

A CAM-BASED, HIGH-PERFORMANCE CLASSIFIER-SCHEDULER

FOR A VIDEO NETWORK PROCESSOR

Srivamsi Tarigopula

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2008

APPROVED:

Saraju P. Mohanty, Major Professor
Elias Kougianos, Committee Member
Murali Varanasi, Committee Member
Krishna Kavi, Chair of the Department of

Computer Science and Engineering
Oscar Garcia, Dean of the College of

Engineering
Sandra L. Terrell, Dean of the Robert B.

Tarigopula, Srivamsi. A CAM-based, high-performance classifier-scheduler for a

video network processor. Master of Science (Computer Engineering), May 2007, 82

pp., 3 tables, 24 figures, references, 67 titles.

Classification and scheduling are key functionalities of a network processor.

Network processors are equipped with application specific integrated circuits (ASIC), so

that as IP (Internet Protocol) packets arrive, they can be processed directly without

using the central processing unit. A new network processor is proposed called the video

network processor (VNP) for real time broadcasting of video streams for IP television

(IPTV). This thesis explores the challenge in designing a combined classification and

scheduling module for a VNP. I propose and design the classifier-scheduler module

which will classify and schedule data for VNP. The proposed module discriminates

between IP packets and video packets. The video packets are further processed for

digital rights management (DRM). IP packets which carry regular traffic will traverse

without any modification. Basic architecture of VNP and architecture of classifier-

scheduler module based on content addressable memory (CAM) and random access

memory (RAM) has been proposed. The module has been designed and simulated in

Xilinx 9.1i; is built in ISE simulator with a throughput of 1.79 Mbps and a maximum

working frequency of 111.89 MHz at a power dissipation of 33.6mW. The code has

been translated and mapped for Spartan and Virtex family of devices.

ii

Copyright 2007

by

Srivamsi Tarigopula

iii

ACKNOWLEDGEMENTS

I would like to extend my unconditional thanks to Dr. Mohanty, who has been a

motivation towards my research and guided me through my thesis work. I would

like to thank Dr. Kougianos for taking out time to review my work and his support.

My heartfelt thanks go to Dr. Varanasi, for his support and valuable advice.

My friends and colleagues have been invaluable; the friendly staff at UNT also

has my appreciation. Finally and certainly not the least, I would like to thank my

family for being infinitely supportive. Time spent at UNT will always be

remembered as good time.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES vii

LIST OF FIGURES viii

Chapter

1. INTRODUCTION 1

1.1 Motivation 1

1.2 History of Digital Television (DTV) 2

1.3 Internet Protocol Television (IPTV) 3

1.4 Network Processors 3

1.5 Router 5

1.5.1 Packet Classification and scheduling 5

1.6 Contribution of this Thesis 7

1.7 Organization of this Thesis 8

2. RELATED RESEARCH 9

2.1 DTV and IPTV 9

2.2 Digital Rights Management (DRM) 10

2.3 Network Processors 10

2.4 Packet Classification for Network Processors 11

2.5 Packet Scheduling for Network Processors 15

2.6 Content Addressable Memory (CAM) 18

2.6.1 Variations in CAM 18

v

2.7 System on Chip (SoC) Technology 19

2.8 Securing Video in IPTV 19

2.8.1 Compression and Encryption 20

2.8.2 Watermarking 21

2.8.3 Scrambling 21

2.9 Field programmable Gate Array (FPGA) Technology 21

3. VIDEO NETWORK PROCESSOR 23

3.1 Why do we need the Video Network Processor? 23

3.2 Placement and Requirements of VNP in context of IPTV 25

3.3 Network Aspect Classifier – Scheduler 27

3.3.1 An IP Packet 27

3.3.2 IP Protocol stack 30

3.4 Why choose CAM for VNP 33

4. COMBINED CLASSIFICATION AND SCHEDULING ALGORITHM FOR VNP

 35

4.1 Packet Classification in VNP – Problem Definition 35

4.2 Packet Scheduling in VNP – Problem Definition 37

4.3 Proposed Packet Classification and Scheduling Algorithm 38

4.3.1 CAM and RAM inter working algorithm for combined Classification

 and Scheduling 44

5. ARCHITECTURE OF THE CLASSIFIER – SCHEDULER MODULE 49

5.1 Block level description of Classifier – Scheduler module 49

5.2 Architecture of proposed Classifier - Scheduler 51

5.2.1 Operation of the Classifier Module 51

vi

5.2.2 Operation of the Scheduler Module 54

6. PROTOTYPE DEVELOPMENT 56

6.1 Basic Design Considerations 56

6.2 Constructs in VHDL 57

6.3 Configuring CAM for Look Up 60

6.4 Challenges in Prototyping 61

6.5 Simulation and experimental results 62

7. CONCLUSION AND FUTURE WORK 77

REFERENCES 78

vii

LIST OF TABLES

Page

2.1 Comparison of classification algorithms- hardware and software 14

2.2 Comparison of some basic Scheduling Algorithms 17

6.1 Comparison of design metrics of Classifier – Scheduler for various

 FPGA technologies 73

viii

LIST OF FIGURES
Page

3.1 Deployment of Video Network Processor – in the internet 24

3.2 Video Network Processor– internal architecture 26

3.3 Internet protocol physical layer packet 29

3.4 Internet protocol stack 31

4.1 Algorithm 1_pseudo code for the proposed combined classification and

 scheduling algorithm. 39

4.2 Flow chart of combined classification and scheduling algorithm 42

4.3 Flow chart of combined classification and scheduling algorithm 43

4.4 Algorithm 2_pseudo code for CAM and RAM inter working for

 combined classification and scheduling 46

4.5 Inter working of CAM and RAM 47

5.1 Block level description of proposed combined Classifier- Scheduler 50

5.2 Block level description of inter working of CAM and RAM 51

5.3 Internal architecture of packet Classifier-Scheduler 53

5.4 Block level description of FIFO Buffer 54

6.1 Configuring lookup for CAM 60

6.2 Simulation of experimental version of the Classifier-scheduler in

 Classification mode 64

6.3 Simulation of experimental version of the Classifier-scheduler in

Scheduler mode 66

6.4 Synthesis report summary of experimental Classifier – Scheduler 68

6.5 Final synthesis report of experimental Classifier – Scheduler 69

6.6 High level RTL schematic of Classifier – Scheduler 70

ix

6.7 Synthesized RTL schematic of Classifier – Scheduler 71

6.8 Logic level description of the RTL of Classifier – Scheduler 72

6.9 Power and frequency comparison of the Classifier – Scheduler in

 various technologies 74

6.10 Logic cell count and memory consumption comparison of the

 Classifier – Scheduler in various technologies 74

6.11 Throughput comparison of the Classifier – Scheduler in

 various technologies 75

6.12 Floor plan of Classifier – Scheduler, high level floor plan design given by

 Xilinx 76

6.13 Gate level description of the floor plan of Classifier – Scheduler 76

1

CHAPTER 1

INTRODUCTION

Internet protocol television (IPTV) is one the fastest growing industries in

the world. It is estimated that all most 20% percent of television friendly families

will switch to IPTV by the end of this year, and this figure is predicted to be

doubled by the end of next year as quoted by IPTVnews.net. This shows the

dependency of a regular individual on the internet network. Internet connects the

whole world and it might not be an easy but a very luring step to merge internet

and television, this comes with advantages such as, single framework to support

two different functionalities, better quality more embedded functionality in

television channel transmission and so on, however, Internet has an imminent

danger of being susceptible to hacking and piracy. To protect the digital rights of

the television content being streamed, video network processor (VNP) is

proposed. This thesis aims at researching the architecture of the processor and,

building the basic blocks of the processor, which start with the classifier-

scheduler, this module tailored in such a way that new modules can be

embedded easily. Motivating factors of the thesis are highlighted.

1.1 Motivation

The transmission of digital television (DTV) over the Internet protocol is

called IPTV [1], [2], [3]. IPTV has been embraced by the new world for its various

advantages, such as accessibility of internet and television over a common

framework, better quality of service (QoS), low cost and low energy bill. This

technology also poses a potential threat which is inherent to Internet – data theft.

2

To secure the transmission of television and video data transmitted over the

internet, from the content provider to the end user; the design of VNP has been

proposed and this thesis aims towards developing the data path, elements and

architecture and placement of this box, and the combined classifier and

scheduler module , classifier – scheduler has been proposed, this is conceived

to be a system on chip design – SoC [4].

VNP is an application specific router which picks up IP packets with raw

“moving picture experts group” (MPEG) video data streams of real time protocol

(RTP) from the content provider [5]. VNP secures the, data through

watermarking, scrambling and encryption and then either broadcast, multicast or

singlecast the packet. The thesis focuses on classifying IP packets carrying

MPEG streams from the content provider, IP packets carrying regular data and

forwarding them to the processing units and scheduling them accordingly.

1.2 History of Digital Television (DTV)

Transmitting television content through digital signals, instead of

transmitting it through analog signals is called as digital television. To view digital

video streams, either a digital television, or its corresponding decoder or a

demodulator (places where analog television is still transmitted and used) are

used, these decoders and demodulators are called as set top boxes are to be

used, these are connected to the end user’s television set. There are several

standards to transmit digital television, such as national television system

committee (NTSC), phase alternating line (PAL), and high definition television

3

(HDTV) [6], [7]. These services can be multiplexed to receive a variety of

services and resolutions.

1.3 Internet Protocol Television (IPTV)

IPTV takes one step ahead of DTV and embeds DTV data into IP packets

and transmits it onto the internet network, so that, both television and TV can be

accessed through one framework. The traditional set top boxes which took care

of decoding DTV data have been modified to take care of extracting TV data from

IP packets. Usually a locally placed server (local to the content provider) picks up

streams of video and audio data preferably MPEG streams and embeds video

data into IP packets. This infrastructure takes care of video on demand (VoD),

authentication, fragmentation, channel change etc [8]. It always helps if the

content provider has a proper tie up with Internet service providers (ISP’s) rather

than acting as a normal internet client as, having a proper tie up, helps in

handling of QoS and quality of experience (QoE). IPTV supports as mentioned

MPEG standards, which include MPEG – 2, MPEG – 4 Part 2, MPEG – 4 part

10(AVC) [9], Microsoft VC – 1. The bottle neck of this technology would be,

some digital subscriber lines (DSL) which support low data rates, cable is

optimum as it supports around 4.5Mbps, however newest DSL – ADSL2 can

support around 25Mbps and can be used to transmit IPTV.

