REPORT No. 908

STABILITY DERIVATIVES OF TRIANGULAR WINGS AT SUPERSONIC SPEEDS

By Herbert S. Ribner and Frank S. Malvestuto, Jr.

SUMMARY

The analysis of the stability derivatives of low-aspect-ratio triangular wings at subsonic and supersonic speeds, given in NACA TN No. 1428, is extended to apply to triangular wings having large vertex angles and traveling at supersonic speeds. The lift, rolling moment due to sideslip, and damping in roll and pitch for this more general case have been treated elsewhere on the basis of the theory of small disturbances. The surface potentials for angle of attack and rolling taken therefrom are used to obtain the several side-force and yawing-moment derivatives that depend on leading-edge suction, and a tentative value for the rolling moment due to yawing. The lift and moment due to downward acceleration are obtained on the basis of an unpublished unsteady-flow solution. All the known stability derivatives of the triangular wing at supersonic speeds, regardless of source, are collected herein for convenience and presented with respect to both body axes and stability axes. The results are limited to Mach numbers for which the triangular wing is contained within the Mach cone from its vertex. The spanwise variation of Mach number in the case of yawing is neglected, although the effect must be of importance.

INTRODUCTION

An earlier investigation (reference 1) has provided theoretical stability derivatives of low-aspect-ratio wings of triangular plan form at subsonic and supersonic speeds. The restriction to low aspect ratio was a consequence of the limitations of the theory. Several investigators have since obtained pressure distributions for angle of attack, rolling, pitching, and sideslip at supersonic speeds (references 2 to 6 and unpublished analyses), without restriction to low aspect ratio. These derivations have employed variants of the linear theory of supersonic flow and have, in fact, constituted important steps in the development of the theory. If the rotations are taken about the vertex, the pressure distribution for each motion in the more general case is found to have the same shape as the corresponding low-aspect-ratio approximation, so long as the triangular wing is contained within the Mach cone from its vertex. The magnitudes differ by factors which are functions solely of the ratio of the tangent of the semivertex angle of the triangle to the tangent of the Mach angle. The same similarity exists between the distributions of surface potential. It is thus relatively simple to extend most of the derivations of reference 1 to remove the restriction of low aspect ratio for supersonic speeds. Such an extension is made in the present report.

The lift-curve slope, the damping in roll and pitch, and (in effect) the rolling moment due to sideslip have been evaluated in references 2 to 6, so that the principal contributions of the present report are the normal acceleration derivatives obtained on the basis of an unpublished unsteady-flow solution due to Clifford S. Gardner, the several side-force and yawing-moment derivatives, and a tentative value of the rolling moment due to yawing. All the known stability derivatives of the triangular wing at supersonic speeds, regardless of source, are collected herein for convenience and presented with respect to both body axes and stability axes. Wings with dihedral are not treated (although they were included in reference 1), and the results are limited to Mach numbers for which the wing is contained within the Mach cone from its vertex.

