mateis, apparently,
more =curate than the estimate of pressure forces. It is evident,
huwever, from figure 5 (as had been mentioned previousl.y)that although
impact theory may be”somewhat inaccurate in the estimation of quantita-
tive forces at finite Mach numbers, it is qualitatively useful.for
determining optimum body shapes.

CONCLUDIN(3REMARKS

. It was undertaken to determine by use of Netionian impact theory the
shape of the general minimum-drag boti satisfklng condition of giv~
li~, length,-andwidth. It was-found ttit the ~ower surface of–such a
body must be flat, thus ~erifying S%ngerts speculation, end rectangular,
and that if the maximum available”volqme is utilized, the minimum-drag
body satisfying the given conditions in hypersonic inviscid air flow is
a wedge. The shape so determined was’tested at a Machnumber of 5 for
‘three numerically different sets of given conditions, together with
corresponding optimum bodies of revolution. Results of’the tests showed
that the optimum shape determined by @act theory had, for three
different fineness ratios, measured lift-drag ratios 100 percent, 42
percent, and 53 percent higher than those of the correspondingoptimum
bodies of revolution.

.

hmes Aeronautical Laboratory
National Advisory Cummittee for Aeronautics

Moffett Field, C@Jf., Feb. 15, Ifik
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APPENDIX

APPLICATION CF THE SECOND TRANSFORMATION

13

The drag force ~) for the body resulting frcm the
(15) may be put in a form similar to that of expression
Wtegration then gives

(5 = 2~2w [co.. (y’j++cos, (y’+ ●

transformation
(10) for D.

. .
1

.(Al)

Because of definftlon (17), the representative cosine tezm on the right
of equation ‘(Al)satisfies the inequality

,, 2n+l

co82n+l
.(TB [*J’: Cos= ‘J’) a’ IT

(J@

.

Application of H61der’s inequality to the right side of’equation (A2)
results in

(A3)

● Substituting egy~tion (A3) in.(Al)j comparing with e~ressioh (10) for
the drag force D, emd.using the inequality (14), there results

.
(A4) ‘

Huwever, D represents the drag force of an optimum body”so that
inequalities .(A4),and hence inequalities (A2),and (A3), must be equali-
ties for all positive integral values of the index n. This fact,
together with-equation (15), requires that cos~u(x) = O and there-
fore, by equation (9), that cos gu(x,y) = 0. Thus the apt-~.bodY
may not have upper surfaces subject to flow forces. h addition, the
equality (A3) for n“= 1 yields the requirement (squaring each side aud
applying the definition (15) to,the left side).

. .

(A5)
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By the Schwsrz inequalitys (ref. 7)

NACARMA54B15

and

.

.

(A6)

—.-.
Using equation (A6) to evaluate the left side of equation (A5)

(A7)

#

.

%chwarz?s inequality states that

(
2

Jb f(x) g(x) dx
a )

< Jb f(x) dx Jb g(x) dx
a a

with the equality holding Q and only ~

d

[H]

fx
z gx =0

.

in the interval of integration.

.

@@MEDENT-
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.
Equality (A5) requires that
it’fol.lowsthat expressions

. (A6) can be inequalities if—

15

the expressions (A7) be equalities, from which
(A6) must be equalities. But the expressions
and Only if—

-& Cos Ft(x) =

By equation (9) this requires that

d Cos ‘52(X)=z
Thus, the optimum body must have a planar

o

0

bottom surface.
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Volume =.789 cu h

f=3

Volume =.943 cu in.
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I

.

.

.

.
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Figure 57 Comparison of im et theory und skin-friction prediction with
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