1.4 Network Processors

Network processors are family of devices which target the processing of

network based applications. These processors allow the developers to implement

latest protocols and services without changing the underlying hardware and give

4

an advantage over usual central processing units, by giving better performance,

and saves power as the processor does not have to constantly switch between

number of processes [10].

This family of processors includes,

1. Active routers

2. Switches

3. Firewalls

4. Network monitors

5. Intrusion detection and prevention engines

Network processors mimic limited functionality of the central processing

units to achieve specific network based applications such as – packet

discrimination and forwarding, encrypt incoming data streams, recognize certain

data patterns in the traffic based on look up table information, transmission

control protocol (TCP) and user datagram protocol (UDP) off load processing,

detection of intrusion and intrusion prevention.

Network processors are usually a set of hardware equipment which can

be implemented in either – application specific integrated circuit (ASIC),

application specific instruction processor (ASIP), co-processor technology, field

programmable gate array (FPGA), or on general purpose processor (GPP)

technologies.

5

1.5 Network Processor as an Active Router

A router is a networking device which helps one peer transmits data to

another. A router, routes and forwards IP packets based on the host and

destination IP addresses. Routers are also called as level 3 switches and they

can also act as firewalls. Active routers, have processing units embedded onto

them which enable them to process a packet before sending it to next hop [11]. A

router generally looks up the host and destination IP addresses against a lookup

table and either drop the packet (if there is no entry of the specific addresses) or

forward it onto the next computer or the router. A router forwards the packet to

the specific hardware port while taking care that it is also matches the logical port

to which the packet is being forwarded.

A router cross checks the incoming packet’s host and destination IP

address against a look up table and routes it accordingly, it not only directs the

packet to a valid destination, but also makes sure that , the IP packet does not go

where it is not intended, this helps in clearing the data lines of undesired clogging

and congesting . These are used at the enterprise servers, core, and access and

edge networks and at the end user’s location.

1.5.1 Packet Classification and Scheduling

In simple terms, the process through which a router, or a network

processor forwards a packet onto the fly towards its logical destination with the

help of host IP address, destination IP address and concerned routing table

entrees is called classification [12]. Various search algorithms have been

developed; initial was hash tree search which evolved into binary tree, radix tree

6

and so on. Various forms of hardware starting with random access memory

(RAM), have been used, eventually content addressable memory (CAM) is being

used to match the immediate logical address that matches the incoming packet

with specific host and destination IP addresses.

Classification of packets in a router consists of two planes namely [13],

1. Control plane

2. Forwarding plane

 As a packet comes in, the router has to compare the host and destination

IP addresses, and other fields in the packet and then forward it. Control – plane

takes care of updating the router’s look up table at regular interval [14]. The

reason to update the router table is that, if the router is moved from one node to

another, it is automatically given a new IP address, if there is another node being

added around the router in question or a node is down the router table needs to

be updated, routing metrics need to be updated regularly and accordingly and

control – plane takes care of that.

 Forwarding – plane is where classification and also scheduling takes

place, often referred to as the transport – plane, the forwarding – plane takes

care of forwarding the inbound IP packets, based on pre set rules, parallel

processing is carried on in high end routers, which help route several packets in

parallel.

7

 A packet scheduler prioritizes packets, checks for the attributes, such as

traffic, congestion, jitter and decides which packets go onto the network from a

particular computer [15]. A subset of packet scheduling can be considered as

grade of service (GoS). GoS is the probability of a call being blocked beyond

allowable time period this is expressed as decimal fraction.

1.6 Contribution of This Thesis

This thesis proposes basic architecture of the VNP, key decisions as to

the placement and data path of the VNP, and the design of VNP specific

Classifier – Scheduler module, which supports both classification and scheduling

of IP packets. Recognizing VNP patterns within the IP packet and forwarding the

data of specific packets for processing. Every network processor has to be

supported with appropriate classification and scheduling functionality and this

module has been designed specifically to support VNP.

The classifier – scheduler classifies IP packets based on the host and

destination IP addresses and various sorting rules, and recognizes specific VNP

patterns and schedules then with the help of control plane. CAM has been

explored to develop this module. The proposed architecture takes advantage of

CAM for a high performance realization. The classifier – scheduler module

schedules in a first in first out (FIFO) fashion and also keeps the QoS parameters

under consideration.

The proposed architecture has been prototyped using Xilinx ISE 9.1i and

simulated through the inbuilt ISE simulator, which comes with the Xilinx webpack.

8

The design is achieved in parts of both structural and behavioral coding. The

prototype classifier-scheduler module differentiates between normal IP packets

and VNP processed and to be processed by VNP packets and splits the data and

send it to the processing elements to be secured and then sews back data to the

header and the hardware based scheduler, schedules the packet in a FIFO

manner, this module works in the forwarding – plane of the network processor.

1.7 Organization of This Thesis

This thesis is organized as follows; the first chapter gives an introduction

to the motivating factors of this research. The related research has been

discussed in Chapter 2. An explanation of VNP and its advantages is given in

Chapter 3. Chapter 4 discusses the design considerations of the classifier-

scheduler module, the proposed algorithm. In Chapter 5 the prototype of the

proposed architecture for the classifier-scheduler module is given. Chapter 6

discusses the prototype development and the challenges faced during the

design. Chapter 7 concludes the work and gives an idea of the future work.

9

CHAPTER 2

RELATED RESEARCH

VNP is a network traffic processor its processes raw MPEG IP packets (of

IPTV) and secures the digital rights through various encoding and watermarking

techniques. However as with all network processors, VNP has to be supported

by appropriate classification and scheduling, these are the back bone of VNP

and their working is based on several constraints. There has been considerable

work done in the field of IPTV, digital rights management (DRM), encoding

techniques etc. This chapter gives a glimpse of the related research in this field.

2.1 DTV and IPTV

International telecommunication union – telecommunication

standardization sector (ITU-T), focus group (FG IPTV) defined IPTV as – a

multimedia service of delivering television, audio, text, graphics or data over IP

based networks managed to provide the required level of QoS, quality of

experience(QoE), security, interactivity and reliability [16]. This thesis presents a

module in VNP which not only routes the IPTV packets, but also recognize

packets from authorized users and secure the payload of the IP packets, so that

only authorized users with specifically programmed set top boxes will be able to

extract the MPEG streams. IPTV will be transmitted through UDP packets

carrying RTP streams. request for comments (RFC’s) such as RFC 3550 defines

the standards to be used to transmit real time video and audio, this takes care of

VoD, but IPTV aims at transmitting real time channels with minimum delay and

jitter [17]. RTSP, RFC – 2326, defines the establishment and control of single or

10

several time synchronized streams of continuous media. As the RTP packet

flows down the kernel of the operating system, it is encapsulated and sent to the

physical layer, where it is classified and scheduled, and VNP picks this payload

and secures it using watermarking, scrambling and encoding techniques.

2.2 Digital Rights Management (DRM)

Broadcasting digital data onto an unsecured network is a potential threat

to the data and makes it vulnerable to piracy and theft, and in order to protect the

right, the data is secured through use of various algorithms, and this process of

securing data in order to keep it authentic is called DRM. DRM dates back to

1991, when Fiat and Naor considered the question “is it possible to have a key

management scheme with revocation, but without the participating parties having

a two-way handshake?” [18]. DRM has evolved to be an access control

technique used to protect copyright of digital data. Various algorithms have been

used to facilitate DRM such as matrix based encryptions such as, using content

protection for prerecorded media (CPRM) key matrix , tree based encryption

schemes such as logical key hierarchy were also used. The most popular way of

securing DRM is through watermarking.

2.3 Network Processors

Network processors add specific processing engines to achieve desired

processing of the IP packet. Due to the growth in the complex functionalities

provided by the network and the data rates that are being supported, researches

have constantly tried to improve the performance of network processors. Key

design issues such as placement of processing engines, the data rates that are

11

to be supported have been discussed by Wolf [19]. A network processor as

defined by Shah, in his thesis is “an application specific integrated processor for

the networking application domain”. He has discussed the flexibility,

performance, power, and cost per unit cost to develop and cost to integrate

various network processors. He discusses various network processors such as -

nP7xxx series by applied micro circuits, MSP 5000 by BRECIS Communications,

PXF Toaster2 by Cisco and so on [20]. On set of real time audio and video

transmission has pushed the researchers further to achieve high speed designs

for network processors, one such work is given in [21], which is a combined work

of university of California and STMicroelectronic Inc. This paper proposes a multi

distributed memory system to efficiently breakdown the high speed, memory

intensive tasks and achieve them in parallel, similar work of distributing the load

has been discussed in [22][23]. The system on chip based design for network

processors is discussed in [24], [25].

2.4 Packet Classification for Network Processors

When a packet enters the network processor, the processor will first

classify it, check for the validity of the IP packet, by checking the host and

destination IP addresses, and classifies them based on several rules that are

stored, then forward them to the application plane and later check for the

availability of the port and forward the IP packets to be scheduled to the

respective hardware ports.

There are several issues that a classifier takes care of:

12

1. Extracting header information, such as destination IP or Time-to-

Live – TTL.

2. Check the Data link data and extract the packet

3. Analyzing other fields of the packet

4. processing the packet through the ingress and egress interfaces

For example, 10.0.0.1 and 10.20.0.10 are the host and destination IP

addresses respectively of an incoming IP packet, the classifier compares the bits

and cross checks if these are updated in its look up table, if yes it proceeds to

check the other fields in the packet such as network layer addresses, the number

of hops, and so on. Now how this comparison is done has lead a lot of research.

As a packet usually will have to go through a number of routers and gateways

before it reaches the intended destination, a poor classification algorithm, might

slow the traffic drastically.