SYMBOLS

- x, y, z: rectangular coordinates (fig. 1)
- t: time
- u, v, w: incremental flight velocities along x, y, z-axes, respectively (fig. 2); induced flow velocities along x-, y-, and z-axes of figure 1, respectively
- ρ, τ, φ: angular velocities about x, y, and z-axes, respectively (fig. 2)
- V: flight speed
- \bar{a}: speed of sound in free stream
- M: stream Mach number ($\\frac{V}{\bar{a}}$)
- M': component of the Mach number normal to wing leading edge ($\\frac{M}{\\sqrt{1+\mathcal{C}^2}}$)
- B: cotangent of Mach angle ($\sqrt{M^2-1}$)
- α: angle of attack (Flight w/V)
- β: angle of sideslip (Flight v/V)
- ϵ: semivertex angle of triangle
- μ: Mach angle (cot$^{-1}\sqrt{M^2-1}$)
- ΔP: local pressure difference between lower and upper surfaces of airfoil, positive in sense of a lift
- ρ: density of air
- a: semividth of triangle at distance x from vertex
- b: span (base of triangle)
\[c \] root chord (height of triangle)
\[\bar{c} \] mean aerodynamic chord
\[\bar{c} = \frac{2}{3} \int_0^{\bar{c}} (\text{Local chord})^2 dy = \frac{2}{3} c \]
\[C \] edge slope \(\frac{a}{z} \)
\[A \] aspect ratio \(2b/c \)
\[S \] area of triangle \(\frac{1}{2} bc \)
\[\phi \] velocity potential
\[\psi \] value of \(\phi \) for unit pitching velocity about \(y \)-axis
\[\chi \] value of \(\phi \) for unit angle of attack
\[n = \cos^{-1} \frac{y}{a} \]
\[k = \sqrt{1 - B^2 C^2} \]
\[E'(BC) \] complete elliptic integral of the second kind with modulus \(k \) \[\int_0^1 \sqrt{1 - k^2 \sin^2 z} \, dz \]
\[F'(BC) \] complete elliptic integral of the first kind with modulus \(k \) \[\int_0^1 \frac{dz}{\sqrt{1 - k^2 \sin^2 z}} \]
\[E''(BC) = E'(BC) \]
\[Q(BC) = \frac{[E''(BC)]^2}{1 - B^2 C^2} \]
\[G(BC) = \frac{1 - B^2 C^2}{(1 - B^2 C^2) E'(BC) + B^2 C^2 F'(BC)} \]
\[H(BC) = 3G(BC) - 2E''(BC) \]
\[I(BC) = 2(1 - B^2 C^2) E'(BC) - B^2 C^2 F'(BC) \]
\[J(BC) = E''(BC) I(BC) \sqrt{1 - B^2 C^2} \]
\(K \) constant defined in equation (16)
\[N \] yawing moment
\[Y \] lateral force
\[f \] suction force per unit length of edge
\[C_L \] lift coefficient \(\frac{1}{2} \rho V^2 S \)
\[C_m \] pitching-moment coefficient \(\frac{1}{2} \rho V^2 S \bar{c} \)
\[C_i \] rolling-moment coefficient \(\frac{1}{2} \rho V^2 S \bar{c} \)
\[C_s \] yawning-moment coefficient \(\frac{N}{2} \rho V^2 S \bar{c} \)
\[C_L \] lateral-force coefficient \(\frac{Y}{\frac{1}{2} \rho V^2 S} \)
\[C_D \] profile drag coefficient \(\frac{\text{Profile drag}}{\frac{1}{2} \rho V^2 S} \)
\[v_n \] induced surface velocity normal to wing leading edge
\[s \] perpendicular distance of point \((x, y)\) from wing leading edge
\[x_{cg} \] distance of center of gravity forward of \(\frac{2}{3} c \)

Subscripts:
\[R \] right edge
\[L \] left edge

Whenever \(a \), \(\dot{a} \), \(q \), \(p \), \(\beta \), and \(r \) are used as subscripts, a nondimensional derivative is indicated and this derivative is the slope through zero. For example,
\[\phi_x = \frac{\partial \phi}{\partial x} \]
\[\phi_{xt} = \frac{\partial^2 \phi}{\partial x \partial t} \]

A dot above a symbol denotes differentiation with respect to time. All angles are measured in radians.

ANALYSIS

SCOPE

The stability derivatives of triangular wings at supersonic speed that have been treated theoretically herein or elsewhere are listed in table I, together with the expressions that have been found for them. All the derivations make use of body axes. The derivations that follow give the values with reference to the principal body axes of figure 2 with origin at the aerodynamic center \(\left(\frac{2}{3} c, 0, 0 \right) \). Conversion has been made to the system of stability axes shown in figure 3 with origin a distance \(x_{cg} \) ahead of the \(\frac{2}{3} c \) point. Table I comprises parallel columns which present formulas relative to both systems. The expressions are limited to Mach numbers for which the triangle is contained within the Mach cone from its vertex.
The elliptic integral $E'(BC)$ depends only on the parameter $BC = \frac{\tan \frac{\pi}{2}}{\tan \frac{\mu}{2}}$ (ratio of the tangent of the semivertex angle of the triangular wing to the tangent of the Mach angle) and is therefore a constant for a given wing at a given speed.

DERIVATIVES $C_{\alpha z}$, $C_{\alpha i}$, AND $C_{\alpha a}$

The derivatives $C_{\alpha z}$, $C_{\alpha i}$, and $C_{\alpha a}$ are derived in reference 5.

With respect to the axes of figure 2

\[C_{\alpha z} = \frac{-3\pi A}{16} G(BC) \]
\[C_{\alpha i} = \frac{\pi A}{2} H(BC) \]
\[C_{\alpha a} = \frac{-\pi A}{32} I(BC) \]

where

\[G(BC) = \frac{1-B^2C^2}{(1-2B^2C^2)E''(BC)+B^2C^4F'(BC)} \]
\[H(BC) = 3G(BC) - 2E''(BC) \]
\[I(BC) = \frac{2(1-B^2C^2)}{(2-B^2C^2)E'(BC) - B^2C^4F'(BC)} \]

and $F'(BC)$ and $E'(BC)$ are the complete elliptic integrals of the first and second kinds, respectively, with modulus $k = \sqrt{1-B^2C^2}$.

DERIVATIVES $C_{\alpha k}$ AND $C_{\alpha s}$

The derivation of $C_{\alpha k}$ and $C_{\alpha s}$ in reference 1 is based on the assumption that the steady-state surface potential is not altered in the first order by a small normal acceleration. This assumption is true for the narrow triangles treated in the earlier paper, but it fails for the general triangles treated in the present paper. For this more general case the linearized potential equation for unsteady motion,

\[B^2\phi_{zz} - \phi_{z} + \frac{2V}{\alpha} \phi_{zt} + \frac{1}{\alpha^2} \phi_{tt} = 0 \]

must be solved, subject to the boundary condition on the wing, that is, for $z=0$

\[\frac{\partial \phi}{\partial z} = -\alpha Vt \]

In an unpublished paper, Mr. Clifford S. Gardner has, in effect, shown that a suitable solution is

\[\phi = \frac{M^2}{B^2} \psi + \left(t - \frac{M^2x}{VB_1} \right) \chi \]

where ϕ is the steady-state potential corresponding to a unit pitching velocity about the y-axis and χ is the steady-state potential corresponding to unit angle of attack. That equation (12) is a solution can be verified by direct substitution into equations (10) and (11). Thus, Gardner has shown that the time-dependent potential for an angle of attack at may be compounded of two time-free or steady-state potentials, one for a constant angle of attack and the other for steady pitching.
The lift distribution at time \(t=0 \) for the angle of attack \(\alpha \) is obtained from the surface potential by

\[
\Delta P = 2p(V\phi_{\infty} + \phi_{z=0}) = 2pV\alpha \left(\frac{M^2}{B^2} \psi x - \frac{M^2x^2}{2B^2} \right)
\]

\[
= \alpha \left(\frac{M^2}{B^2} \psi x - \frac{M^2x^2}{2B^2} \right) (\delta P)_{\alpha=1} - 2p \delta x - \frac{M^2x}{V} \int \frac{\psi x}{V} dS \tag{13}
\]

where

\((\Delta P)_{\alpha=1}\) lift distribution for unit angle of attack

\((\Delta P)_{\alpha=1}\) lift distribution for unit pitching velocity about \(\gamma \)-axis

The potential \(\phi \) obtained by setting \(\alpha = 1 \) in equation (3), and the pressure \(p \) coefficient \(\phi \) is obtained by setting \(\alpha = 1 \) and \(\phi = 1 \) in equation (1).

Integration to obtain the lift and moment and reduction to coefficient form yields

\[
C_L\alpha = \frac{M^2}{B^2} C_L + \frac{2M^2}{B^2} \int \frac{x^2}{V} dS \tag{14}
\]

\[
= \frac{M^3}{B^2} C_L + \frac{2M^3}{B^2} \int \frac{x^2}{V} dS \tag{15}
\]

where the integrations are carried over the wing plan form.

For the triangular wing with \(y \)-axis taken through the aerodynamic center, \(\frac{2}{3} c \) from the apex, the derivative \(C_{m\alpha} \) is zero. The derivatives \(C_{m\alpha} \) and \(C_{\alpha \phi} \) for this case are evaluated in equations (4) and (5), respectively. The potential \(x \) is obtained by setting \(\alpha = 1 \) in equation (3), and the pressure coefficient \(\left(\frac{\Delta P}{\frac{1}{2} \rho V^2} \right)_{\alpha=1} \) is obtained by setting \(\alpha = 1 \) and \(\beta = \frac{2}{3} c + x \) in equation (1).