The existing packet classification algorithms can be categorized in four groups –

1. Basic data structures

2. Geometry based

3. Heuristic based and

4. Hardware based.

Basic data structures search the incoming bit stream either using linear

search, or caching or set-pruning tiers, geometry based search, searched either

using area based quad tree, or grid of tiers, or fast inverted segment tree

13

mechanisms. Heuristic uses recursive flow algorithm or tuple-space search.

However this research focuses on hardware based searches – these include

mechanisms such as CAM, or bitmap intersection.

The pros and cons of some of the basic classification algorithms are

tabulated under table 2.1. N represents the number of rules, W is the width of

dimensions, d is the number of dimensions being used, l represents the levels

of tree, T is the number of tuples.

14

TABLE 2.1 Comparison of existing classification algorithms- hardware and

software [26],[27],[28], [29],[30].

Algorithm Time Storage Updates Observations

CAM -
Hardware

1 N 1

Simple, Fast, but takes up a lot
of space and is Costly,
incremental updates are
supported and updates in
parallel

Bit vector -

Hardware
dW +

N/memwidth dN2 ---
No incremental updates; works
well for multiple dimension and
a small number of rules

Recursive flow
Classification

d Nd ---

Not suitable for large sets of
rules (> 6000); pre-processing
and large storage space.
10Gbps line rates in hardware
and 2.5Gbps rates in software.

Hierarchical
Intelligent
Cutting

d Nd ---
Parameters can be tuned to
trade-off query time against
storage requirements.

Tuple-space
search

T N 1

Supports multiple dimensions if
the number of tuples are small.
Only supports prefixes; generic
rules increase storage
complexity.

Grid-of-tires

W d-1 NdW NdW

Rebuild for each update; could
be used for last 2 dimensions of
a multi-dimensional hierarchical
trie.

Area based
Quad Tree aW NW aSqrta(N)

a is a tunable integer parameter

Fast Inverted
Segment (l + 1) W

l x N1 +
1/l --

Tree must be recomputed on
update

15

Linear Search N N 1 Simple, poor scaling

Hierarchical trie

Wd NdW d2W

Maximizes the number of rules
in each leaf, introduces a
parameter which guides in
partitioning process

Set-pruning trie
Cross-
producting

dW Nd Nd
Fast and Costly, updating not
supported.

VNP needs to have a higher level of control – plane functionality as the

control – plane needs to take care of the IP stack and also the data scheduling to

all the processing modules.

2.5 Packet Scheduling for Network Processors

 After the packet is processed by a set of internet stack processing units,

and once the packets are classified, the scheduler forwards them to the specific

ports, based on the QoS factors [31], [32]. Handling arbitrary header lengths

requires constant updates from the controller. As the packets come in, they have

to scheduled to the hardware ports that match their logical ports, there are

several mechanisms, developed in packet scheduling [33], [34] such as

1. First in first out (FIFO)

2. Random early detection (RED)

3. Deficit round robin (DRR)

4. Earliest deadline first (EDF)

5. Best effort packet scheduling (BPA)

16

6. Round Robin (RR)

7. Priority queuing - variations

8. Virtual clock (VC)

9. Self clocked fair queuing (SCFQ)

 Scheduling decisions are based on fairness, immunity from other

flows, guarantee of the packet reaching the correct path. Comparison of some of

the algorithms is given in table 2.2.

17

TABLE 2.2 Comparison of some basic scheduling algorithms [35], [36], [37],

[38],[39].

Algorithm Functionality Advantages Disadvantages

First in first
out (FIFO)

Packets are queued
based on first come
first serve basis

No congestion

Streams with low
priority can steal
complete bandwidth
at a time, no
immunity from other
flows, unfair to
packets with priority

Round

Robin

Scheduler picks
packet in a round
robin fashion, 0 to n-
1 No congestion

No guarantee of
delay or bandwidth.
Time wasted
servicing empty
queues. Packet size
is not taken into
consideration

Priority
Queuing

Packets set in
priority queue are
serviced first

Good throughput, low
delay and good
utilization of bandwidth

Low priority queues
may not be serviced
for long.

Windowed
priority
queuing

Packets set in priority
queues are serviced
but service is limited

Low priority queues can
also be processed

Delay increases on
high priority queuing.

Virtual clock Certain bandwidth is
guaranteed per flow Every stream of data

gets a part of the
bandwidth

When a queue does
not have data to
stream, bandwidth is
wasted

Worst case
Weighted
fair queuing

Packets are
scheduled based on
earliest finish time

Fairness is maintained
irrespective of packet
size or profile

Highly computational

Deficit
round robin

Variation of deficit
weighted round robin

Can handle packets
without computing the
mean size

Highly computational
and complex in
implementation

18

2.6 Content Addressable Memory (CAM)

There are several packet classification and look up algorithms that are

embedded into routers. CAM is one of the fastest classification algorithms; it

basic advantage is that it scales well in the time domain, it also has a

disadvantage, it does not scale well in space domain.

Amongst the latest algorithms that is being used for classification and look

up [40], hypercuts and distributed cross producting of field labels (DCFL) are

popular, wherein these techniques utilize redundancies in filter sets in addition to

employing specific search engines for specific fields in the strings, these do give

higher throughput and scalability, but they offer higher latency and resource

utilization. Variations of CAM seem to offer a better solution in terms of

performance, efficiency and scalability. CAM is chosen as a basic classification

and also the scheduling technique for the proposed Classifier – Scheduler

module.

2.6.1 Variations in CAM

 CAM is an associative memory technique; it sorts out fixed length binary

words. This is helpful where the packet header length is fixed and strictly

hierarchical, however is the packet length varies CAM cannot classify effectively.

To achieve parallelism (which in turn allows us to process higher amount of data,

and also to classify data of variable length) ternary content addressable memory

(TCAM), is used. TCAM achieves this functionality by incorporating a ‘don’t care’

bit in its functionality [41]. Label encoded content addressable memory (LECAM)

is also a high performance classification technique which uses parallel search

19

engines. Each field of the string of data matched in parallel using various sub

engines. A controller which manages a count value for every match and which

triggers additions or deletions to the search engine data structures in the control

– plane is required.

2.7 System on Chip (SoC) Technology

 SoC is an embedded system which integrates functionalities and

components of a system onto a single chip. The system on chip can be an all

digital or analog or a mixed signal system. A SoC typically consists of hardware

components and software and a controller which takes care of the effective inter

communication of all the components [42],[43],[44].

 SoC typically consists of memory blocks, microcontrollers, voltage

regulators, timing sources, external interfaces digital signal processing units. This

research aims on emulating the SoC for VNP and emulating SoC usually implies

the mapping of functionalities that have been developed onto an FPGA chip.

The design flow, emulation, placement and routing and verification are the basic

steps in achieving the SoC design.

2.8 Securing Video in IPTV

 There have been innumerable ways to encrypt data, be it transmitting over

air or through a wired media, or to secure digital data , some of these techniques

are combined together to secure IPTV so that only the authorized user’s would

be able to view television data, conventional ways of securing data include:

20

1. Compression and Encryption

2. Watermarking

3. Scrambling

2.8.1 Compression and Encryption

Compression is an encoding technique, where less number of bits are

used to transmit the original data. Compression can be lossy or loss less. A

specific stream of bits is represented by another stream of bits which are less in

count that the original stream. In lossy compression the quality of the extracted

stream of data might decrease and in loss less the quality of the extracted stream

remains intact [45]. Compression and encryption go hand in hand, where in, in

encryption a set of bits are represented by another set of bits and transmitted

and the receiver has a key for the encrypted sequence and simply replaces the

encoded stream with original stream.

2.8.2 Watermarking

Watermarking is one of the copyright protection techniques, where in the

simplest way or watermarking is placing a visible image over the image or video

which is to be watermarked [46]. Watermarking can be extended to invisible

watermarking, where if a copyright issue arises for a particular image or a video

only the concerned party can extract the hidden data and prove its

authentication.

2.8.3 Scrambling

21

Scrambling is one of the cryptographic techniques [47]. A given stream of

data is scrambled using either a 32 bit or 64 bit key, and the message is passed

on, once the message reaches the destination, the user who has the key will be

able to decrypt the information and get the original data.

2.9 Field Programmable Gate Array (FPGA) Technology

Custom logic cells are pre programmed by the manufacturer and give us

limited functionality, FPGA, however is a logic cell which contain 64 to 10000

identical logic gates FPGA’s are slower than ASIC’s, and cannot handle complex

designs, but are idle to check run programs designed by individual designers and

check their functionality [48], [49].

A typical FPGA is an array of configurable logic blocks – CLB’s and

routing channels, with input and output interfaces, when a program is dumped

onto an FPGA, the CLBs are fused according to the program functionality. Once

a hardware descriptive language - HDL program is written it can be run on the

FPGA with the help of software translators which place route and translate the

design so that the logic cells on FPGA can be fused accordingly. The design

automation tools are equipped with complex functions and libraries, which

simplify and speed up the design process [50]. A single FPGA can be

programmed again and again to various HDL programs or schematics.

The common hardware descriptive languages are very high scale

integrate circuit hardware descriptive language – VHDL and Verilog [51], [52].

When a program is written it is simulated at various stages, with the help of its

22

test bench and its register transfer level – RTL description, and with the help

automation and synthesis tools which map the net list which in turn help translate

the program to gate level description and once the simulation is checked it is laid

onto an FPGA board.

23

CHAPTER 3

VIDEO NETWORK PROCESSOR

Video network processor belongs to the family of network processors, the

thesis aims to develop this processor into a full scale digital rights management

box, which can be placed any where in the network and it will tune it self to pick

up data packets and check for patterns in the data streams, recognize IPTV

packets from the content providers, control and request packets from the user

and process them for authenticity and digital rights management. This chapter

gives an over view of what video network processor is, its basic architecture,

working, its placement considerations, concerns and proposed remedies.

3.1 Why Do We Need the Video Network Processor (VNP)?

 For real-time copyrighted video broadcasting through IPTV the proposed

VNP processes raw MPEG IP packets from the content provider, checks for

authenticity, secures the rights of the content provider digitally – through

watermarking, and further secures it by encryption and scrambling, VNP will be

deployed not only at the content provider but also throughout the Internet

network, that is the core, edge and access networks, which implies that VNP will

have different levels of service parameters – based on where it is deployed [53].