Substitution, integration, and simplification yield the results

\[
C_L\alpha = -\frac{\pi A E''(BC) - M^2H(BC)}{2M^2-1} \tag{16}
\]

\[
C_{m\alpha} = \frac{\pi A E''(BC) - M^2H(BC)}{16} \tag{17}
\]

DERIVATIVE \(C_{\phi} \)

The pressure distribution over a thin triangular wing in yaw (side-slip) may be extended to provide a preliminary treatment of the case of a small angular velocity of yaw \(\phi \). The corresponding extension for narrow vertex angle is made in reference 1. The pressure equation (equation (3) of reference 1) is the approximation for narrow vertex angle. Equation (3) herein for a general vertex angle may be used instead. Equation (3) herein differs only in the factor \(\frac{1}{E'(BC)} \), whence the earlier expression for \(C_{\phi} \) (equation (19), reference 1, with \(\Gamma = 0^\circ \)) acquires this factor to agree with equation (18).

\[
\Delta P = 2pV\left(\frac{\partial \phi}{\partial x} - \frac{\partial \phi}{\partial y} \right) \tag{19}
\]

and the change in pressure distribution with yaw results from the term \(-\rho \frac{\partial \phi}{\partial y}\) since \(\phi \) does not change.

In reference 1 in the section entitled “Derivative \(C_{\phi} \),” the derivation employs body axes and equation (19) of the present paper. The surface potential used (equation (3) of reference 1) is the approximation for narrow vertex angle. Equation (3) herein for a general vertex angle may be used instead. Equation (3) herein differs only in the factor \(\frac{1}{E'(BC)} \), whence the earlier expression for \(C_{\phi} \) (equation (19), reference 1, with \(\Gamma = 0^\circ \)) acquires this factor to agree with equation (18).

DERIVATIVE \(C_{\phi} \)

The foregoing discussion of the triangular wing in yaw (side-slip) may be extended to provide a preliminary treatment of the case of a small angular velocity of yaw \(\phi \). The corresponding extension for narrow vertex angle is made in reference 1. The pressure equation (equation (3) of reference 1) is the approximation for narrow vertex angle. Two changes then appear in the pressure equation, equation (20), of reference 1. The right-hand side is divided by \(E'(BC) \), and the term \(aC=xC^2 \) must be retained since \(C^2 \) is no longer small compared with unity (\(C=\text{Tangent of semivertex angle} \)). With these changes, the derivation leads to

\[
C_{\phi} = \frac{\pi A}{36} \left(\frac{1}{9A} + \frac{1}{16} \right) E''(BC) \tag{20}
\]
In the derivation of equation (20), the spanwise variation in local Mach number caused by yawing is not taken into account although the variation in forward speed is taken into account. The surface potential that is used, equation (3), satisfies the linearized equation for a flow of uniform Mach number. This potential is inadequate to describe the compressibility effects associated with a spanwise variation of Mach number.

Thus, consider a high-aspect-ratio rectangular wing with tips cut off along the Mach lines. In straight flight the Ackerman theory can be applied. The pressure difference is given by

$$\Delta P = 2 \rho M^2 (\text{Speed of sound})^2 \sqrt{M^2 - 1} \quad (21)$$

In yawing flight the forward velocity varies linearly along the span. If the rate of yaw is made sufficiently low, the variation from wing tip to wing tip can be made so small that the flow is still nearly two-dimensional at any point. Thus the Ackerman theory is still applicable if the local Mach number is used at each spanwise station.

The variation in pressure with local Mach number can be obtained from equation (21). As the Mach number is increased, the pressure decreases from infinity at $M=1$ to a minimum at $M=1.4$ and then increases again. Thus below Mach number 1.4 the faster moving sections of the yawing wing have the lesser lift. This result is contrary to subsonic behavior and to that which would be predicted if the spanwise variation of Mach number were neglected. Thus the spanwise variation of the compressibility effect causes a reversal of the sign of the rolling moment due to yawing for rectangular wings at Mach numbers between 1 and 1.4, and at $M=1.4$ the moment is zero. (This result refers to yawing in a system of stability axes, fig. 3. For body axes, fig. 2, the effect is similar but the reversal extends to $M=\infty$.)

A yawing triangular wing may be expected likewise to show an effect of the spanwise variation in Mach number. If the triangle is contained within the Mach cone from its vertex (the only case considered in this report), however, the effect should be very much less than for the rectangular wing. In particular, where the predicted effect for the rectangular wing is a reversal of the sign of the rolling moment, the effect for the triangular wing is expected to be merely a change in the magnitude. A reversal in sign is not expected until the edges of the triangle protrude from the Mach cone. This behavior is inferred from the fact that the analyses of references 2 to 7 show many subsonic characteristics for triangles within the Mach cone and a marked change in characteristics for triangles with side edges outside the Mach cone.

Derivatives C_r and C_x

Extensive changes are necessary to generalize the treatment of C_r and C_x in reference 1 to arbitrary vertex angles for supersonic speeds; therefore, the revised derivation is given in detail.