 Deployment of VNP is discussed in Fig 1. The user register’s himself with

a content provider, to be able to view channels and videos of his choice. The

content provider receives digital video from various channels on a constant basis.

To authenticate the users who are receiving the data and to secure the digital

24

video that is being sent across the Internet the content provider uses an

enterprise server, which encapsulates this raw MPEG data in IP packets and

sends them to VNP, classifies the packets, checks for digital rights and then

throws them onto the internet.

FIGURE 3.1 Deployment of video network processor – in the Internet.

 VNP will be placed in core, edge, and access networks, so that it can keep

checking for authenticity of VNP packets throughout the network. In figure 3.1,

SBOX represents the set-top box which is a user end VNP. For example when a

user requests video (video on demand,) it is broadcasted through the network by

the VNP, that is there is no single cast in this scenario. Once the packets reach

25

the user, the set top box splits internet data and digital TV into two different

streams so that the user can view them separately.

3.2 Placement and Requirements of VNP in the Context of IPTV

 The specifications of VNP that would be placed at the content provider will

differ from the VNP that is placed in the middle of the core network and the VNP

that is acting as the set top box for the end user. The decisions are based on the

incoming traffic, outgoing traffic, data being processed per second and the

number of ports being supported and if the processing elements in the VNP

would be securing the IP packets or decoding the secured packets, the maximum

transferable unit – MTU, makes a lot of difference, another important point would

be if the VNP being used can completely replace the enterprise processor or be

hooked into the existing network processors [54].

26

FIGURE 3.2 Video network processor – internal architecture.

 Description of a proposed architecture of VNP is given in figure 3.2. In

VNP as soon as the packet arrives from the content provider, it is check for

authenticity by the classifier, and then it cross checks the destination against its

look up table, the packet is stripped of its header and the data is forwarded to

processing modules , starting with the compression module (if required), then it is

forwarded to the watermarking module and then encrypted and scrambled , after

this the scrambled data is encapsulated in an IP packet again and the original

Control Plane Processing Plane

Controller ALU Compression

CPU Interface PE Scheduler Encryption

Forwarding Plane Watermarking

 Packet Classifier Scrambling

Packet Scheduler Cryptography

Input/ Output Interface

Input/ Output Interface

Data

and

Control

M

E

M

O

R

Y

27

header information is attached to it , and sent across the internet. The engines in

the VNP are always monitored by the control memory and the central processing

unit interfaces which are in turn switched on and off by the voltage scheduler and

power scheduler, thereby reducing power dissipation. The voltage scheduler can

be implemented as a separate engine controlling all other engines but can also

be incorporated within specific engines. Since the packets being processed here

are IP packets, variable length strings are to be considered.

3.3 Network Aspect of the VNP Classifier - Scheduler

 As an IP packet is created it can either be an ICMP, UDP, TCP, HTTP [55]

or any other data or control packet, it trickles down the Internet stack, and the

data in the packet gets encapsulated into one header after another until it is

encapsulated into the physical layer packet and routed out, this implies that the

VNP will need to mimic the Kernel to strip data out of the various headers and

this would need the control plane of the router to be able to classify headers of

various sizes. The classifier will keep getting and giving back updates from and

to the controller and this demands that the classifier be able to classify IP

packets with variable header size. The functionality of Classifier – Scheduler

module depends immensely on the packet structure.

3.3.1 An IP Packet

 Internet packet is a datagram through which computers talk to each other,

and the network through which they pass is packet switched, and communication

is established either through TCP session or through UDP packets. TCP session

is initiated through a handshake and if there is packet loss, the intermediate or

28

destination computers send out a request to resend packets, if data packets are

lost, after retransmission of the lost packets, the kernel can put the formerly

received packets and the new packets in the original sequence and send data to

the application. However this is time taking, and if real time data is to be

transmitted, or video or voice is to sent, because if a packet is lost, even if it

retransmitted, there would be no point keeping all the packets waiting for one lost

packet as video and audio, are real time and certain sessions also require

speedy real time data rather than application waiting for every single packet. In

such case UDP is used, which is also known as unreliable protocol, it streams

packets in a much faster way and is ideal for real time data, where in packets are

transmitted and even if a packet is lost it does not affect the end user, the end

user is only affected if and only if a chunk of packets are lost, this causes –

pause, jitter, loss of video or audio data for a certain time. UDP packet format is

mimicked for the classification. UDP supports broadcast and multicast. In the

Internet protocol, once the transport layer attaches the UDP header, it is again

trickled down to the network and physical layer to be thrown onto the fly. Session

Description Protocol – SDP allows us to predict the upcoming packets statistics,

so that we don’t have to split every packet and analyze it from the first structure,

we can compare certain structures and predict the upcoming packets, and the

controller in VNP should be capable of recognizing all the protocols and packet

types.

29

 As soon as the packet hits VNP, it will recognize the physical layer’s

header, a typical IP packet is as shown in figure 3.3. The payload of this packet

can either contain, TCP, UDP, ICMP or any other higher layer protocol packet.

FIGURE 3.3 Internet protocol physical layer packet.

 IP packets do not have a fixed payload length, as the MTU of ethernet is

different from that of Core network and packet fragmentation occurs when ever

needed according to the traffic being allowed on the fly, and VNP will need to

identify that and classify and schedule accordingly. The functionality achieved so

far in the classifier works on the forwarding – plane and control will need to mimic

as mentioned above the functionality of the operating system.

ToS IHL 4 16-bit Total length

16-bit total Identification Flags 13-bit FragmentOffset

TTL Protocol 16 bit Header CheckSum

32 bit source IP address

32 bit destination IP address

Options (We propose to add VNP bit here/or in application header)

DATA

IHL – IP Header Length ToS – Type of Service

TTL – Time to Live; number of Hops

30

3.3.2 IP Stack

 The Internet protocol stack, on which the Internet works on is divided into

five layers [56], [57].

1. Application layer

2. Transport layer

3. Network/Internet Layer

4. Data Link Layer

5. Physical Layer

 A brief explanation of the working of the Internet protocol stack is given

below, which in turns explains the forwarding and control layer of the VNP. The

IP stack is implemented by the operating system’s Kernel, it can be better

understood with the help of figure 3.4

31

FIGURE 3.4 Internet protocol stack.

 Application layer is at the top of the stack, where in takes original data

from the application that is running on the system, if a user is browsing a

webpage the application layer hands over the actual browser information, takes

the login information and such, to watch a video online, the application layer must

identify it as video and not as simple string of bits. Application layer protocols

include – RTP, RTSP etc.

 This data then trickles down the Internet protocol stack and reaches the

transport layer, once the transport layer gets this data, it encapsulates this

data, in its header which specifies a specific protocol appropriate to the data

TRANSPORT LAYER

Layer 2

Example: UDP, TCP, ICMP

NETWORK LAYER

Layer 3

Example: IP, ARP, OSPF

DATA LINK LAYER

Layer 4

Example: IP, ARP, OSPF

PHYSICAL LAYER

Layer 5

Example: IP, ARP, OSPF

APPLICATON LAYER

Layer 1

Example: RTSP, STP, DHCP

DATA

DATA Layer 2 HEADER

Layer 3 HEADER DATA

DATA

DATA

Layer 4 HEADER

Layer 5 HEADER

32

type. For example transport layer gives UDP to RTSP data, and the data is not

loss or time sensitive, it assigns the TCP header type to it. If the data is a control

signal it assigns ICMP to it and so on. This transport layer packet now flows

down to network/internet protocol layer where it is encapsulated, (the header of

earlier layers is considered as payload) with this layer’s header such as IP or

address resolution protocol (ARP) header.

 Then the packet then moves onto data link layer, where the type of

transportation is decided and that particular header is added, like, Wi – Fi,

WiMAX, PPP so on. Then the packet finally reaches, the physical layer and it is

attached with a header and footer, this gives the physical layer data and it is

forwarded onto the fly. Once the packet reaches the destination, first the

physical layer header is stripped, and then the data link layer strips its header,

and network and transport remove their headers and application layer is

presented with its data.

 VNP works on three layers – physical, data link and network. VNP will not

be supported by any server or a PC, but it is a standalone processor, which

needs to mimic, a server or at the least a PC’s kernel to be able to strip the

packets of its header, based on the type of header, as headers of various layers

have different size, physical layer header is of fixed length, but the data can be

encapsulated in variety of combinations of protocols, which makes it extremely

difficult for a normal processing element to predict the exact header load in a

particular packet, unless it is able to mimic the functionality of the IP stack. This

33

functionality will be taken care by the control – plane, and forwarding – plane,

where the classifier – scheduler module is located, utilizes this functionality, the

module is constantly updated by the control – plane and utilize the information

in splitting the packet and forwarding it for processing.

3.4 Why Choose CAM for VNP?

 An interesting variation of content addressable memory is the TCAM

introduces a ‘don’t care’ bit, which allows us to check for the highest priority

match [58]. That is, once an incoming bit stream hits the TCAM for classification

module, the incoming bit stream is shifted one at a time, to find a match, it may

have multiple match strings, the more number of hits in a group, the highest

priority is given to that particular string to be belonging to a particular subgroup.

 The VNP that is under consideration is placed near the content provider

and the classification in VNP at this point of its placement purely concentrates on

the incoming and outgoing IP address, as far as the forwarding plane is

concerned. It is however desirable that CAM is able to classify a header of

various lengths, rather than one specified header field and hence CAM is the

preferred classification algorithm. The advantages of CAM over TCAM in this

scenario is that it is more simpler and faster and does not introduce latency as

TCAM (due to its ‘don’t care’ bit, multiple match criteria), the introduction of

TCAM is not required in this particular case, it is however inevitable in the control

plane, the control plane will have to classify data strings based on the protocol

and data that it is carrying.

34

To minimize the number of blocks used in VNP, a single module must be able

to work in different modes, that is both CAM and TCAM as suggested in [59] .

35

CHAPTER 4

THE PROPOSED COMBINED CLASSIFICATION AND SCHEDULING

ALGORITHM

Classification and scheduling work as the back bone of the VNP, and

because classification and scheduling are part of forwarding – plane functionality

and they have to forward data to the processing plane based on the control plane

information, certain constraints and specifications have been set on the design

of the algorithm. This chapter deals with the problem definition, and the proposed

algorithm for the combined classification and scheduling algorithm.