The derivatives C_r and C_x relative to body axes for a very thin triangular wing without dihedral arise entirely from suction on the wing side edges. Consider a condition for which the induced velocity normal to the edge is of the form

$$v_N = \pm \frac{K}{\sqrt{s}} \quad (22)$$

in the immediate neighborhood of the edge, where s is the perpendicular distance from the edge and K is a constant. Reference 3 points out that for such a flow there is a suction force per unit length of edge,

$$f = \pi \rho K^2 \sqrt{1 - M'^2} \quad (23)$$

so long as the triangular wing does not protrude from the Mach cone from its vertex. In equation (23), M' is the Mach number of the component of the stream flow normal to the leading edge. The radical $\sqrt{1 - M'^2}$ is the Prandtl-Glauert compressibility factor for the normal component of flow. Equation (23) is limited to real values of the radical by the condition expressed for the Mach cone.

For the delta wing in rolling motion the induced velocity component u has been obtained in reference 5 as

$$u_1 = \pm \frac{\rho C^2}{2 \sqrt{C^2 - \frac{2}{3}}} I(BC)$$

Angle of attack gives the additional contribution (reference 2)

$$u_2 = \pm \frac{\sigma V C^2}{E'(BC) \sqrt{C^2 - \frac{2}{3}}}$$

The total induced velocity on the upper surface is thus the sum of u_1 and u_2 with the plus sign

$$u = \sqrt{\frac{C^2}{C^2 - \frac{2}{3}}} \left[\frac{\alpha V}{E'(BC)} + \frac{\rho C^2}{2} I(BC)\right]$$

Very near the side edge this velocity is approximately

$$u = \sqrt{\frac{2}{2(C - \frac{2}{3})}} \left[\frac{\alpha V}{E'(BC)} \pm \frac{\rho C^2}{2} I(BC)\right]$$

where the plus sign refers to the right edge and the minus sign to the left edge.

If a similar calculation is made for $v = \frac{\partial \phi}{\partial y}$, it is found that as the side edge is approached the resultant induced velocity $\sqrt{u^2 + v^2}$ becomes normal to the edge. Thus the normal velocity near the edge is

$$v_N = \frac{\sqrt{1 + C^2}}{\sqrt{2(1 - \frac{2}{3})}} u$$
The perpendicular distance of point \((x, y)\) from the side edge is

\[
g = \left(C - \frac{|y|}{z} \right) \frac{1}{\sqrt{1 + C^3}}
\]

The resultant induced velocity very near the edge may therefore be expressed approximately as

\[
\nu_n = \pm \left[\frac{\alpha V}{E'(BC)} \pm \frac{I(BC)\rho Cz}{2} (1 + C^3)^{1/4} \left(\frac{Cz}{28} \right)^{1/3} \right]
\]

which is of the form of equation (22). The suction force per unit length of edge is from equation (23) thus

\[
f = \frac{\pi}{2} \rho Cz \left\{ \frac{\alpha V^2}{2} \right\} \frac{I(BC)\rho Cz}{(1 + C^3)^{1/4}} \pm \left(\frac{I(BC)\rho VpCz}{E'(BC)} \right) \sqrt{(1 + C^3)(1 - M'^2)}
\]

where the plus sign refers to the right edge and the minus sign refers to the left edge. The factor \(\sqrt{(1 + C^3)(1 - M'^2)}\) can be reduced to \(\sqrt{1 - B'^3C^3}\), where \(B'^3 = M^2 - 1\).

The lateral component of this suction force is given by

\[
Y = \int_0^c (f_n - f_s) dx = \frac{\pi}{3} \rho C^3 \alpha Vp \frac{I(BC)\sqrt{1 - B'^3C^3}}{E'(BC)}
\]

The lateral-force coefficient is formed by division by \(\frac{1}{2} \rho V^3S\), and the derivative with respect to \(pb/2V\) is the stability derivative \(C_{yp}\). It is

\[
C_{yp} = \frac{2\pi}{3} \frac{\alpha I(BC)\sqrt{1 - B'^3C^3}}{E'(BC)}
\]

The yawing moment of the leading-edge suction about the vertex of the triangle is

\[
N_0 = -\int_0^c (f_n - f_s) x \sqrt{1 + C^6} \, d(x\sqrt{1 + C^6}) = -\frac{\pi}{4} \rho C^3 \alpha Vp (1 + C^6) \frac{I(BC)\sqrt{1 - B'^3C^3}}{E'(BC)}
\]

The moment about the reference point \((\frac{2}{3}c, 0, 0)\) is

\[
N = N_0 + \frac{2}{3} c Y = -\frac{\pi}{36} \rho C^3 \alpha Vp (1 + \frac{9}{2} C^6) \frac{I(BC)\sqrt{1 - B'^3C^3}}{E'(BC)}
\]

The yawing-moment coefficient is formed by division by \(\frac{1}{2} \rho V^3Sh\), and the derivative with respect to \(pb/2V\) is the stability derivative \(C_{ys}\). It is

\[
C_{ys} = -\pi \alpha \left(\frac{1}{9A} + \frac{A}{16} \right) \frac{I(BC)\sqrt{1 - B'^3C^3}}{E'(BC)}
\]

According to the discussion on \(C_{yp}\), a small angle of yaw or sideslip \((\beta < \frac{1}{M})\) does not alter the surface potential (to the first order in \(\beta\)) expressed relative to body axes. Thus, the initially symmetric distribution of leading-edge velocity persists in sideslip. The symmetry of the leading-edge suction is, however, upset by the sideslip because of a compressibility effect. The quantitative evaluation of the change proceeds as follows:

Equation (23) expresses the suction per unit length of edge in the form

\[
f = \pi \rho K^2 \sqrt{1 - M'^2}
\]

For infinitesimal sideslip the constant \(K\), related to the edge velocity, is unchanged, but \(M'\), the component Mach number perpendicular to the edge, is altered: \(M'\) increases on the right edge and decreases on the left edge. Because of the change of \(M'\) with sideslip angle \(\beta\) the edge suction may be written, for small values of \(\beta\),

\[
f = f_{\beta=0} + \beta \left(\frac{\partial f}{\partial \beta} \right)_{\beta=0}
\]

By differentiation of equation (23), with \(K\) constant and \(M' = M \sin (\epsilon \pm \beta)\), there results

\[
f = f_{\beta=0} \mp \beta f_{\beta=0} \left(\frac{M' \cot \epsilon}{1 - M'^2} \right)_{\beta=0}
\]

where the upper sign refers to the right edge and the lower sign to the left edge.

The quantity \(f_{\beta=0}\) is obtained by setting \(p = 0\) in equation (24):

\[
f_{\beta=0} = \frac{\pi \rho C^3 \alpha V^2 \sqrt{1 - B'^3C^3}}{2 [E'(BC)]^2}
\]

Substitution of equation (29) in the last term of equation (28) and simplification, with \(\tan \epsilon = C\), yields

\[
f = f_{\beta=0} \pm \beta \frac{\pi \rho V^3 \alpha^2 C^3 \frac{M^2}{2 [E'(BC)]^2 \sqrt{1 - B'^3C^3}}}{2}
\]

Equation (30) gives the suction per unit length of edge for a triangular wing with an angle of sideslip \(\beta\).

For the case of a small angular velocity of yaw \(r\), the edge suction may be approximated by

\[
f = f_{r=0} + r \left(\frac{\partial f}{\partial r} \right)_{r=0}
\]

where \(f_{r=0}\) is the same as \(f_{\beta=0}\) and is given by equation (23). If the center of rotation is at the reference point \((\frac{2}{3}c, 0, 0)\), the component Mach number normal to the edges is

\[
M' = M \left[\sin \epsilon \pm \frac{r}{\sqrt{\frac{2}{3} c \cos \epsilon - x \sec \epsilon}} \right]
\]
This value of M' is to be incorporated in equation (23) for f before the indicated differentiation $\frac{\partial f}{\partial r}$ can be carried out. The final result is

$$f=f_{s=0}+r \left(\frac{2}{3} c - z \sec^2 e \right) \pi \rho \alpha^2 M^2 C \left(\frac{1}{2} \right)^2 \left(\frac{1}{1 - B^2 C^2} \right)$$

(31)

The difference between the suction forces on the right and left edges, as determined from equations (30) and (31), has been integrated to yield values of side force and yawing moment. The procedures, and the subsequent reduction to coefficient form, are similar to those leading to equation (25) for C_{y_p} and to equation (26) for C_{z_p}. The results are

$$C_{y_p} = -\frac{\pi}{4} \alpha^2 A^2 M^2 Q(BC)$$

$$C_{z_p} = \frac{\pi}{48} \alpha^2 A^2 M^2 Q(BC)$$

$$C_{y_p} = \frac{\pi}{48} \alpha^2 A^2 M^2 Q(BC)$$

$$C_{z_p} = \frac{\pi}{48} \alpha^2 A^2 M^2 Q(BC)$$

$$C_{z_p} = -\frac{\pi}{9} \left(\frac{1}{A^2} + \frac{A}{8} + \frac{256}{9} \right) Q(BC)$$

where

$$Q(BC) = \frac{[E''(BC)]^2}{\sqrt{1 - B^2 C^2}}$$

(32)