4.1 Packet Classification in VNP – Problem Definition

Below described is the forwarding – plane of the processor in this

classifier – scheduler design. As describe in the earlier section the VNP will

have an inbuilt processor which will have to collect data from the nodes on the

network so that the routing tables can be updated, however the forwarding of the

packets is the aim.

1. The packet classifier of VNP should cross check the host and

destination IP address of the incoming packet and forward it if valid or

drop it if invalid.

2. VNP should not only do this, but it has to be able to differentiate

between a VNP packet, packet that has to be made a VNP packet and

the normal internet traffic packet.

36

3. The classifier needs to mark the packet as a VNP packet after the

packet has arrived from the content provider and been secured

through the processing elements in the VNP.

4. The classifier needs to split the header and the payload so that the

payload can be processed and then attached back to the header.

5. Forward the secure datagram to scheduler to be scheduled.

However, there are concerns regarding the payload size of the IP packet.

1. The packet payload size, MTU varies from one network to another, that

is the payload size in Ethernet varies from, the payload size in the core

network, the MTU size and this differentiation is usually taken care by

the operating system kernel.

2. Different protocols have different headers and MTU’s, and the

Classifier, must be able to recognize and handle various MTU’s.

3. As the data trickles down the IP network stack, it is gradually

encapsulated in one header after another and every protocol will have

a different header size, RTSP, which is used to transmit MPEG

streams has a different header as opposed to SDP.

4. The classifier must be able to process packets with of variable header

sizes.

37

4.2 Packet Scheduling in VNP – Problem Definition

IP scheduler are implemented in software, where in as and when an IP

packet is generated, the processor picks it up, checks for the traffic parameters

such as – traffic, congestion and simply schedules as to which packet can move

onto the outgoing stream based on its destination IP address. However design of

a scheduler to be embedded in VNP will have to take input from the controller, for

the traffic and congestion and schedule the packets. Packets are scheduled in

FIFO fashion, if the controller gives an update of the traffic; the scheduler needs

to push out the packet to the end of the queue.

1. The scheduler for VNP will have to broadcast, multicast and single cast

based on the placement of the VNP.

2. The scheduler will have to take into consideration the nature of IP

packet, if it is a normal IP packet or a VNP packet.

3. It needs to schedule in a FIFO fashion and make sure that when there

is congestion the packet at that point of time moves to the end of the

queue.

Flag bit is proposed, which can help the scheduler to be able to

differentiate between VNP and non VNP packets, and this flag will also function

as an internal mode flag which will help identify the type of casting and QoS

check at regular intervals so that the scheduler does not send the packet on a

congested fly.

38

4.3 Packet Classification and Scheduling Algorithm

 Packet classifier is the first element, the packet hits, after entering the

input/output – I/O interface. The data bits are picked up and classified based on

Content addressable memory classification, packet is then split as header and

data, data is forwarded to processing elements and after the data is processed it

is appended to the header and then match of the output port is taken based on

RAM search and the packet is thrown out – after the port QoS is checked, it is

either single cast, multicast or broadcast based on the control plane information.

The algorithm proposed in this thesis processes one packet at a time. If

the control – plane of the VNP is developed it can dwell and check for session

description protocol and the classifier will not have to go through the data bit

after bit, but processes the chunks of data as they come in, as data is usually

sent in bursts rather than a continuous stream. Pseudo code of the proposed

algorithm is given in figure 4.1.

39

FIGURE 4.1 Algorithm 1_pseudo code for the proposed combined

classification and scheduling algorithm.

begin process -- String = Data + Header

if clk = ‘high’

 { load string into data shift register;

 for i in 0 to header-1 loop

 { run data through CAM

 output the corresponding addr’s of the matched string

 if ‘Match’ is low

 { drop the packet }

 else if ‘Match’ is high

 {

 if VNP = ‘high’

 { split packet;

 Write data to PE cache;

 update ‘hops’ in header and store in cache;

 after data is processed – concatenate;

 forward packet to scheduling;

 }

 else
 { update ‘hops’ in packet

 forward packet to scheduling;

 }

 }

 end loop
for i in 0 to addrs loop

 { compare the CAM given address against RAM look up table;

 output the corresponding port address;

 }

 end loop
for i in 0 to String loop

40

 { if QoS is high

 { check mode;

 forward in a first in first our fashion;

 }

 else
 { wait for specified ‘network up time’

 run through forwarding to port again;

 }

end loop
 }

else if clk = ‘low’

wait for clk to be high

end process;

As soon as the data comes in it is loaded into the Input buffers, ‘read’

mode of the CAM is enabled. CAM then starts reading the data from the buffers

in little endian fashion. After the data is run through CAM if there is a valid match

in the look up table, CAM writes the location of the data, that is the address of the

matched data is given out and ‘match’ signal is high. If there is no match of the

data run through CAM, a garbage address is given out and ‘match is set to low.

The classifier further checks for the match signal and if ‘match is low, the

incoming packet is dropped and if ‘match’ is high, the data is split from the

header. Header is stored in cache and data is forwarded to the processing

elements represented here as PE. At the same time in parallel, the address that

is given out by CAM is matched against RAM look up table for scheduling. RAM

41

gives the port number to which the packet needs to be forwarded. Once the data

is processed it is sewed back to the header and it is forwarded to the appropriate

port based on the output of CAM.

A flow of events in the proposed algorithm is given in given in figure 4.2 and

figure 4.3.

42

FIGURE 4.2 Flow chart of combined classification and scheduling algorithm (cont. in 4.3).

Load Data Buffer

Initiate Counter

Move data Into Data
Shift Register

Enable CAM Read
mode

Run data against CAM
LUT – One clock cycle

Match
Hit

Write address
given by CAM
to Scheduler

Buffer

Drop

Split Packet

Write Header to
Cache registry

Write header to Cache
registry

VNP

Data to
PE’s

Low

High

If Match Hit
is high

BEGIN

A B

43

FIGURE 4.3 Flow chart of combined classification and scheduling algorithm (cont. from 4.2).

Concatenate Header
and Processed Data

Data from PE’s Run Sequentially
against RAM LUT

Run Sequentially
against RAM LUT

Check Mode

Write Appropriate Port
Address

Forward based on
Port Address

QoS From Control
Plane

Low

High
Wait for Network

Update time

Forward to specified
Port through FIFO

END

A B

44

4.3.1 CAM and RAM Inter Working Algorithm for Combined Classifier and

Scheduler

CAM uses data search words entirely of 1’s and 0’s [60].In CAM

classification is done by dividing the bits in words. Typically 8 bits are considered

as one word. And the number of words that can be searched is called as the

depth of CAM. CAM can classify several words in parallel; this is what makes it

fast compared to other classification techniques. As the data comes in it is split

into words and each word is sent through individual comparison blocks and

compared to pre stored data. For example, consider a CAM of 32 words, that is it

can classify 32*8 bits; all the 8 bit comparison blocks are connected in parallel.

A better understanding of CAM can be achieved by comparing it with

random access memory (RAM). The classifier will have pre stored strings, which

can be rule sets, or in our case host and destination IP addresses, and flag bits,

which are stored in a table which is referred to as the look up table, as the bits

flow in, the classifier will compare the incoming bits to the bits stored in the look

up table [61]. If there is a match the corresponding match signal is given out, if

there is no match garbage value is given as out put. Where as in a RAM, data is

a location is read by an address, but CAM searches for match and there is a

match, address of the array is given as the output [62]. CAM does not use

address lines in its read mode and hence its memory can be easily increased.

CAM can compare a string in one clock cycle due to this functionality.

Basic CAM mechanism is simply to compare 2 bits at a time its out put

and sent through an and gate whose other input is the comparison of two more

45

bits in the same block, the result of this ‘and’ gate is sent through multiplexer and

when signal is set to high, it gives out the result, several blocks work in this

fashion in parallel and CAM can classify 8 bits or 8 bytes or 32 bytes based on

this principle.

Pseudo code for the CAM and RAM lookup table working is given under

algorithm 2 and flowchart in figure 4.4.

46

FIGURE 4.4 Algorithm 2_pseudo code for CAM and RAM inter working for

combined classification and scheduling.

begin process
if clk = ‘high’

 { initiate counter;

 for i in 0 to numberofwords-1 loop

 { read 2 bits per comparator;

 2 comparators per block;

 one word per block;

 perform ‘and’ on the output of comparators in block – output is S;

 if S = ‘0’

 Multiplexer Output = ‘0’;

 else if S = ‘1’

 multiplexer output = ‘1’;

 register output of all blocks;

 compute ‘Match Hit’

 }

 if ‘Match Hit’ = ‘1’

 for i in 0 to addrs-1 loop

 { write output address to Scheduler ;

 compare each bit against the RAM lookup table

---RAM takes less space but require a lot of clock cycles, but as the

 --number of ports are very less, RAM is easier to implement;

 update the counter and write to forwarding block connected to FIFO;

 }

if clk = ‘low’

wait for clk = ‘high’

end process;

47

FIGURE 4.5 Inter working of CAM and RAM.

BEGIN
Shift Data into CAM

data registers

Register result of all
Comparators in

parallel

Initiate Counter at clk
High

Match
Hit

Compare against RAM
tables and Mode flag

Select
Signal

Mux o/p is 0 - Gnd Mux o/p is preset C

Drop Packet

Update data registers
and write to forwarder

END

0 1

LowHigh Continue to VNP check

48

Data is read and sent as an input to buffers, which enable CAM, initiate

the counter of CAM and start reading data into the shift registers, read 4 bits per

comparator block, read all comparators in parallel. If the multiplexers within the

comparators get the select signal as 0 the output is given as 0 or it is set to the

carry in signal. Once CAM gives the address on its output line, it is automatically

loaded into the RAM buffer, and RAM reads and compares the bits sequentially

and gives the appropriate port number at the output. This algorithm, works in a

hierarchical fashion, taking care of the forwarding – plane functionality of the

VNP. The forwarding – plane would require constant updates from control –

plane to function properly.