The parameter $BC = \frac{\tan \varepsilon}{\tan \mu}$ is the ratio of tangent of the semi-vertex angle of the triangle to the tangent of the Mach angle; BC approaches zero, therefore, as the vertex angle approaches zero. The several functions $E''(BC)$, . . . $J(BC)$ all approach unity as BC approaches zero, and thus the derivatives obtained herein approach the asymptotic values of reference 1 as the vertex angle goes to zero.

The variation of the stability derivatives with Mach number (except C_{y_p} and C_{z_p}) is contained entirely in the factors $E''(BC)$, . . . $J(BC)$ and an additional factor

$$Q(BC) = \frac{[E''(BC)]^2}{\sqrt{1 - B^2 C^2}}$$

The six factors are plotted against

$$BC = \frac{\tan \varepsilon}{\tan \mu}, \text{ the ratio of the tangent of the semi-vertex angle to the tangent of the Mach angle, in figure 4.}$$

The derivatives apply to a wing of triangular plan form and zero thickness. The calculations are based on the assumption of potential flow with small disturbances, except in the case of the derivative C_{z_p}, in which skin friction is considered. The predicted infinite negative pressure acting on an edge of zero thickness to yield a finite suction force is, of course, a mathematical idealization. (The local violation of the assumption of small disturbances is not serious.) Subsonic experience indicates that with a suitably rounded edge a considerable leading-edge suction force may be realized in practice, with the theoretical value an upper limit. On the other hand, a sharp leading edge is known to cause loss of the leading-edge suction. The requirements of extreme thinness and a rounded leading edge (that is, appreciable radius of curvature) are evidently in conflict. Thus, the degree of applicability of the yawing-moment and lateral-force derivatives to actual triangular wings is uncertain. A
further limitation on validity, already elaborated on in the
section on C_{n}, exists also for the derivatives with respect to
yawing velocity. The analysis neglects the spanwise vari-
ation in Mach number caused by the yawing (but not the
spanwise variation in velocity). The result is an error in the
magnitude of the yawing derivatives that is expected to
vary from zero for $BC \to 0$ to an important amount for $BC \to 1$.

The potential \(\phi \) satisfies the linearized equation of motion
for the steady state but not the more general linearized
equation for unsteady motion except for the case of normal
acceleration \(\dot{a} \). This circumstance implies that the present
expressions for the stability derivatives are suitable only for
steady motions, motions with small accelerations, or sinuous
motions of low frequency. This limitation is accepted in all
stability work and may become serious only in cases of high-
frequency oscillations such as flutter.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY FIELD, VA., NOVEMBER 6, 1947.

REFERENCES

Triangular Wings at Subsonic and Supersonic Speeds. NACA
TN No. 1423, 1947.
3. Brown, Clinton E.: Theoretical Lift and Drag of Thin Triangular
5. Brown, Clinton E., and Adams, Mac C.: Damping in Pitch and Roll
of Triangular Wings at Supersonic Speeds. NACA Rep. No. 892,
1948.
Solution of the Wave Equation as Applied to Three-Dimensional
at Speeds below and above the Speed of Sound. NACA Rep.
No. 835, 1946.
8. Glauber, H.: A Non-Dimensional Form of the Stability Equations
<table>
<thead>
<tr>
<th>Derivative</th>
<th>Source</th>
<th>Principal body axes ((\text{origin at } \frac{2}{3} c))</th>
<th>Stability axes (^1) ((\text{origin at distance } x_{st} \text{ ahead of } \frac{2}{3} c \text{ point}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{L_{x}})</td>
<td>References 2 to 4</td>
<td>(\frac{\pi A}{2} E''(BC))</td>
<td>(\frac{\pi A}{2} E''(BC))</td>
</tr>
<tr>
<td>(C_{L_{y}})</td>
<td>Present report</td>
<td>(\frac{\pi A}{2} E''(BC) - M^2 H(BC))</td>
<td>(-\frac{\pi A}{2} E''(BC) - M^2 H(BC))</td>
</tr>
<tr>
<td>(C_{L_{z}})</td>
<td>Reference 5</td>
<td>(\frac{\pi A}{2} H(BC))</td>
<td>(\frac{\pi A}{2} H(BC) + \pi A \frac{x_{st}}{c} E''(BC))</td>
</tr>
<tr>
<td>(C_{n_{x}})</td>
<td>References 2 to 4</td>
<td>0</td>
<td>(-\frac{\pi A}{2} \frac{x_{st}}{c} E''(BC))</td>
</tr>
<tr>
<td>(C_{m_{y}})</td>
<td>Present report</td>
<td>(\frac{\pi A}{16} E''(BC) - M^2 H(BC))</td>
<td>(\frac{\pi A}{16} \left(1 + 8 \frac{x_{st}}{c}\right) E''(BC) - M^2 H(BC))</td>
</tr>
<tr>
<td>(C_{m_{z}})</td>
<td>Reference 5</td>
<td>(-\frac{3\pi A}{16} g(BC))</td>
<td>(-\frac{3\pi A}{16} g(BC) - \frac{\pi A \frac{x_{st}}{c}}{2} H(BC) - \frac{\pi A}{2} \frac{x_{st}^2}{c} E''(BC))</td>
</tr>
<tr>
<td>(C_{p})</td>
<td>Reference 6</td>
<td>(-\frac{\pi A}{32} I(BC))</td>
<td>(-\frac{\pi A}{32} I(BC) + \frac{\pi A}{9 A} \left(1 + 8 \frac{x_{st}}{c}\right) E''(BC) - \frac{I(BC)}{32})</td>
</tr>
<tr>
<td>(C_{t_{x}})</td>
<td>Present report</td>
<td>(\pi A \left(\frac{1}{9 A} + \frac{A}{16}\right) E''(BC))</td>
<td>(\pi A \left[\left(\frac{1}{9 A} + \frac{A}{16} + \frac{8 \frac{x_{st}}{c}}{9 A}\right) E''(BC) + \frac{A}{32} I(BC)\right] - \frac{a C_{n_{x}}}{\frac{1}{9 A} + \frac{4}{9 A^2}})</td>
</tr>
<tr>
<td>(C_{x_{g}})</td>
<td>do</td>
<td>(\frac{\pi A^2 M^2 Q(BC)}{48})</td>
<td>(\frac{\pi A^2 M^2 Q(BC)}{3} \left[E''(BC) + \left(\frac{A}{16} + \frac{8 \frac{x_{st}}{c}}{9 A}\right) M^2 Q(BC)\right])</td>
</tr>
<tr>
<td>(C_{y_{p}})</td>
<td>do</td>
<td>(-\frac{\pi A^2 M^2 Q(BC)}{36})</td>
<td>(-\frac{\pi A^2 M^2 Q(BC)}{3} \left[-J(BC) + \frac{A}{32} I(BC)\right] - \frac{a C_{n_{x}}}{\frac{1}{9 A} + \frac{4}{9 A^2}})</td>
</tr>
<tr>
<td>(C_{n_{y}})</td>
<td>Term in (C_{n_{x}}) derived in reference 1.</td>
<td>(-C_{n_{x}} \left(\frac{1}{9 A} + \frac{4}{9 A^2}\right))</td>
<td>(-C_{n_{x}} \left(\frac{1}{9 A} + \frac{4}{9 A^2}\right) - \frac{a C_{n_{x}}}{\frac{1}{9 A} + \frac{4}{9 A^2}} \left[E''(BC) - J(BC)\right])</td>
</tr>
<tr>
<td>(C_{R_{p}})</td>
<td>Present report</td>
<td>(-\frac{\pi A^2 M^2 Q(BC)}{4})</td>
<td>(-\frac{\pi A^2 M^2 Q(BC)}{4})</td>
</tr>
<tr>
<td>(C_{r_{p}})</td>
<td>do</td>
<td>(\frac{2\pi A}{3} J(BC))</td>
<td>(\frac{2\pi A}{3} J(BC))</td>
</tr>
<tr>
<td>(C_{r_{r}})</td>
<td>do</td>
<td>(\frac{\pi A^2 M^2 Q(BC)}{24})</td>
<td>(\frac{\pi A^2 M^2 Q(BC)}{24})</td>
</tr>
</tbody>
</table>

\(^1\) In the transformation from body axes, terms of order \(A\) have been neglected in comparison with unity, but terms of order \(\frac{A}{A}\) have been retained since they may be appreciable for small values of \(A\).