49

CHAPTER 5

ARCHITECTURE OF THE CLASSIFIER-SCHEDULER MODULE

This chapter discusses proposed architecture of the classifier – scheduler

module. While designing the architecture considerations such as the buffer size,

depend on the traffic that the VNP will handle based on its placement. Traffic can

go up to Gbps, data shift registers of CAM module will need to shift IP packet

string length at a time, reading 8 bit word per shift, and give out the address of

the data stored in the Look up table.

5.1 Block Level Description of Classifier – Scheduler Module

As proposed in the VNP architecture, VNP can be divided into control,

forwarding and processing planes. The classifier – scheduler falls under the

control and forwarding – planes of the VNP and helps start the functionality of the

processing plane. A high level schematic of classifier – scheduler module is

given in figure 5.1

50

FIGURE 5.1 Block level description of proposed combined classifier-

scheduler.

The classifier – scheduler module classifies and sends data to processing

elements and sews back the data with the header after the processing is done

and the scheduler picks them up and with the help of update from controller

schedules the packets based on QoS parameters [63],[64]. The Classifier –

Scheduler is tied to the controller through data buses and to the memory with

address buses. As soon as the string of data – in our case the IP packet flows in,

the classifier checks the header against CAM look up tables, strips the header

and stores it in cache, rest of it is forwarded to PE’s, after the PE’s send the data

back, registry is updated and it is joined with the header. The scheduler’s registry

is constantly updated by the QoS updater and once a new packet comes in it

takes the update and schedules it or pushes the packet back in the queue. The

proposed architecture is better explained with the help of the inter working of

lookup tables and the mechanisms used for it. Figure 5.2 gives a high level idea

of the working of the forwarding plane of VNP.

CLASSIFIER SCHEDULER

Controller

PE’s QoS

IP Packet
Port 1
Port 2
Port n

51

FIGURE 5.2 Block level description of inter working of CAM and RAM.

Working of CAM and RAM in read and write mode follows the below given

pattern.

CAM and RAM both store data in arrays.

1. CAM takes in the data to be sorted, and sorts it in parallel. CAM’s

address bus accesses every word in write mode.

2. CAM and RAM both have similar write modes.

3. CAM read mode results in giving out the address and RAM’s read

mode results in data for the given address.

4. When tailored for VNP, CAM stores all the headers which can be

classified, and rule set for VNP check.

5. Once this is classified, CAM throws out the address location where the

data has been stored, and if all the rule sets match, ‘Match Hit’ is given

as high.

RAM

Look Up
Table

Data to be

Classified

Address where

Match Hit

 Data stored at the

 specified Address

52

6. RAM then picks up the address and loads in its cache and searched

for data stored in its look up table at that location.

7. Appropriate data is thrown out, and the rest of the operations are taken

care by the forwarding plane.

5.2 Architecture of the Proposed Classifier-Scheduler

The classifier – scheduler module is the core of VNP and is built in

hierarchy, and it compares one word at a time, its architecture had both classifier

and scheduler built into it, and it is just the mode in which it works that helps

differentiate the packet processing.

5.2.1 Operation of the Classifier Module

Fig 7 gives us an idea of the architecture of the classifier, as and when the

packet comes in, the CAM picks it up. CAM is built using hierarchy, initially 4 bits

are compared to the LUT and that out come is matched to an outcome of another

4 bits, this makes up a cam word, on similar lines [65], [66], 1 word is compared

to another and the module can classify a header file of ‘n’ words, single word

comparator (SWC) compares 4 bits at a time, the detailed architecture is given in

figure 5.3.

53

FIGURE 5.3 Internal architecture of packet classifier-scheduler.

Content Addressable Memory
Look UP

Data Shift Register

Enable Check

Counter

Splitter Combiner

Store Header/ Merge
Data to PE’s Header and
 Data from PE

Addr 1 Port 2

Addr n Port n

QoS Check

Mode Check

Dispatcher

Collect Packet and
Forward

FIFO
Buffer

SWC

Drop

Match Hit Check

Addr

VNP Check
Flag low

Forward
Packet Flag high

Forward
Packet

Port 1

Port 2

Port n

From/To Control Plane

IP Packet

To/From PE’s

54

The CAM lookup table designed is based on the ability of comparing bits in a

hierarchical manner.

5.2.2 Operation of the Scheduler Module

A packet scheduler, is usually implemented in software, and one of the

leading scheduling software’s is the QoS scheduler, this gets constant updates of

traffic and congestion and schedules packet accordingly, a similar functionality is

achieved in the scheduling module, as soon as 32 bytes hit the scheduler, it

shifts the data and checks if it is a VNP packet, it gets a constant update from the

QoS update module and the controller, once the mode and QoS gives a go the

packet is scheduled to appropriate port. The scheduler utilizes FIFO as its

buffering technique, FIFO simply forwards packets as they come in, however if

the QoS of a particular outgoing queue is not good, the scheduler registry is

updated and that packet or packet stream is pushed to the end of the queue.

FIFO functionality is explained with the help of figure 5.4.

FIGURE 5.4 Block level description of FIFO buffer.

D QD Q D Q D Q

Data_Out

TAP_Select

Data_In

CLK

55

FIFO is also known as a named Pipe, the FIFO has two important nodes,

that is head and tail, the packets enter the tail and are scheduled after they make

it to the head after waiting for the packets in front of it are scheduled. Also the

two states of FIFO are FIFO Empty and FIFO Full, this involves the address

register, as read reached write, FIFO ‘empty’ is triggered, and as ‘write’ reaches

‘read’, FIFO ‘full’ signal is triggered. And in the proposed architecture when the

QoS gives an update that there is congestion or traffic, the packet is moved to

the tail of the queue.

56

CHAPTER 6

 PROTOTYPE DEVELOPMENT

This prototype has been written through Xilinx 9.1i and simulated using its

built in simulator. CAM architecture has been considered as the basis for the

classifier – scheduler and has been simulated and the synthesis report shows

that 2211 cells were used. Based on the address that is given out, a flag bit has

been added in the options field in the physical packet address, so that the

classifier can easily identify a VNP packet from a non VNP packet, if the flag is

high, the packet is considered a VNP packet, if not it is dropped, In all the

algorithms, data is read in little endian fashion.

6.1 Basic Design Considerations

The design hierarchy in VLSI systems is as follows [67]

1. System

2. Module

3. Gate

4. Circuit and

5. Device

A digital design engineer can start his design from any of these level,

however a top to bottom approach is always preferred as system level design

can be done through HDL design, which can with the help of translators be

broken down to module and gate and circuit and design level, if there is a bug in

57

the system level description, it is easier to decode, and fix before the chip is

meant for manufacturing. However if there is a bug in the manufactured chip

itself, there is no debugging and rerunning , the chip will be simply discarded.

Designers prefer to play with layout design, which is at gate level , this

helps the designers to, figure out, unwanted capacitances and inductances,

however becomes tedious as and as the transistor count on the chip increases.

One can imagine the Man power that goes in checking or designing a gate level

program or netlist of a chip containing hundred’s of gates, the chips that are

manufactured at this time have millions of transistors in them.

This thesis has performed the system level design of the classifier –

scheduler in VHDL and simulated it using ModelSim. Here is a brief description

of the tool being used. The code is written in VHDL in Xilinx 9.1i on windows XP

platform and simulated using the inbuilt ISE simulator.

VHDL is a hardware descriptive language which can be used to model a

digital system. The digital system can be as simple as a logic gate or as complex

as a complete electronic system, once the VHDL code is written it can be

dragged onto an FPGA board and implemented, based on its complexity.

6.2 Constructs in VHDL

There are five different types of primary constructs, called design units,

which are:

1. Entity declaration

58

2. Architecture body

3. Configuration declaration

4. Package declaration

5. Package body

The entity declaration describes the external view of the entity, like the

input and output names. Architecture body contains internal description of the

entity, such as set of concurrent or sequential statements. A configuration

declaration is used to bind one architecture body to many architecture bodies. An

entity may have many different configurations. Encapsulation of set of related

declarations is called package declaration.

Architecture body is what describes the modeling styles of the entity which

can be any one of the three:

1. Structural

2. Data flow

3. Behavioral

In structural the entity is described through a set of interconnected

components. If an entity is described primarily using concurrent signal

assignments it falls under the data flow style of modeling. Behavioral modeling

describes the behavior of the entity in question, as a set of statements that are

executed sequentially in the specified order.

59

Once a VHDL code is written to run on an FPGA or to design an ASIC,

however it is not run on the host machine’s Kernel like C or JAVA or other

software programming languages, so for us to check the correctness and verify

the working of the hardware program, a test bench is needed. A test bench has

three main purposes

1. To generate stimulus for simulation

2. To apply this stimulus to the entity under test and collect the output

responses

3. To compare the output responses with the expected values

Stimulus is automatically applied to the entity under test by instantiating

the entity in the design of modules in VNP has been a combination of structural

and behavioral models.

ISE simulator is an integrated simulator that comes with Xilinx Webpack,

this is a simulation tool for HDL programs such as VHDL, Verilog, to start with the

simulation. VHDL design of the thesis has been simulated using the ISE

simulator. To simulate an HDL file the starting steps are to,

1. Create a working library

2. Compile design files

3. Link to resource libraries

4. Run simulation

5. Debug results

60

ISE simulator has features, simulation for all of Xilinx leading devices,

such as Cool RunnerTM II, SpartanTM-3, and VirtexTM-4.

6.3 Configuring CAM for Look Up

The CAM can be adjusted to match variable header length; the main trick

would be to make the controller shift to the assumption that the stored header is

shorter or longer as compared to earlier header length. This would involve the

active participation of control plane of VNP, where in LUT metrics are changed

according to control signal, in this thesis , the control plane rules are changed

rather than the forwarding – plane rules. The CAM lookup table designed is

based on the ability of comparing bits in a hierarchical manner; try to Xilinx

primitives are used to achieve this. Figure 6.1, describes this functionality of the

basic comparison block.

FIGURE 6.1 Configuring lookup for CAM.

4 bit LUT

4 bit LUT MUX

MUX D Q

1 2 3 n

D Q

8 bits

n words

4

4

8 Bit/One Word Comparator

CLK

CLK

Address

Match Hit

61

The working of the basic module of CAM, is represented in figure 6.1 , the

basic block is a 4 bit LUT, as 8 bits flow in (one CAM word), it is channeled as 2

streams of 4 bits, once that is done, the 4 bits are cross checked against the

LUT, once that is done, the match signal is sent out, this is done in parallel with

all the words that come in, Above figure represents an ‘n’ word comparator and

as all the bits are matched, the address and a match signal is given out, if a

match is not found, the match signal is low and garbage value is given as the

address.

6.4 Challenges in Prototyping

This code, when laid down on an FPGA, that FPGA will talk to only

another ASIC or FPGA which is programmed to support this packet structure

only, this packet and FPGA cannot talk to a normal router, as – UDP’s RFC

4293, is violated, the packet sent would be an experimental packet, it simply

mimics the real IP packet, and defines all the fields, such as TTL, data length etc,

but this will still need to be supported by the control unit, as the operating system

still needs to be mimicked, and its kernel to come up with the functionalities of

TCP, UDP, RTP, RTSP, SMTP and so on. The functionality which has been

described above describes the forwarding – plane operation of the router, the

controller will need to talk to rest of the network and keep updating the LUT’s and

support the functionality of control – plane of the router.

In real time once, the physical layer header (20 bytes) is stripped, further

studies are needed to prod into the header of above layers – that is network,

62

application and session, and which are not fixed. The classifier supported by

CAM tables to check for variable length header, can be achieved with some

minor modifications. However the module will still need to send and receive

constant updates from the controller, which will be an image of that part of the

kernel of the operating system which takes care of breaking down and

scheduling of a packet.

6.5 Simulation and Experimental Results

The system level designs of the combined classifier and scheduler, has

been written, this will utilize an experimental packet. The code is written in an

hierarchical fashion and is a combination of structural and behavioral type of

coding.

Experimental packet of length 32 Bytes is considered, since in internet –

real time data is always sent in bursts, this module considers a burst of 32

packets at a time. As the stream of data comes in the classifier – scheduler

considers first 20bytes of this string of data as header. The data is provided by

the test bench, which is 32 bytes, 32 times. As the first string of data enters, data

shift registers are updated with the first 20bytes of data, rest of the bytes are

considered as don’t care bits through the CAM. If VNP is set as high, data and

header are split, because classifier – scheduler is not yet connected to

processing elements, the data is shifted by 2 shifts and update header (so as to

mimic number of hops update). After the data is also shifted, it is combined with

the string and wait in the forwarding queue. Meanwhile, the address thrown by

CAM is taken by RAM buffer and appropriate port number is thrown out, Four

63

ports have been considered. These two functions are performed in parallel; once

the port number is collected experimental data string is forwarded to specific

particular port.

64

FIGURE 6.2 Simulation of experimental version of the classifier – scheduler in

classification mode.

65

Figure 6.2, shows that after the incoming data stream is read, it is split and

the address is separated from the data and the data is them merged, and sent

out, and this is evident from the delay observed in the out coming stream.

cam_data represents the string that is being processed, clk – represents

clock, rst – represents reset, pe – represents the processing elements port

through which data is sent and also taken in. cam_match – represents the Match

Hit signal. We find that when ‘vnp’ signal is high data is being processed as

proposed. Because this is an experimental setup, this prototype has the flexibility

of adding vnp directly in options, if not vnp flag will be a part of application layer

header information. The address that is given as output is automatically read by

the scheduler buffer to find out the appropriate port.

66

FIGURE 6.3 Simulation of experimental version of the classifier – scheduler

in scheduler mode.

67

It is seen in figure 6.3 that, after that data flows in, if the VNP is high, and the

QoS attribute is high, data is sent through ports, and when the broadcast is high,

all ports transmit data, which is typical in case of UDP, classifier – scheduler

module proposed here will be placed in VNP at the content provider rather than

the VNP placed in the core network, hence the broadcast mode of the processor

is activated.

Termn11, Termn12, Termn13, Termn14 represent the 4 ports that have been

assigned to VNP. Based on the address loaded into the buffer, the scheduler

forwards the packets to those particular slots.

CAM classification is the choice of classification and figure 6.3, gives the

simulation results of the structural level design of the CAM, which tried to handle

variable header length. CAM engages in a read through the look up tables after it

gets data from its input ports, all the bits are compared in parallel and the

address of the matched data stream is given in the output, if there is no match,

garbage value is given out. Synthesis report is displayed in figure 6.4 and figure

6.5, and output results are summarized in Table 6.1.

.

68

FIGURE 6.4 Synthesis report: Summary of the experimental classifier – scheduler.

69

FIGURE 6.5 Final synthesis report of the experimental classifier – scheduler.

70

Xilinx gives us the flexibility to view the register transfer level (RTL)

description of the code and its is displayed in figure 6.6, figure 6.7, figure 6.8.

From the viewer’s point of view right hand side represent the inputs and the

feedback lines of the classifier – scheduler module and the left hand side

represent the output lines, which are 4 output ports, address if the IP packet and

data going to the processing elements.

FIGURE 6.6 High level RTL achematic of classifier - scheduler.

FIGURE 6

6.7 Synthesized RTL

71

of classifieer –scheduler represe

ented in figuure 6.6.

o

s

o

a

FIGURE

 Xilinx

nto an FP

imulated u

btained in

mbient tem

6.8 Logic

x gives us t

PGA, its m

under four

table 6.1.

mperature o

c level desc

the flexibilit

mapping, p

different

The powe

f 25 oC and

72

cription of th

ty of simula

placement

board sce

er consump

d Vin was ke

he RTL give

ating the im

and routin

narios and

ption has b

ept at 2.5 vo

en in figure

mplementat

ng. The c

d have list

been calcul

olts.

6.7.

tion of the c

code has b

ted the re

ated under

code

been

esults

r the

73

TABLE 6.1 Comparison of design metrics of classifier – scheduler for

various FPGA technologies.

Design metrics

/ Technology

used

Virtex

XVC800

6BG560,

speed -6

QPro Virtex

Hi-Rel

XQV1000

Spartan 2E
XC2S600E
FG456
speed -7

Automotive
Spartan 3 E
XA3S1600E
FGG400

Power (mW) 32.16 32.16 33.6 101.74

Frequency

(MHz)
104.482 84.083 111.896 112.524

Logic cells 2408 2408 2408 2371

Memory (Kb) 215672 224056 211788 235956

Throughput

(Mbps)
1.671 1.345 1.790 1.8

It is the manufacturer’s choice, whether he would prefer the best

throughput and risk high power dissipation as is the case with Automotive

Spartan3, the module is unable to run at Vin of 2.5, it only runs in the range of

1.19 to 1.3 volts, or go for an overall performance and choose the rest of the

three. Graphs comparing the performance of technologies on which the code has

been run.

FIG

var

cl

GURE 6.9

rious techn

FIGURE 6.10 Logic

lassifier –scheduler in

 Power and

ologies.

d Frequenc

cell count

 various te

74

cy comparis

and memo

chnologies.

son of the c

ory consum

lassifier –

mption; com

scheduler

mparison o

in

of the

g

g

FIGURE

various t

It can

ives the hi

iven for the

6.11 Thro

echnologie

n be inferre

ighest thro

e classifier

oughput co

es.

ed from the

ughput of

– schedul

75

omparison of the classifier- sche

e data give

the classif

er is shown

en above th

fer-schedu

n in figure 6

hat Automo

ler module

.12 and figu

duler in

otive Spart

e. The floor

ure 6.13.

tan 3

rplan

76

FIGURE 6.12 Floorplan design given by xilinx for classifier – scheduler.

FIGURE 6.13 Gate level description of floop plan of classifier – scheduler

given in 6.11.

77

CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis is the initiation of the development of the basic modules of

VNP. The prototype has been able to simulate the forwarding – plane of VNP

consisting of the classifier and scheduler, this proves that a complete system can

be developed, and with the help of a good control plane design, a system that is

not just experimental but one which complies with RFC’s can be built. This thesis

has achieved the classifier – scheduler in structural and behavioral design. The

classifier – scheduler can be used for other network processors with appropriate

modifications. I have come up with the basic data path and architecture of

VNP, and discussed the complexities of developing VNP as a system on chip

design.

Future studies may include the building of control – plane of the VNP to be

able to comply with RFCs, and the watermarking, feedback and control plane for

the classifier - scheduler to complete the VNP. The design can be further

improved to use low power techniques like power gating and step up and step

down converters to handle power issues. Voltage scheduling would be

introduced, which will in turn help with power scaling.

REFERENCES

[1] M. Robert; “The dawn of digital TV,” IEEE Spectrum Online, 42 (10): 26-31, Oct.
2005.

[2] U. Sandberg; “Building direct-to-home television and entertainment networks for
Europe using the new digital video broadcast standards,” in Proceedings of the IEEE
International Broadcasting Convention, pp. 175-177, 1995.

[3] B. Alfonsi; “I want my IPTV: Internet protocol television predicted a winner,” IEEE
Distributed Systems Online, 6 (2), 2005.

[4] K. Wing, W. Hwang, and Y. Katayama; “System-on-chip layout compilation.” US
Patent 5883814.

[5] D. Gall; “MPEG: A video compression standard for multimedia applications,”
Communications of the ACM, 34 (4), April 1991.

[6] T. Vaughan; “Digital television (HDTV) and analog television (NTSC) broadcast
systems,” US Patent 5,774,193; 1998.

[7] T. Perry; “HDTV and the new digital television,” Spectrum IEEE, 32 (4), April 1995.

[8] D. Deloddere, W. Verbiest; “Interactive video on demand,” IEEE Communications 32
(5), May 1994.

[9] B. Tseng, C. Lin, J. Smith; “Using MPEG-7 and MPEG-21 for personalizing video,”
IEEE Multimedia, 11 (Jan-Mar): 42-52, 2004.

[10] G. Pierre, K. Faraydon, P. Bromley; "Network processors: A perspective on market
requirements, processor architectures and embedded S/W Tools," in Proceedings
Design, Automation, and Test in Europe (DATE '01), pp. 4-20, 2001

[11] S. Keshav, R. Sharma; “Issues and trends in router design,” IEEE Communications
36 (5): 144-151, May 1998

[12] P. Gupta, N. McKeown; “Algorithms for packet classification,” IEEE Network 15 (2):
24-32, March-April 2001

[13] J. Dent; “Achieving higher levels of electronic integration through system on chip,”
IEEE Aerospace and Electronic Systems 16 (10): 36-41, Oct. 2001

[14] F. Zhao; “Synchronizing routing information of control plane and routing plane
gracefully,” in Proceedings of the 2006 Workshop on High Performance Switching and
Routing, p. 6, June 2006.

[15] G. Chuanxiong; “SRR: An O(1) time complexity packet scheduler for flows in multi
service packet networks,” in Proceedings SIGCOMM’01, August 27-31, 2001.

 78

[16] Agilent Technologies; “IPTV quality of experience, test solution” (white paper).

[17] J. Lee, J. Kim, S. Kim, C. Lim, J. Jung; "Enhanced distributed streaming system
based on RTP/RTSP in resurgent ability," in Proceedings of the Fourth Annual ACIS
International Conference on Computer and Information Science (ICIS'05), pp. 568-572,
2005.

[18] J. Lotspeich; “Anonymous trust: Digital rights management using broadcast
encryption,” in Proceedings of the IEEE 92 (6), June 2004.

[19] T. Wolf, J.S. Turner; “Design issues for high-performance active routers,” IEEE
Journal Selected Areas in Communications 19 (3): 404-409, March 2001.

[20] N. Shah; “Understanding network processors.” Thesis, Department of Computer
Science, UC Berkeley, 2001.

[21] R. Rao, S. Dey, A. Nguyen, K. Faraydon; "On-chip communication architecture for
oc-768 network processors," in Proceedings of the 38th Conference on Design
Automation (DAC'01), pp. 678-683, 2001

[22] L. Kencl, J. Le Boudec; “Adaptive load sharing for network processors,” in
Proceedings of the 21st Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE INFOCOM 2002) 2: 545-554, 2002

[23] G. Goldszmidt and G. Hunt; “Scaling Internet services by dynamic allocation of
connections,” in Proceedings of the 6th International Symposium on Integrated Network
Management (IFIP/IEEE), pp. 171-184, 24-28 May 1999.

[24] Faraydon K; "Network processors: The new frontier in SoC design and validation,”
in Proceedings of the DATE Conference, 2000

[25] K. Lahiri, A. Raghunathan, S. Dey; "Efficient exploration of the SoC communication
architecture design space," in Proceedings of the International Conference on Computer
Aided Design, pp. 424- 430, Nov. 2000.

[26] T. Srinivasan, N. Dhanasekar, M. Nivedita, R. Dhivyakrishnan, A. Azeezunnisa;
"Scalable and parallel aggregated bit vector packet classification using prefix
computation model," in Proceedings of the International Symposium on Parallel
Computing in Electrical Engineering (PARELEC'06), pp.139-144, 2006

[27] S. Singh, F. Baboescu, G. Varghese and J. Wang; "Packet classification using
multidimensional cutting," in UCSD Technical Report CS2003-0736, 2003.

[28] B. Xu, D. Jiang, J. Li; “HSM: A fast packet classification algorithm,” in Proceedings
of the 19th International Conference on Advanced Information Networking and
Applications (AINA 2005) 1 (28-30): 987-992, March 2005.

 79

[29] P. Gupta P, McKeown N; “Algorithms for packet classification,” IEEE Network 15
(2): 24-32, Mar/Apr 2001

[30] V. Srinivasan, S. Suri; “Packet classification using Tuple space search,” in
Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pp. 135-146, 1999

[31] K. Zuver; “Debugging of an Internet packet scheduler using the identify software,”
Syndicated–Technical Newsletter for ASIC and FPGA Designers.

[32] D.E. Wrege, J. Liebeherr J; “A near optimal packet scheduler for QoS networks,” in
Proceedings of the 16th Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE INFOCOM '97) 2 (7-11): 576-583, April 1997.

[33] G. Hasegawa, T. Matsuo, M. Murata, H. Miyahara; “Comparisons of packet
scheduling algorithms for fair service among connections on the Internet,” in
Proceedings of the 19th Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE INFOCOM 2000) 3(26-30): 1253-1262, March 2000.

[34] Jinggang W, Ravindran B; “BPA: A fast packet scheduling algorithm for real-time
switched ethernet networks,” in Proceedings of the International Conference on Parallel
Processing (18-21), pp. 159-166, Aug. 2002.

[35] M. Shreedhar, G. Varghese; "Efficient fair queueing using deficit round robin," in
Proceedings ACM SIGCOMM Computer Communication Review 25, Oct 1995.

[36] P. Goyal, M. Harrick; “Start-time fair queueing: A scheduling algorithm for
integrated services packet switching networks,” in Proceedings ACM SIGCOMM
Computer Communication Review 26 (4), Oct. 1996.

[37] D. David, S. Shenker; “Supporting real-time applications in an integrated services
packet network: Architecture and mechanism,” in Proceedings ACM SIGCOMM
Computer Communication Review 22 (4), Oct. 1992.

[38] J. Richard, X. Jun; “On fundamental tradeoffs between delay bounds and
computational complexity in packet scheduling algorithms,” in Proceedings of the 2002
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications 13 (1): 15-28, Feb 2002

[39] Z. Ming, A. Krishnamurthy; “Probablistic packet scheduling: Achieving proportional
share bandwidth allocation for TCP flows,” Department of Computer Science, Princeton
University; Department of Computer Science Yale University.

[40] F. Baaboescu, G. Varghese; “Packet classification for core routers: Is there an
alternative to CAMs?” in Proceedings of the 22nd Annual Joint Conference of the IEEE
Computer and Communications Societies (IEEE INFOCOM 2003) 1 (30): 53-63, April
2003

 80

[41] M. Nourani, J Mohammad; “A TCAM-based parallel aachitecture for high-speed
packet forwarding,” IEEE Transactions Computers 56(1): 58-72, 2007.

[42] D. Taylor, W. Spitznagel; “On using content addressable memory for packet
classification.” Applied Research Laboratory, Washington University in Saint Louis.

[43] J. Cohn, D. Stout, P. Zuchowski, S. Gould, T. Bednar, D. Lackey; "Managing power
and performance for system-on-chip designs using voltage islands," in Proceedings of
the International Conference on Computer-Aided Design (ICCAD '02), pp. 95-202, 2002

[44] B. Cordan; “An efficient bus architecture for system-on-chip design,” in Proceedings
of the IEEE Custom Integrated Circuits Conference, pp. 623-626,1999.

[45] Y. Chu; “Dynamic data encryption system based on synchronized chaotic systems,”
IEEE Electronic Letters 35 (4), 1999.

[46] P. Dong, J. Brankov; “Digital watermarking robust to geometric distortions,” IEEE
Transactions on Image Processing 14 (12), December 2005.

[47] V.A.J Goor; “Address and data scrambling: Causes and impacts on memory tests,”
in Proceedings of the 1st IEEE International Workshop on Electronic Design, Test and
Applications, pp. 128-136, 2002.

[48] S. Brown, J. Rose; “Architecture of FPGAs and CPLDs: A tutorial,” Department of
Electrical and Computer Engineering, Toronto University.

[49] M. Borgatti, F. Lertora, B. Foret, L. Cali; “A reconfigurable system featuring
dynamically extensible embedded microprocessor, FPGA, and customizable I/O,” IEEE
Solid-State Circuits 38 (3): 521-529, Mar 2003.

[50] S.M. Scalera, “The design and implementation of content switching FPGA,” in
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, pp.
78-85, April 1998.

[51] Xilinx tool box: “VHDL/Verilog libraries and models,” www.xilinx.com

[52] VHDL tutorial: “What is VHDL?” McGill Center for Intelligent Machines.

[53] S. Mohanty; “A video broadcasting network processor with digital rights
management,” Computer Science and Engineering, University of North Texas.

[54] S.N Bhatti; “QoS-sensitive flows: Issues in IP packet handling,” IEEE Internet
Computing 4 (4), Aug 2000.

[55] P.P.K Lam; “UDP-liter: An improved UDP protocol, for real-time multimedia
applications over wireless links,” in Proceedings of the 1st International Symposium on
Wireless Communication Systems, pp. 314-318, Sep 2004.

 81

http://www.xilinx.com/

 82

[56] B. Leiner; “The Darpa Intenret protocol suite,” IEEE Communications 23 (3): 29-34,
1985.

[57] F. Baker; “Requirements for IP version 4 routers,” Network Working Group, Cisco
Systems.

[58] H. Miyatake, M. Tanaka, Y. Mori; “A design for high-speed, low-power CMOS fully
parallel content-addressable memory macros,” IEEE Journal of Solid-State Circuits 36
(6), June 2001.

[59] M. Nourani and S. Vijayasarathi; “A reconfigurable CAM architecture for network
search engines”, Center for Integrated Circuits and Systems, University of Dallas,
Richardson.

[60] XAPP application note: “Content addressable memory (CAM) in ATM applications”;
application note: Virtex Series and Virtex-II Series, XAPP202 (vo1.2) January 6, 2001.

[61] J. Lunteren, “Searching very large routing tables in wide embedded memory,” in
Proceedings of IEEE Globecom 3: 1615-1619, November 2001.

[62] United States Patent 5706224: “Content addressable memory and random access
memory partition circuit.”

[63] G. Nilsen, J. Torresen; “A variable word-width content addressable memory for fast
string matching,” in Proceedings of the IEEE Norchip Conference 8-9: 214-217, Nov
2004

[64] G. Hetherington; “Logic BIST for large industrial designs: Real issues and case
studies,” in Proceedings of the International Test Conference, pp. 358-367, 1999.

[65] A. Guccione; “Content addressable memory implemented using programmable
logic,” United States Patent 6278289.

[66] T. Kumaki; “A flexible multi port content addressable memory.” Department of
Computer Science, National Defense Academy, Yokosuka, Japan.

[67] W. Fichtner, “Design of VLSI systems,” Embedded Systems, Springer Berlin,
Column 284/1987.

